downloader: added missing blocks catchup functionality

When a parent is missing in the block list an attempt should be made to
fetch the missing parent and grandparents.
This commit is contained in:
obscuren
2015-04-13 16:38:32 +02:00
parent 7dcb9825c3
commit a8a2b2a488
4 changed files with 304 additions and 134 deletions

View File

@ -8,63 +8,44 @@ import (
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"gopkg.in/fatih/set.v0"
)
const maxBlockFetch = 256
const (
maxBlockFetch = 256 // Amount of max blocks to be fetched per chunk
minDesiredPeerCount = 3 // Amount of peers desired to start syncing
)
type hashFetcherFn func(common.Hash) error
type blockFetcherFn func([]common.Hash) error
type hashCheckFn func(common.Hash) bool
type chainInsertFn func(types.Blocks) error
type hashIterFn func() (common.Hash, error)
// XXX make threadsafe!!!!
type peers map[string]*peer
func (p peers) get(state int) []*peer {
var peers []*peer
for _, peer := range p {
peer.mu.RLock()
if peer.state == state {
peers = append(peers, peer)
}
peer.mu.RUnlock()
}
return peers
}
func (p peers) setState(id string, state int) {
if peer, exist := p[id]; exist {
peer.mu.Lock()
defer peer.mu.Unlock()
peer.state = state
}
}
type currentTdFn func() *big.Int
type Downloader struct {
queue *queue
hasBlock hashCheckFn
insertChain chainInsertFn
mu sync.RWMutex
queue *queue
peers peers
currentPeer *peer
// Callbacks
hasBlock hashCheckFn
insertChain chainInsertFn
currentTd currentTdFn
// Status
fetchingHashes int32
downloadingBlocks int32
processingBlocks int32
newPeerCh chan *peer
selectPeerCh chan *peer
HashCh chan []common.Hash
blockCh chan blockPack
quit chan struct{}
// Channels
newPeerCh chan *peer
syncCh chan syncPack
HashCh chan []common.Hash
blockCh chan blockPack
quit chan struct{}
}
type blockPack struct {
@ -72,17 +53,23 @@ type blockPack struct {
blocks []*types.Block
}
func New(hasBlock hashCheckFn, insertChain chainInsertFn) *Downloader {
type syncPack struct {
peer *peer
hash common.Hash
}
func New(hasBlock hashCheckFn, insertChain chainInsertFn, currentTd currentTdFn) *Downloader {
downloader := &Downloader{
queue: newqueue(),
peers: make(peers),
hasBlock: hasBlock,
insertChain: insertChain,
newPeerCh: make(chan *peer, 1),
selectPeerCh: make(chan *peer, 1),
HashCh: make(chan []common.Hash, 1),
blockCh: make(chan blockPack, 1),
quit: make(chan struct{}),
queue: newqueue(),
peers: make(peers),
hasBlock: hasBlock,
insertChain: insertChain,
currentTd: currentTd,
newPeerCh: make(chan *peer, 1),
syncCh: make(chan syncPack, 1),
HashCh: make(chan []common.Hash, 1),
blockCh: make(chan blockPack, 1),
quit: make(chan struct{}),
}
go downloader.peerHandler()
go downloader.update()
@ -116,89 +103,88 @@ func (d *Downloader) UnregisterPeer(id string) {
}
func (d *Downloader) peerHandler() {
// Fields defined here so we can reduce the amount of locking
// that needs to be done
var highestTd = new(big.Int)
// itimer is used to determine when to start ignoring `minDesiredPeerCount`
itimer := time.NewTicker(5 * time.Second)
out:
for {
select {
case newPeer := <-d.newPeerCh:
// Check if TD of peer is higher than our current
if newPeer.td.Cmp(highestTd) > 0 {
glog.V(logger.Detail).Infoln("New peer with highest TD =", newPeer.td)
highestTd.Set(newPeer.td)
// select the peer for downloading
d.selectPeerCh <- newPeer
case <-d.newPeerCh:
// Meet the `minDesiredPeerCount` before we select our best peer
if len(d.peers) < minDesiredPeerCount {
break
}
d.selectPeer(d.peers.bestPeer())
case <-itimer.C:
// The timer will make sure that the downloader keeps an active state
// in which it attempts to always check the network for highest td peers
d.selectPeer(d.peers.bestPeer())
case <-d.quit:
break out
}
}
}
func (d *Downloader) selectPeer(p *peer) {
// Make sure it's doing neither. Once done we can restart the
// downloading process if the TD is higher. For now just get on
// with whatever is going on. This prevents unecessary switching.
if !(d.isFetchingHashes() || d.isDownloadingBlocks() || d.isProcessing()) {
// selected peer must be better than our own
