consensus/ethash: improve cache/dataset handling (#15864)
* consensus/ethash: add maxEpoch constant * consensus/ethash: improve cache/dataset handling There are two fixes in this commit: Unmap the memory through a finalizer like the libethash wrapper did. The release logic was incorrect and freed the memory while it was being used, leading to crashes like in #14495 or #14943. Track caches and datasets using simplelru instead of reinventing LRU logic. This should make it easier to see whether it's correct. * consensus/ethash: restore 'future item' logic in lru * consensus/ethash: use mmap even in test mode This makes it possible to shorten the time taken for TestCacheFileEvict. * consensus/ethash: shuffle func calc*Size comments around * consensus/ethash: ensure future cache/dataset is in the lru cache * consensus/ethash: add issue link to the new test * consensus/ethash: fix vet * consensus/ethash: fix test * consensus: tiny issue + nitpick fixes
This commit is contained in:
committed by
Péter Szilágyi
parent
5d4267911a
commit
924065e19d
@@ -20,17 +20,20 @@ package ethash
|
||||
|
||||
import "math/big"
|
||||
|
||||
// cacheSize calculates and returns the size of the ethash verification cache that
|
||||
// belongs to a certain block number. The cache size grows linearly, however, we
|
||||
// always take the highest prime below the linearly growing threshold in order to
|
||||
// reduce the risk of accidental regularities leading to cyclic behavior.
|
||||
// cacheSize returns the size of the ethash verification cache that belongs to a certain
|
||||
// block number.
|
||||
func cacheSize(block uint64) uint64 {
|
||||
// If we have a pre-generated value, use that
|
||||
epoch := int(block / epochLength)
|
||||
if epoch < len(cacheSizes) {
|
||||
if epoch < maxEpoch {
|
||||
return cacheSizes[epoch]
|
||||
}
|
||||
// No known cache size, calculate manually (sanity branch only)
|
||||
return calcCacheSize(epoch)
|
||||
}
|
||||
|
||||
// calcCacheSize calculates the cache size for epoch. The cache size grows linearly,
|
||||
// however, we always take the highest prime below the linearly growing threshold in order
|
||||
// to reduce the risk of accidental regularities leading to cyclic behavior.
|
||||
func calcCacheSize(epoch int) uint64 {
|
||||
size := cacheInitBytes + cacheGrowthBytes*uint64(epoch) - hashBytes
|
||||
for !new(big.Int).SetUint64(size / hashBytes).ProbablyPrime(1) { // Always accurate for n < 2^64
|
||||
size -= 2 * hashBytes
|
||||
@@ -38,17 +41,20 @@ func cacheSize(block uint64) uint64 {
|
||||
return size
|
||||
}
|
||||
|
||||
// datasetSize calculates and returns the size of the ethash mining dataset that
|
||||
// belongs to a certain block number. The dataset size grows linearly, however, we
|
||||
// always take the highest prime below the linearly growing threshold in order to
|
||||
// reduce the risk of accidental regularities leading to cyclic behavior.
|
||||
// datasetSize returns the size of the ethash mining dataset that belongs to a certain
|
||||
// block number.
|
||||
func datasetSize(block uint64) uint64 {
|
||||
// If we have a pre-generated value, use that
|
||||
epoch := int(block / epochLength)
|
||||
if epoch < len(datasetSizes) {
|
||||
if epoch < maxEpoch {
|
||||
return datasetSizes[epoch]
|
||||
}
|
||||
// No known dataset size, calculate manually (sanity branch only)
|
||||
return calcDatasetSize(epoch)
|
||||
}
|
||||
|
||||
// calcDatasetSize calculates the dataset size for epoch. The dataset size grows linearly,
|
||||
// however, we always take the highest prime below the linearly growing threshold in order
|
||||
// to reduce the risk of accidental regularities leading to cyclic behavior.
|
||||
func calcDatasetSize(epoch int) uint64 {
|
||||
size := datasetInitBytes + datasetGrowthBytes*uint64(epoch) - mixBytes
|
||||
for !new(big.Int).SetUint64(size / mixBytes).ProbablyPrime(1) { // Always accurate for n < 2^64
|
||||
size -= 2 * mixBytes
|
||||
|
Reference in New Issue
Block a user