les: duplicate downloader and fetcher to allow progressive refactoring

This commit is contained in:
Péter Szilágyi
2021-09-10 10:55:48 +03:00
parent 90987db733
commit 9e17648d8c
27 changed files with 8746 additions and 22 deletions

View File

@ -0,0 +1,889 @@
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// This is a temporary package whilst working on the eth/66 blocking refactors.
// After that work is done, les needs to be refactored to use the new package,
// or alternatively use a stripped down version of it. Either way, we need to
// keep the changes scoped so duplicating temporarily seems the sanest.
package fetcher
import (
"errors"
"math/rand"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/trie"
)
const (
lightTimeout = time.Millisecond // Time allowance before an announced header is explicitly requested
arriveTimeout = 500 * time.Millisecond // Time allowance before an announced block/transaction is explicitly requested
gatherSlack = 100 * time.Millisecond // Interval used to collate almost-expired announces with fetches
fetchTimeout = 5 * time.Second // Maximum allotted time to return an explicitly requested block/transaction
)
const (
maxUncleDist = 7 // Maximum allowed backward distance from the chain head
maxQueueDist = 32 // Maximum allowed distance from the chain head to queue
hashLimit = 256 // Maximum number of unique blocks or headers a peer may have announced
blockLimit = 64 // Maximum number of unique blocks a peer may have delivered
)
var (
blockAnnounceInMeter = metrics.NewRegisteredMeter("eth/fetcher/block/announces/in", nil)
blockAnnounceOutTimer = metrics.NewRegisteredTimer("eth/fetcher/block/announces/out", nil)
blockAnnounceDropMeter = metrics.NewRegisteredMeter("eth/fetcher/block/announces/drop", nil)
blockAnnounceDOSMeter = metrics.NewRegisteredMeter("eth/fetcher/block/announces/dos", nil)
blockBroadcastInMeter = metrics.NewRegisteredMeter("eth/fetcher/block/broadcasts/in", nil)
blockBroadcastOutTimer = metrics.NewRegisteredTimer("eth/fetcher/block/broadcasts/out", nil)
blockBroadcastDropMeter = metrics.NewRegisteredMeter("eth/fetcher/block/broadcasts/drop", nil)
blockBroadcastDOSMeter = metrics.NewRegisteredMeter("eth/fetcher/block/broadcasts/dos", nil)
headerFetchMeter = metrics.NewRegisteredMeter("eth/fetcher/block/headers", nil)
bodyFetchMeter = metrics.NewRegisteredMeter("eth/fetcher/block/bodies", nil)
headerFilterInMeter = metrics.NewRegisteredMeter("eth/fetcher/block/filter/headers/in", nil)
headerFilterOutMeter = metrics.NewRegisteredMeter("eth/fetcher/block/filter/headers/out", nil)
bodyFilterInMeter = metrics.NewRegisteredMeter("eth/fetcher/block/filter/bodies/in", nil)
bodyFilterOutMeter = metrics.NewRegisteredMeter("eth/fetcher/block/filter/bodies/out", nil)
)
var errTerminated = errors.New("terminated")
// HeaderRetrievalFn is a callback type for retrieving a header from the local chain.
type HeaderRetrievalFn func(common.Hash) *types.Header
// blockRetrievalFn is a callback type for retrieving a block from the local chain.
type blockRetrievalFn func(common.Hash) *types.Block
// headerRequesterFn is a callback type for sending a header retrieval request.
type headerRequesterFn func(common.Hash) error
// bodyRequesterFn is a callback type for sending a body retrieval request.
type bodyRequesterFn func([]common.Hash) error
// headerVerifierFn is a callback type to verify a block's header for fast propagation.
type headerVerifierFn func(header *types.Header) error
// blockBroadcasterFn is a callback type for broadcasting a block to connected peers.
type blockBroadcasterFn func(block *types.Block, propagate bool)
// chainHeightFn is a callback type to retrieve the current chain height.
type chainHeightFn func() uint64
// headersInsertFn is a callback type to insert a batch of headers into the local chain.
type headersInsertFn func(headers []*types.Header) (int, error)
// chainInsertFn is a callback type to insert a batch of blocks into the local chain.
type chainInsertFn func(types.Blocks) (int, error)
// peerDropFn is a callback type for dropping a peer detected as malicious.
type peerDropFn func(id string)
// blockAnnounce is the hash notification of the availability of a new block in the
// network.
type blockAnnounce struct {
hash common.Hash // Hash of the block being announced
number uint64 // Number of the block being announced (0 = unknown | old protocol)
header *types.Header // Header of the block partially reassembled (new protocol)
time time.Time // Timestamp of the announcement
origin string // Identifier of the peer originating the notification
fetchHeader headerRequesterFn // Fetcher function to retrieve the header of an announced block
fetchBodies bodyRequesterFn // Fetcher function to retrieve the body of an announced block
}
// headerFilterTask represents a batch of headers needing fetcher filtering.
type headerFilterTask struct {
peer string // The source peer of block headers
headers []*types.Header // Collection of headers to filter
time time.Time // Arrival time of the headers
}
// bodyFilterTask represents a batch of block bodies (transactions and uncles)
// needing fetcher filtering.
type bodyFilterTask struct {
peer string // The source peer of block bodies
transactions [][]*types.Transaction // Collection of transactions per block bodies
uncles [][]*types.Header // Collection of uncles per block bodies
time time.Time // Arrival time of the blocks' contents
}
// blockOrHeaderInject represents a schedules import operation.
type blockOrHeaderInject struct {
origin string
header *types.Header // Used for light mode fetcher which only cares about header.
block *types.Block // Used for normal mode fetcher which imports full block.
}
// number returns the block number of the injected object.
func (inject *blockOrHeaderInject) number() uint64 {
if inject.header != nil {
return inject.header.Number.Uint64()
}
return inject.block.NumberU64()
}
// number returns the block hash of the injected object.
func (inject *blockOrHeaderInject) hash() common.Hash {
if inject.header != nil {
return inject.header.Hash()
}
return inject.block.Hash()
}
// BlockFetcher is responsible for accumulating block announcements from various peers
// and scheduling them for retrieval.
type BlockFetcher struct {
light bool // The indicator whether it's a light fetcher or normal one.
// Various event channels
notify chan *blockAnnounce
inject chan *blockOrHeaderInject
headerFilter chan chan *headerFilterTask
bodyFilter chan chan *bodyFilterTask
done chan common.Hash
quit chan struct{}
// Announce states
announces map[string]int // Per peer blockAnnounce counts to prevent memory exhaustion
announced map[common.Hash][]*blockAnnounce // Announced blocks, scheduled for fetching
fetching map[common.Hash]*blockAnnounce // Announced blocks, currently fetching
fetched map[common.Hash][]*blockAnnounce // Blocks with headers fetched, scheduled for body retrieval
completing map[common.Hash]*blockAnnounce // Blocks with headers, currently body-completing
// Block cache
queue *prque.Prque // Queue containing the import operations (block number sorted)
queues map[string]int // Per peer block counts to prevent memory exhaustion
queued map[common.Hash]*blockOrHeaderInject // Set of already queued blocks (to dedup imports)
// Callbacks
getHeader HeaderRetrievalFn // Retrieves a header from the local chain
getBlock blockRetrievalFn // Retrieves a block from the local chain
verifyHeader headerVerifierFn // Checks if a block's headers have a valid proof of work
broadcastBlock blockBroadcasterFn // Broadcasts a block to connected peers
chainHeight chainHeightFn // Retrieves the current chain's height
insertHeaders headersInsertFn // Injects a batch of headers into the chain
insertChain chainInsertFn // Injects a batch of blocks into the chain
dropPeer peerDropFn // Drops a peer for misbehaving
// Testing hooks
announceChangeHook func(common.Hash, bool) // Method to call upon adding or deleting a hash from the blockAnnounce list
queueChangeHook func(common.Hash, bool) // Method to call upon adding or deleting a block from the import queue
fetchingHook func([]common.Hash) // Method to call upon starting a block (eth/61) or header (eth/62) fetch
completingHook func([]common.Hash) // Method to call upon starting a block body fetch (eth/62)
importedHook func(*types.Header, *types.Block) // Method to call upon successful header or block import (both eth/61 and eth/62)
}
// NewBlockFetcher creates a block fetcher to retrieve blocks based on hash announcements.
func NewBlockFetcher(light bool, getHeader HeaderRetrievalFn, getBlock blockRetrievalFn, verifyHeader headerVerifierFn, broadcastBlock blockBroadcasterFn, chainHeight chainHeightFn, insertHeaders headersInsertFn, insertChain chainInsertFn, dropPeer peerDropFn) *BlockFetcher {
return &BlockFetcher{
light: light,
notify: make(chan *blockAnnounce),
inject: make(chan *blockOrHeaderInject),
headerFilter: make(chan chan *headerFilterTask),
bodyFilter: make(chan chan *bodyFilterTask),
done: make(chan common.Hash),
quit: make(chan struct{}),
announces: make(map[string]int),
announced: make(map[common.Hash][]*blockAnnounce),
fetching: make(map[common.Hash]*blockAnnounce),
fetched: make(map[common.Hash][]*blockAnnounce),
completing: make(map[common.Hash]*blockAnnounce),
queue: prque.New(nil),
queues: make(map[string]int),
queued: make(map[common.Hash]*blockOrHeaderInject),
getHeader: getHeader,
getBlock: getBlock,
verifyHeader: verifyHeader,
broadcastBlock: broadcastBlock,
chainHeight: chainHeight,
insertHeaders: insertHeaders,
insertChain: insertChain,
dropPeer: dropPeer,
}
}
// Start boots up the announcement based synchroniser, accepting and processing
// hash notifications and block fetches until termination requested.
func (f *BlockFetcher) Start() {
go f.loop()
}
// Stop terminates the announcement based synchroniser, canceling all pending
// operations.
func (f *BlockFetcher) Stop() {
close(f.quit)
}
// Notify announces the fetcher of the potential availability of a new block in
// the network.
func (f *BlockFetcher) Notify(peer string, hash common.Hash, number uint64, time time.Time,
headerFetcher headerRequesterFn, bodyFetcher bodyRequesterFn) error {
block := &blockAnnounce{
hash: hash,
number: number,
time: time,
origin: peer,
fetchHeader: headerFetcher,
fetchBodies: bodyFetcher,
}
select {
case f.notify <- block:
return nil
case <-f.quit:
return errTerminated
}
}
// Enqueue tries to fill gaps the fetcher's future import queue.
func (f *BlockFetcher) Enqueue(peer string, block *types.Block) error {
op := &blockOrHeaderInject{
origin: peer,
block: block,
}
select {
case f.inject <- op:
return nil
case <-f.quit:
return errTerminated
}
}
// FilterHeaders extracts all the headers that were explicitly requested by the fetcher,
// returning those that should be handled differently.
func (f *BlockFetcher) FilterHeaders(peer string, headers []*types.Header, time time.Time) []*types.Header {
log.Trace("Filtering headers", "peer", peer, "headers", len(headers))
// Send the filter channel to the fetcher
filter := make(chan *headerFilterTask)
select {
case f.headerFilter <- filter:
case <-f.quit:
return nil
}
// Request the filtering of the header list
select {
case filter <- &headerFilterTask{peer: peer, headers: headers, time: time}:
case <-f.quit:
return nil
}
// Retrieve the headers remaining after filtering
select {
case task := <-filter:
return task.headers
case <-f.quit:
return nil
}
}
// FilterBodies extracts all the block bodies that were explicitly requested by
// the fetcher, returning those that should be handled differently.
func (f *BlockFetcher) FilterBodies(peer string, transactions [][]*types.Transaction, uncles [][]*types.Header, time time.Time) ([][]*types.Transaction, [][]*types.Header) {
log.Trace("Filtering bodies", "peer", peer, "txs", len(transactions), "uncles", len(uncles))
// Send the filter channel to the fetcher
filter := make(chan *bodyFilterTask)
select {
case f.bodyFilter <- filter:
case <-f.quit:
return nil, nil
}
// Request the filtering of the body list
select {
case filter <- &bodyFilterTask{peer: peer, transactions: transactions, uncles: uncles, time: time}:
case <-f.quit:
return nil, nil
}
// Retrieve the bodies remaining after filtering
select {
case task := <-filter:
return task.transactions, task.uncles
case <-f.quit:
return nil, nil
}
}
// Loop is the main fetcher loop, checking and processing various notification
// events.
func (f *BlockFetcher) loop() {
// Iterate the block fetching until a quit is requested
var (
fetchTimer = time.NewTimer(0)
completeTimer = time.NewTimer(0)
)
<-fetchTimer.C // clear out the channel
<-completeTimer.C
defer fetchTimer.Stop()
defer completeTimer.Stop()
for {
// Clean up any expired block fetches
for hash, announce := range f.fetching {
if time.Since(announce.time) > fetchTimeout {
f.forgetHash(hash)
}
}
// Import any queued blocks that could potentially fit
height := f.chainHeight()
for !f.queue.Empty() {
op := f.queue.PopItem().(*blockOrHeaderInject)
hash := op.hash()
if f.queueChangeHook != nil {
f.queueChangeHook(hash, false)
}
// If too high up the chain or phase, continue later
number := op.number()
if number > height+1 {
f.queue.Push(op, -int64(number))
if f.queueChangeHook != nil {
f.queueChangeHook(hash, true)
}
break
}
// Otherwise if fresh and still unknown, try and import
if (number+maxUncleDist < height) || (f.light && f.getHeader(hash) != nil) || (!f.light && f.getBlock(hash) != nil) {
f.forgetBlock(hash)
continue
}
if f.light {
f.importHeaders(op.origin, op.header)
} else {
f.importBlocks(op.origin, op.block)
}
}
// Wait for an outside event to occur
select {
case <-f.quit:
// BlockFetcher terminating, abort all operations
return
case notification := <-f.notify:
// A block was announced, make sure the peer isn't DOSing us
blockAnnounceInMeter.Mark(1)
count := f.announces[notification.origin] + 1
if count > hashLimit {
log.Debug("Peer exceeded outstanding announces", "peer", notification.origin, "limit", hashLimit)
blockAnnounceDOSMeter.Mark(1)
break
}
// If we have a valid block number, check that it's potentially useful
if notification.number > 0 {
if dist := int64(notification.number) - int64(f.chainHeight()); dist < -maxUncleDist || dist > maxQueueDist {
log.Debug("Peer discarded announcement", "peer", notification.origin, "number", notification.number, "hash", notification.hash, "distance", dist)
blockAnnounceDropMeter.Mark(1)
break
}
}
// All is well, schedule the announce if block's not yet downloading
if _, ok := f.fetching[notification.hash]; ok {
break
}
if _, ok := f.completing[notification.hash]; ok {
break
}
f.announces[notification.origin] = count
f.announced[notification.hash] = append(f.announced[notification.hash], notification)
if f.announceChangeHook != nil && len(f.announced[notification.hash]) == 1 {
f.announceChangeHook(notification.hash, true)
}
if len(f.announced) == 1 {
f.rescheduleFetch(fetchTimer)
}
case op := <-f.inject:
// A direct block insertion was requested, try and fill any pending gaps
blockBroadcastInMeter.Mark(1)
// Now only direct block injection is allowed, drop the header injection
// here silently if we receive.
if f.light {
continue
}
f.enqueue(op.origin, nil, op.block)
case hash := <-f.done:
// A pending import finished, remove all traces of the notification
f.forgetHash(hash)
f.forgetBlock(hash)
case <-fetchTimer.C:
// At least one block's timer ran out, check for needing retrieval
request := make(map[string][]common.Hash)
for hash, announces := range f.announced {
// In current LES protocol(les2/les3), only header announce is
// available, no need to wait too much time for header broadcast.
timeout := arriveTimeout - gatherSlack
if f.light {
timeout = 0
}
if time.Since(announces[0].time) > timeout {
// Pick a random peer to retrieve from, reset all others
announce := announces[rand.Intn(len(announces))]
f.forgetHash(hash)
// If the block still didn't arrive, queue for fetching
if (f.light && f.getHeader(hash) == nil) || (!f.light && f.getBlock(hash) == nil) {
request[announce.origin] = append(request[announce.origin], hash)
f.fetching[hash] = announce
}
}
}
// Send out all block header requests
for peer, hashes := range request {
log.Trace("Fetching scheduled headers", "peer", peer, "list", hashes)
// Create a closure of the fetch and schedule in on a new thread
fetchHeader, hashes := f.fetching[hashes[0]].fetchHeader, hashes
go func() {
if f.fetchingHook != nil {
f.fetchingHook(hashes)
}
for _, hash := range hashes {
headerFetchMeter.Mark(1)
fetchHeader(hash) // Suboptimal, but protocol doesn't allow batch header retrievals
}
}()
}
// Schedule the next fetch if blocks are still pending
f.rescheduleFetch(fetchTimer)
case <-completeTimer.C:
// At least one header's timer ran out, retrieve everything
request := make(map[string][]common.Hash)
for hash, announces := range f.fetched {
// Pick a random peer to retrieve from, reset all others
announce := announces[rand.Intn(len(announces))]
f.forgetHash(hash)
// If the block still didn't arrive, queue for completion
if f.getBlock(hash) == nil {
request[announce.origin] = append(request[announce.origin], hash)
f.completing[hash] = announce
}
}
// Send out all block body requests
for peer, hashes := range request {
log.Trace("Fetching scheduled bodies", "peer", peer, "list", hashes)
// Create a closure of the fetch and schedule in on a new thread
if f.completingHook != nil {
f.completingHook(hashes)
}
bodyFetchMeter.Mark(int64(len(hashes)))
go f.completing[hashes[0]].fetchBodies(hashes)
}
// Schedule the next fetch if blocks are still pending
f.rescheduleComplete(completeTimer)
case filter := <-f.headerFilter:
// Headers arrived from a remote peer. Extract those that were explicitly
// requested by the fetcher, and return everything else so it's delivered
// to other parts of the system.
var task *headerFilterTask
select {
case task = <-filter:
case <-f.quit:
return
}
headerFilterInMeter.Mark(int64(len(task.headers)))
// Split the batch of headers into unknown ones (to return to the caller),
// known incomplete ones (requiring body retrievals) and completed blocks.
unknown, incomplete, complete, lightHeaders := []*types.Header{}, []*blockAnnounce{}, []*types.Block{}, []*blockAnnounce{}
for _, header := range task.headers {
hash := header.Hash()
// Filter fetcher-requested headers from other synchronisation algorithms
if announce := f.fetching[hash]; announce != nil && announce.origin == task.peer && f.fetched[hash] == nil && f.completing[hash] == nil && f.queued[hash] == nil {
// If the delivered header does not match the promised number, drop the announcer
if header.Number.Uint64() != announce.number {
log.Trace("Invalid block number fetched", "peer", announce.origin, "hash", header.Hash(), "announced", announce.number, "provided", header.Number)
f.dropPeer(announce.origin)
f.forgetHash(hash)
continue
}
// Collect all headers only if we are running in light
// mode and the headers are not imported by other means.
if f.light {
if f.getHeader(hash) == nil {
announce.header = header
lightHeaders = append(lightHeaders, announce)
}
f.forgetHash(hash)
continue
}
// Only keep if not imported by other means
if f.getBlock(hash) == nil {
announce.header = header
announce.time = task.time
// If the block is empty (header only), short circuit into the final import queue
if header.TxHash == types.EmptyRootHash && header.UncleHash == types.EmptyUncleHash {
log.Trace("Block empty, skipping body retrieval", "peer", announce.origin, "number", header.Number, "hash", header.Hash())
block := types.NewBlockWithHeader(header)
block.ReceivedAt = task.time
complete = append(complete, block)
f.completing[hash] = announce
continue
}
// Otherwise add to the list of blocks needing completion
incomplete = append(incomplete, announce)
} else {
log.Trace("Block already imported, discarding header", "peer", announce.origin, "number", header.Number, "hash", header.Hash())
f.forgetHash(hash)
}
} else {
// BlockFetcher doesn't know about it, add to the return list
unknown = append(unknown, header)
}
}
headerFilterOutMeter.Mark(int64(len(unknown)))
select {
case filter <- &headerFilterTask{headers: unknown, time: task.time}:
case <-f.quit:
return
}
// Schedule the retrieved headers for body completion
for _, announce := range incomplete {
hash := announce.header.Hash()
if _, ok := f.completing[hash]; ok {
continue
}
f.fetched[hash] = append(f.fetched[hash], announce)
if len(f.fetched) == 1 {
f.rescheduleComplete(completeTimer)
}
}
// Schedule the header for light fetcher import
for _, announce := range lightHeaders {
f.enqueue(announce.origin, announce.header, nil)
}
// Schedule the header-only blocks for import
for _, block := range complete {
if announce := f.completing[block.Hash()]; announce != nil {
f.enqueue(announce.origin, nil, block)
}
}
case filter := <-f.bodyFilter:
// Block bodies arrived, extract any explicitly requested blocks, return the rest
var task *bodyFilterTask
select {
case task = <-filter:
case <-f.quit:
return
}
bodyFilterInMeter.Mark(int64(len(task.transactions)))
blocks := []*types.Block{}
// abort early if there's nothing explicitly requested
if len(f.completing) > 0 {
for i := 0; i < len(task.transactions) && i < len(task.uncles); i++ {
// Match up a body to any possible completion request
var (
matched = false
uncleHash common.Hash // calculated lazily and reused
txnHash common.Hash // calculated lazily and reused
)
for hash, announce := range f.completing {
if f.queued[hash] != nil || announce.origin != task.peer {
continue
}
if uncleHash == (common.Hash{}) {
uncleHash = types.CalcUncleHash(task.uncles[i])
}
if uncleHash != announce.header.UncleHash {
continue
}
if txnHash == (common.Hash{}) {
txnHash = types.DeriveSha(types.Transactions(task.transactions[i]), trie.NewStackTrie(nil))
}
if txnHash != announce.header.TxHash {
continue
}
// Mark the body matched, reassemble if still unknown
matched = true
if f.getBlock(hash) == nil {
block := types.NewBlockWithHeader(announce.header).WithBody(task.transactions[i], task.uncles[i])
block.ReceivedAt = task.time
blocks = append(blocks, block)
} else {
f.forgetHash(hash)
}
}
if matched {
task.transactions = append(task.transactions[:i], task.transactions[i+1:]...)
task.uncles = append(task.uncles[:i], task.uncles[i+1:]...)
i--
continue
}
}
}
bodyFilterOutMeter.Mark(int64(len(task.transactions)))
select {
case filter <- task:
case <-f.quit:
return
}
// Schedule the retrieved blocks for ordered import
for _, block := range blocks {
if announce := f.completing[block.Hash()]; announce != nil {
f.enqueue(announce.origin, nil, block)
}
}
}
}
}
// rescheduleFetch resets the specified fetch timer to the next blockAnnounce timeout.
func (f *BlockFetcher) rescheduleFetch(fetch *time.Timer) {
// Short circuit if no blocks are announced
if len(f.announced) == 0 {
return
}
// Schedule announcement retrieval quickly for light mode
// since server won't send any headers to client.
if f.light {
fetch.Reset(lightTimeout)
return
}
// Otherwise find the earliest expiring announcement
earliest := time.Now()
for _, announces := range f.announced {
if earliest.After(announces[0].time) {
earliest = announces[0].time
}
}
fetch.Reset(arriveTimeout - time.Since(earliest))
}
// rescheduleComplete resets the specified completion timer to the next fetch timeout.
func (f *BlockFetcher) rescheduleComplete(complete *time.Timer) {
// Short circuit if no headers are fetched
if len(f.fetched) == 0 {
return
}
// Otherwise find the earliest expiring announcement
earliest := time.Now()
for _, announces := range f.fetched {
if earliest.After(announces[0].time) {
earliest = announces[0].time
}
}
complete.Reset(gatherSlack - time.Since(earliest))
}
// enqueue schedules a new header or block import operation, if the component
// to be imported has not yet been seen.
func (f *BlockFetcher) enqueue(peer string, header *types.Header, block *types.Block) {
var (
hash common.Hash
number uint64
)
if header != nil {
hash, number = header.Hash(), header.Number.Uint64()
} else {
hash, number = block.Hash(), block.NumberU64()
}
// Ensure the peer isn't DOSing us
count := f.queues[peer] + 1
if count > blockLimit {
log.Debug("Discarded delivered header or block, exceeded allowance", "peer", peer, "number", number, "hash", hash, "limit", blockLimit)
blockBroadcastDOSMeter.Mark(1)
f.forgetHash(hash)
return
}
// Discard any past or too distant blocks
if dist := int64(number) - int64(f.chainHeight()); dist < -maxUncleDist || dist > maxQueueDist {
log.Debug("Discarded delivered header or block, too far away", "peer", peer, "number", number, "hash", hash, "distance", dist)
blockBroadcastDropMeter.Mark(1)
f.forgetHash(hash)
return
}
// Schedule the block for future importing
if _, ok := f.queued[hash]; !ok {
op := &blockOrHeaderInject{origin: peer}
if header != nil {
op.header = header
} else {
op.block = block
}
f.queues[peer] = count
f.queued[hash] = op
f.queue.Push(op, -int64(number))
if f.queueChangeHook != nil {
f.queueChangeHook(hash, true)
}
log.Debug("Queued delivered header or block", "peer", peer, "number", number, "hash", hash, "queued", f.queue.Size())
}
}
// importHeaders spawns a new goroutine to run a header insertion into the chain.
// If the header's number is at the same height as the current import phase, it
// updates the phase states accordingly.
func (f *BlockFetcher) importHeaders(peer string, header *types.Header) {
hash := header.Hash()
log.Debug("Importing propagated header", "peer", peer, "number", header.Number, "hash", hash)
go func() {
defer func() { f.done <- hash }()
// If the parent's unknown, abort insertion
parent := f.getHeader(header.ParentHash)
if parent == nil {
log.Debug("Unknown parent of propagated header", "peer", peer, "number", header.Number, "hash", hash, "parent", header.ParentHash)
return
}
// Validate the header and if something went wrong, drop the peer
if err := f.verifyHeader(header); err != nil && err != consensus.ErrFutureBlock {
log.Debug("Propagated header verification failed", "peer", peer, "number", header.Number, "hash", hash, "err", err)
f.dropPeer(peer)
return
}
// Run the actual import and log any issues
if _, err := f.insertHeaders([]*types.Header{header}); err != nil {
log.Debug("Propagated header import failed", "peer", peer, "number", header.Number, "hash", hash, "err", err)
return
}
// Invoke the testing hook if needed
if f.importedHook != nil {
f.importedHook(header, nil)
}
}()
}
// importBlocks spawns a new goroutine to run a block insertion into the chain. If the
// block's number is at the same height as the current import phase, it updates
// the phase states accordingly.
func (f *BlockFetcher) importBlocks(peer string, block *types.Block) {
hash := block.Hash()
// Run the import on a new thread
log.Debug("Importing propagated block", "peer", peer, "number", block.Number(), "hash", hash)
go func() {
defer func() { f.done <- hash }()
// If the parent's unknown, abort insertion
parent := f.getBlock(block.ParentHash())
if parent == nil {
log.Debug("Unknown parent of propagated block", "peer", peer, "number", block.Number(), "hash", hash, "parent", block.ParentHash())
return
}
// Quickly validate the header and propagate the block if it passes
switch err := f.verifyHeader(block.Header()); err {
case nil:
// All ok, quickly propagate to our peers
blockBroadcastOutTimer.UpdateSince(block.ReceivedAt)
go f.broadcastBlock(block, true)
case consensus.ErrFutureBlock:
// Weird future block, don't fail, but neither propagate
default:
// Something went very wrong, drop the peer
log.Debug("Propagated block verification failed", "peer", peer, "number", block.Number(), "hash", hash, "err", err)
f.dropPeer(peer)
return
}
// Run the actual import and log any issues
if _, err := f.insertChain(types.Blocks{block}); err != nil {
log.Debug("Propagated block import failed", "peer", peer, "number", block.Number(), "hash", hash, "err", err)
return
}
// If import succeeded, broadcast the block
blockAnnounceOutTimer.UpdateSince(block.ReceivedAt)
go f.broadcastBlock(block, false)
// Invoke the testing hook if needed
if f.importedHook != nil {
f.importedHook(nil, block)
}
}()
}
// forgetHash removes all traces of a block announcement from the fetcher's
// internal state.
func (f *BlockFetcher) forgetHash(hash common.Hash) {
// Remove all pending announces and decrement DOS counters
if announceMap, ok := f.announced[hash]; ok {
for _, announce := range announceMap {
f.announces[announce.origin]--
if f.announces[announce.origin] <= 0 {
delete(f.announces, announce.origin)
}
}
delete(f.announced, hash)
if f.announceChangeHook != nil {
f.announceChangeHook(hash, false)
}
}
// Remove any pending fetches and decrement the DOS counters
if announce := f.fetching[hash]; announce != nil {
f.announces[announce.origin]--
if f.announces[announce.origin] <= 0 {
delete(f.announces, announce.origin)
}
delete(f.fetching, hash)
}
// Remove any pending completion requests and decrement the DOS counters
for _, announce := range f.fetched[hash] {
f.announces[announce.origin]--
if f.announces[announce.origin] <= 0 {
delete(f.announces, announce.origin)
}
}
delete(f.fetched, hash)
// Remove any pending completions and decrement the DOS counters
if announce := f.completing[hash]; announce != nil {
f.announces[announce.origin]--
if f.announces[announce.origin] <= 0 {
delete(f.announces, announce.origin)
}
delete(f.completing, hash)
}
}
// forgetBlock removes all traces of a queued block from the fetcher's internal
// state.
func (f *BlockFetcher) forgetBlock(hash common.Hash) {
if insert := f.queued[hash]; insert != nil {
f.queues[insert.origin]--
if f.queues[insert.origin] == 0 {
delete(f.queues, insert.origin)
}
delete(f.queued, hash)
}
}

View File

@ -0,0 +1,896 @@
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package fetcher
import (
"errors"
"math/big"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie"
)
var (
testdb = rawdb.NewMemoryDatabase()
testKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
testAddress = crypto.PubkeyToAddress(testKey.PublicKey)
genesis = core.GenesisBlockForTesting(testdb, testAddress, big.NewInt(1000000000000000))
unknownBlock = types.NewBlock(&types.Header{GasLimit: params.GenesisGasLimit, BaseFee: big.NewInt(params.InitialBaseFee)}, nil, nil, nil, trie.NewStackTrie(nil))
)
// makeChain creates a chain of n blocks starting at and including parent.
// the returned hash chain is ordered head->parent. In addition, every 3rd block
// contains a transaction and every 5th an uncle to allow testing correct block
// reassembly.
func makeChain(n int, seed byte, parent *types.Block) ([]common.Hash, map[common.Hash]*types.Block) {
blocks, _ := core.GenerateChain(params.TestChainConfig, parent, ethash.NewFaker(), testdb, n, func(i int, block *core.BlockGen) {
block.SetCoinbase(common.Address{seed})
// If the block number is multiple of 3, send a bonus transaction to the miner
if parent == genesis && i%3 == 0 {
signer := types.MakeSigner(params.TestChainConfig, block.Number())
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, block.BaseFee(), nil), signer, testKey)
if err != nil {
panic(err)
}
block.AddTx(tx)
}
// If the block number is a multiple of 5, add a bonus uncle to the block
if i%5 == 0 {
block.AddUncle(&types.Header{ParentHash: block.PrevBlock(i - 1).Hash(), Number: big.NewInt(int64(i - 1))})
}
})
hashes := make([]common.Hash, n+1)
hashes[len(hashes)-1] = parent.Hash()
blockm := make(map[common.Hash]*types.Block, n+1)
blockm[parent.Hash()] = parent
for i, b := range blocks {
hashes[len(hashes)-i-2] = b.Hash()
blockm[b.Hash()] = b
}
return hashes, blockm
}
// fetcherTester is a test simulator for mocking out local block chain.
type fetcherTester struct {
fetcher *BlockFetcher
hashes []common.Hash // Hash chain belonging to the tester
headers map[common.Hash]*types.Header // Headers belonging to the tester
blocks map[common.Hash]*types.Block // Blocks belonging to the tester
drops map[string]bool // Map of peers dropped by the fetcher
lock sync.RWMutex
}
// newTester creates a new fetcher test mocker.
func newTester(light bool) *fetcherTester {
tester := &fetcherTester{
hashes: []common.Hash{genesis.Hash()},
headers: map[common.Hash]*types.Header{genesis.Hash(): genesis.Header()},
blocks: map[common.Hash]*types.Block{genesis.Hash(): genesis},
drops: make(map[string]bool),
}
tester.fetcher = NewBlockFetcher(light, tester.getHeader, tester.getBlock, tester.verifyHeader, tester.broadcastBlock, tester.chainHeight, tester.insertHeaders, tester.insertChain, tester.dropPeer)
tester.fetcher.Start()
return tester
}
// getHeader retrieves a header from the tester's block chain.
func (f *fetcherTester) getHeader(hash common.Hash) *types.Header {
f.lock.RLock()
defer f.lock.RUnlock()
return f.headers[hash]
}
// getBlock retrieves a block from the tester's block chain.
func (f *fetcherTester) getBlock(hash common.Hash) *types.Block {
f.lock.RLock()
defer f.lock.RUnlock()
return f.blocks[hash]
}
// verifyHeader is a nop placeholder for the block header verification.
func (f *fetcherTester) verifyHeader(header *types.Header) error {
return nil
}
// broadcastBlock is a nop placeholder for the block broadcasting.
func (f *fetcherTester) broadcastBlock(block *types.Block, propagate bool) {
}
// chainHeight retrieves the current height (block number) of the chain.
func (f *fetcherTester) chainHeight() uint64 {
f.lock.RLock()
defer f.lock.RUnlock()
if f.fetcher.light {
return f.headers[f.hashes[len(f.hashes)-1]].Number.Uint64()
}
return f.blocks[f.hashes[len(f.hashes)-1]].NumberU64()
}
// insertChain injects a new headers into the simulated chain.
func (f *fetcherTester) insertHeaders(headers []*types.Header) (int, error) {
f.lock.Lock()
defer f.lock.Unlock()
for i, header := range headers {
// Make sure the parent in known
if _, ok := f.headers[header.ParentHash]; !ok {
return i, errors.New("unknown parent")
}
// Discard any new blocks if the same height already exists
if header.Number.Uint64() <= f.headers[f.hashes[len(f.hashes)-1]].Number.Uint64() {
return i, nil
}
// Otherwise build our current chain
f.hashes = append(f.hashes, header.Hash())
f.headers[header.Hash()] = header
}
return 0, nil
}
// insertChain injects a new blocks into the simulated chain.
func (f *fetcherTester) insertChain(blocks types.Blocks) (int, error) {
f.lock.Lock()
defer f.lock.Unlock()
for i, block := range blocks {
// Make sure the parent in known
if _, ok := f.blocks[block.ParentHash()]; !ok {
return i, errors.New("unknown parent")
}
// Discard any new blocks if the same height already exists
if block.NumberU64() <= f.blocks[f.hashes[len(f.hashes)-1]].NumberU64() {
return i, nil
}
// Otherwise build our current chain
f.hashes = append(f.hashes, block.Hash())
f.blocks[block.Hash()] = block
}
return 0, nil
}
// dropPeer is an emulator for the peer removal, simply accumulating the various
// peers dropped by the fetcher.
func (f *fetcherTester) dropPeer(peer string) {
f.lock.Lock()
defer f.lock.Unlock()
f.drops[peer] = true
}
// makeHeaderFetcher retrieves a block header fetcher associated with a simulated peer.
func (f *fetcherTester) makeHeaderFetcher(peer string, blocks map[common.Hash]*types.Block, drift time.Duration) headerRequesterFn {
closure := make(map[common.Hash]*types.Block)
for hash, block := range blocks {
closure[hash] = block
}
// Create a function that return a header from the closure
return func(hash common.Hash) error {
// Gather the blocks to return
headers := make([]*types.Header, 0, 1)
if block, ok := closure[hash]; ok {
headers = append(headers, block.Header())
}
// Return on a new thread
go f.fetcher.FilterHeaders(peer, headers, time.Now().Add(drift))
return nil
}
}
// makeBodyFetcher retrieves a block body fetcher associated with a simulated peer.
func (f *fetcherTester) makeBodyFetcher(peer string, blocks map[common.Hash]*types.Block, drift time.Duration) bodyRequesterFn {
closure := make(map[common.Hash]*types.Block)
for hash, block := range blocks {
closure[hash] = block
}
// Create a function that returns blocks from the closure
return func(hashes []common.Hash) error {
// Gather the block bodies to return
transactions := make([][]*types.Transaction, 0, len(hashes))
uncles := make([][]*types.Header, 0, len(hashes))
for _, hash := range hashes {
if block, ok := closure[hash]; ok {
transactions = append(transactions, block.Transactions())
uncles = append(uncles, block.Uncles())
}
}
// Return on a new thread
go f.fetcher.FilterBodies(peer, transactions, uncles, time.Now().Add(drift))
return nil
}
}
// verifyFetchingEvent verifies that one single event arrive on a fetching channel.
func verifyFetchingEvent(t *testing.T, fetching chan []common.Hash, arrive bool) {
if arrive {
select {
case <-fetching:
case <-time.After(time.Second):
t.Fatalf("fetching timeout")
}
} else {
select {
case <-fetching:
t.Fatalf("fetching invoked")
case <-time.After(10 * time.Millisecond):
}
}
}
// verifyCompletingEvent verifies that one single event arrive on an completing channel.
func verifyCompletingEvent(t *testing.T, completing chan []common.Hash, arrive bool) {
if arrive {
select {
case <-completing:
case <-time.After(time.Second):
t.Fatalf("completing timeout")
}
} else {
select {
case <-completing:
t.Fatalf("completing invoked")
case <-time.After(10 * time.Millisecond):
}
}
}
// verifyImportEvent verifies that one single event arrive on an import channel.
func verifyImportEvent(t *testing.T, imported chan interface{}, arrive bool) {
if arrive {
select {
case <-imported:
case <-time.After(time.Second):
t.Fatalf("import timeout")
}
} else {
select {
case <-imported:
t.Fatalf("import invoked")
case <-time.After(20 * time.Millisecond):
}
}
}
// verifyImportCount verifies that exactly count number of events arrive on an
// import hook channel.
func verifyImportCount(t *testing.T, imported chan interface{}, count int) {
for i := 0; i < count; i++ {
select {
case <-imported:
case <-time.After(time.Second):
t.Fatalf("block %d: import timeout", i+1)
}
}
verifyImportDone(t, imported)
}
// verifyImportDone verifies that no more events are arriving on an import channel.
func verifyImportDone(t *testing.T, imported chan interface{}) {
select {
case <-imported:
t.Fatalf("extra block imported")
case <-time.After(50 * time.Millisecond):
}
}
// verifyChainHeight verifies the chain height is as expected.
func verifyChainHeight(t *testing.T, fetcher *fetcherTester, height uint64) {
if fetcher.chainHeight() != height {
t.Fatalf("chain height mismatch, got %d, want %d", fetcher.chainHeight(), height)
}
}
// Tests that a fetcher accepts block/header announcements and initiates retrievals
// for them, successfully importing into the local chain.
func TestFullSequentialAnnouncements(t *testing.T) { testSequentialAnnouncements(t, false) }
func TestLightSequentialAnnouncements(t *testing.T) { testSequentialAnnouncements(t, true) }
func testSequentialAnnouncements(t *testing.T, light bool) {
// Create a chain of blocks to import
targetBlocks := 4 * hashLimit
hashes, blocks := makeChain(targetBlocks, 0, genesis)
tester := newTester(light)
headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack)
bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0)
// Iteratively announce blocks until all are imported
imported := make(chan interface{})
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) {
if light {
if header == nil {
t.Fatalf("Fetcher try to import empty header")
}
imported <- header
} else {
if block == nil {
t.Fatalf("Fetcher try to import empty block")
}
imported <- block
}
}
for i := len(hashes) - 2; i >= 0; i-- {
tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher)
verifyImportEvent(t, imported, true)
}
verifyImportDone(t, imported)
verifyChainHeight(t, tester, uint64(len(hashes)-1))
}
// Tests that if blocks are announced by multiple peers (or even the same buggy
// peer), they will only get downloaded at most once.
func TestFullConcurrentAnnouncements(t *testing.T) { testConcurrentAnnouncements(t, false) }
func TestLightConcurrentAnnouncements(t *testing.T) { testConcurrentAnnouncements(t, true) }
func testConcurrentAnnouncements(t *testing.T, light bool) {
// Create a chain of blocks to import
targetBlocks := 4 * hashLimit
hashes, blocks := makeChain(targetBlocks, 0, genesis)
// Assemble a tester with a built in counter for the requests
tester := newTester(light)
firstHeaderFetcher := tester.makeHeaderFetcher("first", blocks, -gatherSlack)
firstBodyFetcher := tester.makeBodyFetcher("first", blocks, 0)
secondHeaderFetcher := tester.makeHeaderFetcher("second", blocks, -gatherSlack)
secondBodyFetcher := tester.makeBodyFetcher("second", blocks, 0)
counter := uint32(0)
firstHeaderWrapper := func(hash common.Hash) error {
atomic.AddUint32(&counter, 1)
return firstHeaderFetcher(hash)
}
secondHeaderWrapper := func(hash common.Hash) error {
atomic.AddUint32(&counter, 1)
return secondHeaderFetcher(hash)
}
// Iteratively announce blocks until all are imported
imported := make(chan interface{})
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) {
if light {
if header == nil {
t.Fatalf("Fetcher try to import empty header")
}
imported <- header
} else {
if block == nil {
t.Fatalf("Fetcher try to import empty block")
}
imported <- block
}
}
for i := len(hashes) - 2; i >= 0; i-- {
tester.fetcher.Notify("first", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), firstHeaderWrapper, firstBodyFetcher)
tester.fetcher.Notify("second", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout+time.Millisecond), secondHeaderWrapper, secondBodyFetcher)
tester.fetcher.Notify("second", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout-time.Millisecond), secondHeaderWrapper, secondBodyFetcher)
verifyImportEvent(t, imported, true)
}
verifyImportDone(t, imported)
// Make sure no blocks were retrieved twice
if int(counter) != targetBlocks {
t.Fatalf("retrieval count mismatch: have %v, want %v", counter, targetBlocks)
}
verifyChainHeight(t, tester, uint64(len(hashes)-1))
}
// Tests that announcements arriving while a previous is being fetched still
// results in a valid import.
func TestFullOverlappingAnnouncements(t *testing.T) { testOverlappingAnnouncements(t, false) }
func TestLightOverlappingAnnouncements(t *testing.T) { testOverlappingAnnouncements(t, true) }
func testOverlappingAnnouncements(t *testing.T, light bool) {
// Create a chain of blocks to import
targetBlocks := 4 * hashLimit
hashes, blocks := makeChain(targetBlocks, 0, genesis)
tester := newTester(light)
headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack)
bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0)
// Iteratively announce blocks, but overlap them continuously
overlap := 16
imported := make(chan interface{}, len(hashes)-1)
for i := 0; i < overlap; i++ {
imported <- nil
}
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) {
if light {
if header == nil {
t.Fatalf("Fetcher try to import empty header")
}
imported <- header
} else {
if block == nil {
t.Fatalf("Fetcher try to import empty block")
}
imported <- block
}
}
for i := len(hashes) - 2; i >= 0; i-- {
tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher)
select {
case <-imported:
case <-time.After(time.Second):
t.Fatalf("block %d: import timeout", len(hashes)-i)
}
}
// Wait for all the imports to complete and check count
verifyImportCount(t, imported, overlap)
verifyChainHeight(t, tester, uint64(len(hashes)-1))
}
// Tests that announces already being retrieved will not be duplicated.
func TestFullPendingDeduplication(t *testing.T) { testPendingDeduplication(t, false) }
func TestLightPendingDeduplication(t *testing.T) { testPendingDeduplication(t, true) }
func testPendingDeduplication(t *testing.T, light bool) {
// Create a hash and corresponding block
hashes, blocks := makeChain(1, 0, genesis)
// Assemble a tester with a built in counter and delayed fetcher
tester := newTester(light)
headerFetcher := tester.makeHeaderFetcher("repeater", blocks, -gatherSlack)
bodyFetcher := tester.makeBodyFetcher("repeater", blocks, 0)
delay := 50 * time.Millisecond
counter := uint32(0)
headerWrapper := func(hash common.Hash) error {
atomic.AddUint32(&counter, 1)
// Simulate a long running fetch
go func() {
time.Sleep(delay)
headerFetcher(hash)
}()
return nil
}
checkNonExist := func() bool {
return tester.getBlock(hashes[0]) == nil
}
if light {
checkNonExist = func() bool {
return tester.getHeader(hashes[0]) == nil
}
}
// Announce the same block many times until it's fetched (wait for any pending ops)
for checkNonExist() {
tester.fetcher.Notify("repeater", hashes[0], 1, time.Now().Add(-arriveTimeout), headerWrapper, bodyFetcher)
time.Sleep(time.Millisecond)
}
time.Sleep(delay)
// Check that all blocks were imported and none fetched twice
if int(counter) != 1 {
t.Fatalf("retrieval count mismatch: have %v, want %v", counter, 1)
}
verifyChainHeight(t, tester, 1)
}
// Tests that announcements retrieved in a random order are cached and eventually
// imported when all the gaps are filled in.
func TestFullRandomArrivalImport(t *testing.T) { testRandomArrivalImport(t, false) }
func TestLightRandomArrivalImport(t *testing.T) { testRandomArrivalImport(t, true) }
func testRandomArrivalImport(t *testing.T, light bool) {
// Create a chain of blocks to import, and choose one to delay
targetBlocks := maxQueueDist
hashes, blocks := makeChain(targetBlocks, 0, genesis)
skip := targetBlocks / 2
tester := newTester(light)
headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack)
bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0)
// Iteratively announce blocks, skipping one entry
imported := make(chan interface{}, len(hashes)-1)
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) {
if light {
if header == nil {
t.Fatalf("Fetcher try to import empty header")
}
imported <- header
} else {
if block == nil {
t.Fatalf("Fetcher try to import empty block")
}
imported <- block
}
}
for i := len(hashes) - 1; i >= 0; i-- {
if i != skip {
tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher)
time.Sleep(time.Millisecond)
}
}
// Finally announce the skipped entry and check full import
tester.fetcher.Notify("valid", hashes[skip], uint64(len(hashes)-skip-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher)
verifyImportCount(t, imported, len(hashes)-1)
verifyChainHeight(t, tester, uint64(len(hashes)-1))
}
// Tests that direct block enqueues (due to block propagation vs. hash announce)
// are correctly schedule, filling and import queue gaps.
func TestQueueGapFill(t *testing.T) {
// Create a chain of blocks to import, and choose one to not announce at all
targetBlocks := maxQueueDist
hashes, blocks := makeChain(targetBlocks, 0, genesis)
skip := targetBlocks / 2
tester := newTester(false)
headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack)
bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0)
// Iteratively announce blocks, skipping one entry
imported := make(chan interface{}, len(hashes)-1)
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { imported <- block }
for i := len(hashes) - 1; i >= 0; i-- {
if i != skip {
tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher)
time.Sleep(time.Millisecond)
}
}
// Fill the missing block directly as if propagated
tester.fetcher.Enqueue("valid", blocks[hashes[skip]])
verifyImportCount(t, imported, len(hashes)-1)
verifyChainHeight(t, tester, uint64(len(hashes)-1))
}
// Tests that blocks arriving from various sources (multiple propagations, hash
// announces, etc) do not get scheduled for import multiple times.
func TestImportDeduplication(t *testing.T) {
// Create two blocks to import (one for duplication, the other for stalling)
hashes, blocks := makeChain(2, 0, genesis)
// Create the tester and wrap the importer with a counter
tester := newTester(false)
headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack)
bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0)
counter := uint32(0)
tester.fetcher.insertChain = func(blocks types.Blocks) (int, error) {
atomic.AddUint32(&counter, uint32(len(blocks)))
return tester.insertChain(blocks)
}
// Instrument the fetching and imported events
fetching := make(chan []common.Hash)
imported := make(chan interface{}, len(hashes)-1)
tester.fetcher.fetchingHook = func(hashes []common.Hash) { fetching <- hashes }
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { imported <- block }
// Announce the duplicating block, wait for retrieval, and also propagate directly
tester.fetcher.Notify("valid", hashes[0], 1, time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher)
<-fetching
tester.fetcher.Enqueue("valid", blocks[hashes[0]])
tester.fetcher.Enqueue("valid", blocks[hashes[0]])
tester.fetcher.Enqueue("valid", blocks[hashes[0]])
// Fill the missing block directly as if propagated, and check import uniqueness
tester.fetcher.Enqueue("valid", blocks[hashes[1]])
verifyImportCount(t, imported, 2)
if counter != 2 {
t.Fatalf("import invocation count mismatch: have %v, want %v", counter, 2)
}
}
// Tests that blocks with numbers much lower or higher than out current head get
// discarded to prevent wasting resources on useless blocks from faulty peers.
func TestDistantPropagationDiscarding(t *testing.T) {
// Create a long chain to import and define the discard boundaries
hashes, blocks := makeChain(3*maxQueueDist, 0, genesis)
head := hashes[len(hashes)/2]
low, high := len(hashes)/2+maxUncleDist+1, len(hashes)/2-maxQueueDist-1
// Create a tester and simulate a head block being the middle of the above chain
tester := newTester(false)
tester.lock.Lock()
tester.hashes = []common.Hash{head}
tester.blocks = map[common.Hash]*types.Block{head: blocks[head]}
tester.lock.Unlock()
// Ensure that a block with a lower number than the threshold is discarded
tester.fetcher.Enqueue("lower", blocks[hashes[low]])
time.Sleep(10 * time.Millisecond)
if !tester.fetcher.queue.Empty() {
t.Fatalf("fetcher queued stale block")
}
// Ensure that a block with a higher number than the threshold is discarded
tester.fetcher.Enqueue("higher", blocks[hashes[high]])
time.Sleep(10 * time.Millisecond)
if !tester.fetcher.queue.Empty() {
t.Fatalf("fetcher queued future block")
}
}
// Tests that announcements with numbers much lower or higher than out current
// head get discarded to prevent wasting resources on useless blocks from faulty
// peers.
func TestFullDistantAnnouncementDiscarding(t *testing.T) { testDistantAnnouncementDiscarding(t, false) }
func TestLightDistantAnnouncementDiscarding(t *testing.T) { testDistantAnnouncementDiscarding(t, true) }
func testDistantAnnouncementDiscarding(t *testing.T, light bool) {
// Create a long chain to import and define the discard boundaries
hashes, blocks := makeChain(3*maxQueueDist, 0, genesis)
head := hashes[len(hashes)/2]
low, high := len(hashes)/2+maxUncleDist+1, len(hashes)/2-maxQueueDist-1
// Create a tester and simulate a head block being the middle of the above chain
tester := newTester(light)
tester.lock.Lock()
tester.hashes = []common.Hash{head}
tester.headers = map[common.Hash]*types.Header{head: blocks[head].Header()}
tester.blocks = map[common.Hash]*types.Block{head: blocks[head]}
tester.lock.Unlock()
headerFetcher := tester.makeHeaderFetcher("lower", blocks, -gatherSlack)
bodyFetcher := tester.makeBodyFetcher("lower", blocks, 0)
fetching := make(chan struct{}, 2)
tester.fetcher.fetchingHook = func(hashes []common.Hash) { fetching <- struct{}{} }
// Ensure that a block with a lower number than the threshold is discarded
tester.fetcher.Notify("lower", hashes[low], blocks[hashes[low]].NumberU64(), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher)
select {
case <-time.After(50 * time.Millisecond):
case <-fetching:
t.Fatalf("fetcher requested stale header")
}
// Ensure that a block with a higher number than the threshold is discarded
tester.fetcher.Notify("higher", hashes[high], blocks[hashes[high]].NumberU64(), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher)
select {
case <-time.After(50 * time.Millisecond):
case <-fetching:
t.Fatalf("fetcher requested future header")
}
}
// Tests that peers announcing blocks with invalid numbers (i.e. not matching
// the headers provided afterwards) get dropped as malicious.
func TestFullInvalidNumberAnnouncement(t *testing.T) { testInvalidNumberAnnouncement(t, false) }
func TestLightInvalidNumberAnnouncement(t *testing.T) { testInvalidNumberAnnouncement(t, true) }
func testInvalidNumberAnnouncement(t *testing.T, light bool) {
// Create a single block to import and check numbers against
hashes, blocks := makeChain(1, 0, genesis)
tester := newTester(light)
badHeaderFetcher := tester.makeHeaderFetcher("bad", blocks, -gatherSlack)
badBodyFetcher := tester.makeBodyFetcher("bad", blocks, 0)
imported := make(chan interface{})
announced := make(chan interface{})
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) {
if light {
if header == nil {
t.Fatalf("Fetcher try to import empty header")
}
imported <- header
} else {
if block == nil {
t.Fatalf("Fetcher try to import empty block")
}
imported <- block
}
}
// Announce a block with a bad number, check for immediate drop
tester.fetcher.announceChangeHook = func(hash common.Hash, b bool) {
announced <- nil
}
tester.fetcher.Notify("bad", hashes[0], 2, time.Now().Add(-arriveTimeout), badHeaderFetcher, badBodyFetcher)
verifyAnnounce := func() {
for i := 0; i < 2; i++ {
select {
case <-announced:
continue
case <-time.After(1 * time.Second):
t.Fatal("announce timeout")
return
}
}
}
verifyAnnounce()
verifyImportEvent(t, imported, false)
tester.lock.RLock()
dropped := tester.drops["bad"]
tester.lock.RUnlock()
if !dropped {
t.Fatalf("peer with invalid numbered announcement not dropped")
}
goodHeaderFetcher := tester.makeHeaderFetcher("good", blocks, -gatherSlack)
goodBodyFetcher := tester.makeBodyFetcher("good", blocks, 0)
// Make sure a good announcement passes without a drop
tester.fetcher.Notify("good", hashes[0], 1, time.Now().Add(-arriveTimeout), goodHeaderFetcher, goodBodyFetcher)
verifyAnnounce()
verifyImportEvent(t, imported, true)
tester.lock.RLock()
dropped = tester.drops["good"]
tester.lock.RUnlock()
if dropped {
t.Fatalf("peer with valid numbered announcement dropped")
}
verifyImportDone(t, imported)
}
// Tests that if a block is empty (i.e. header only), no body request should be
// made, and instead the header should be assembled into a whole block in itself.
func TestEmptyBlockShortCircuit(t *testing.T) {
// Create a chain of blocks to import
hashes, blocks := makeChain(32, 0, genesis)
tester := newTester(false)
headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack)
bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0)
// Add a monitoring hook for all internal events
fetching := make(chan []common.Hash)
tester.fetcher.fetchingHook = func(hashes []common.Hash) { fetching <- hashes }
completing := make(chan []common.Hash)
tester.fetcher.completingHook = func(hashes []common.Hash) { completing <- hashes }
imported := make(chan interface{})
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) {
if block == nil {
t.Fatalf("Fetcher try to import empty block")
}
imported <- block
}
// Iteratively announce blocks until all are imported
for i := len(hashes) - 2; i >= 0; i-- {
tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher)
// All announces should fetch the header
verifyFetchingEvent(t, fetching, true)
// Only blocks with data contents should request bodies
verifyCompletingEvent(t, completing, len(blocks[hashes[i]].Transactions()) > 0 || len(blocks[hashes[i]].Uncles()) > 0)
// Irrelevant of the construct, import should succeed
verifyImportEvent(t, imported, true)
}
verifyImportDone(t, imported)
}
// Tests that a peer is unable to use unbounded memory with sending infinite
// block announcements to a node, but that even in the face of such an attack,
// the fetcher remains operational.
func TestHashMemoryExhaustionAttack(t *testing.T) {
// Create a tester with instrumented import hooks
tester := newTester(false)
imported, announces := make(chan interface{}), int32(0)
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { imported <- block }
tester.fetcher.announceChangeHook = func(hash common.Hash, added bool) {
if added {
atomic.AddInt32(&announces, 1)
} else {
atomic.AddInt32(&announces, -1)
}
}
// Create a valid chain and an infinite junk chain
targetBlocks := hashLimit + 2*maxQueueDist
hashes, blocks := makeChain(targetBlocks, 0, genesis)
validHeaderFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack)
validBodyFetcher := tester.makeBodyFetcher("valid", blocks, 0)
attack, _ := makeChain(targetBlocks, 0, unknownBlock)
attackerHeaderFetcher := tester.makeHeaderFetcher("attacker", nil, -gatherSlack)
attackerBodyFetcher := tester.makeBodyFetcher("attacker", nil, 0)
// Feed the tester a huge hashset from the attacker, and a limited from the valid peer
for i := 0; i < len(attack); i++ {
if i < maxQueueDist {
tester.fetcher.Notify("valid", hashes[len(hashes)-2-i], uint64(i+1), time.Now(), validHeaderFetcher, validBodyFetcher)
}
tester.fetcher.Notify("attacker", attack[i], 1 /* don't distance drop */, time.Now(), attackerHeaderFetcher, attackerBodyFetcher)
}
if count := atomic.LoadInt32(&announces); count != hashLimit+maxQueueDist {
t.Fatalf("queued announce count mismatch: have %d, want %d", count, hashLimit+maxQueueDist)
}
// Wait for fetches to complete
verifyImportCount(t, imported, maxQueueDist)
// Feed the remaining valid hashes to ensure DOS protection state remains clean
for i := len(hashes) - maxQueueDist - 2; i >= 0; i-- {
tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), validHeaderFetcher, validBodyFetcher)
verifyImportEvent(t, imported, true)
}
verifyImportDone(t, imported)
}
// Tests that blocks sent to the fetcher (either through propagation or via hash
// announces and retrievals) don't pile up indefinitely, exhausting available
// system memory.
func TestBlockMemoryExhaustionAttack(t *testing.T) {
// Create a tester with instrumented import hooks
tester := newTester(false)
imported, enqueued := make(chan interface{}), int32(0)
tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { imported <- block }
tester.fetcher.queueChangeHook = func(hash common.Hash, added bool) {
if added {
atomic.AddInt32(&enqueued, 1)
} else {
atomic.AddInt32(&enqueued, -1)
}
}
// Create a valid chain and a batch of dangling (but in range) blocks
targetBlocks := hashLimit + 2*maxQueueDist
hashes, blocks := makeChain(targetBlocks, 0, genesis)
attack := make(map[common.Hash]*types.Block)
for i := byte(0); len(attack) < blockLimit+2*maxQueueDist; i++ {
hashes, blocks := makeChain(maxQueueDist-1, i, unknownBlock)
for _, hash := range hashes[:maxQueueDist-2] {
attack[hash] = blocks[hash]
}
}
// Try to feed all the attacker blocks make sure only a limited batch is accepted
for _, block := range attack {
tester.fetcher.Enqueue("attacker", block)
}
time.Sleep(200 * time.Millisecond)
if queued := atomic.LoadInt32(&enqueued); queued != blockLimit {
t.Fatalf("queued block count mismatch: have %d, want %d", queued, blockLimit)
}
// Queue up a batch of valid blocks, and check that a new peer is allowed to do so
for i := 0; i < maxQueueDist-1; i++ {
tester.fetcher.Enqueue("valid", blocks[hashes[len(hashes)-3-i]])
}
time.Sleep(100 * time.Millisecond)
if queued := atomic.LoadInt32(&enqueued); queued != blockLimit+maxQueueDist-1 {
t.Fatalf("queued block count mismatch: have %d, want %d", queued, blockLimit+maxQueueDist-1)
}
// Insert the missing piece (and sanity check the import)
tester.fetcher.Enqueue("valid", blocks[hashes[len(hashes)-2]])
verifyImportCount(t, imported, maxQueueDist)
// Insert the remaining blocks in chunks to ensure clean DOS protection
for i := maxQueueDist; i < len(hashes)-1; i++ {
tester.fetcher.Enqueue("valid", blocks[hashes[len(hashes)-2-i]])
verifyImportEvent(t, imported, true)
}
verifyImportDone(t, imported)
}