// XXX we also check the peer's recent hash to make sure we
// don't have it. Some peers report (i think) incorrect TD.
if p.td.Cmp(d.currentTd()) <= 0 || d.hasBlock(p.recentHash) {
return
}
glog.V(logger.Detail).Infoln("New peer with highest TD =", p.td)
d.syncCh <- syncPack{p, p.recentHash}
}
}
func (d *Downloader) update() {
out:
for {
select {
case selectedPeer := <-d.selectPeerCh:
// Make sure it's doing neither. Once done we can restart the
// downloading process if the TD is higher. For now just get on
// with whatever is going on. This prevents unecessary switching.
if !(d.isFetchingHashes() || d.isDownloadingBlocks()) {
glog.V(logger.Detail).Infoln("Selected new peer", selectedPeer.id)
// Start the fetcher. This will block the update entirely
// interupts need to be send to the appropriate channels
// respectively.
if err := d.startFetchingHashes(selectedPeer); err != nil {
// handle error
glog.V(logger.Debug).Infoln("Error fetching hashes:", err)
// Reset
break
}
// Start fetching blocks in paralel. The strategy is simple
// take any available peers, seserve a chunk for each peer available,
// let the peer deliver the chunkn and periodically check if a peer
// has timedout. When done downloading, process blocks.
if err := d.startFetchingBlocks(selectedPeer); err != nil {
glog.V(logger.Debug).Infoln("Error downloading blocks:", err)
// reset
break
}
// XXX this will move when optimised
// Sort the blocks by number. This bit needs much improvement. Right now
// it assumes full honesty form peers (i.e. it's not checked when the blocks
// link). We should at least check whihc queue match. This code could move
// to a seperate goroutine where it periodically checks for linked pieces.
types.BlockBy(types.Number).Sort(d.queue.blocks)
blocks := d.queue.blocks
glog.V(logger.Debug).Infoln("Inserting chain with", len(blocks), "blocks")
// Loop untill we're out of queue
for len(blocks) != 0 {
max := int(math.Min(float64(len(blocks)), 256))
// TODO check for parent error. When there's a parent error we should stop
// processing and start requesting the `block.hash` so that it's parent and
// grandparents can be requested and queued.
d.insertChain(blocks[:max])
blocks = blocks[max:]
}
case sync := <-d.syncCh:
selectedPeer := sync.peer
glog.V(logger.Detail).Infoln("Synchronising with network using:", selectedPeer.id)
// Start the fetcher. This will block the update entirely
// interupts need to be send to the appropriate channels
// respectively.
if err := d.startFetchingHashes(selectedPeer, sync.hash); err != nil {
// handle error
glog.V(logger.Debug).Infoln("Error fetching hashes:", err)
// XXX Reset
break
}
// Start fetching blocks in paralel. The strategy is simple
// take any available peers, seserve a chunk for each peer available,
// let the peer deliver the chunkn and periodically check if a peer
// has timedout. When done downloading, process blocks.
if err := d.startFetchingBlocks(selectedPeer); err != nil {
glog.V(logger.Debug).Infoln("Error downloading blocks:", err)
// XXX reset
break
}
glog.V(logger.Detail).Infoln("Sync completed")
d.process()
case <-d.quit:
break out
}
}
}
func (d *Downloader) startFetchingHashes(p *peer) error {
// XXX Make synchronous
func (d *Downloader) startFetchingHashes(p *peer, hash common.Hash) error {
glog.V(logger.Debug).Infoln("Downloading hashes")
start := time.Now()
// Get the first batch of hashes
p.getHashes(p.recentHash)
p.getHashes(hash)
atomic.StoreInt32(&d.fetchingHashes, 1)
out:
@ -237,10 +223,6 @@ out:
return nil
}
func (d *Downloader) DeliverBlocks(id string, block []*types.Block) {
d.blockCh <- blockPack{id, block}
}
func (d *Downloader) startFetchingBlocks(p *peer) error {
glog.V(logger.Detail).Infoln("Downloading", d.queue.hashPool.Size(), "blocks")
atomic.StoreInt32(&d.downloadingBlocks, 1)
@ -253,8 +235,6 @@ out:
for {
select {
case blockPack := <-d.blockCh:
//fmt.Println("get for", blockPack.peerId)
d.queue.deliver(blockPack.peerId, blockPack.blocks)
d.peers.setState(blockPack.peerId, idleState)
case <-ticker.C:
@ -266,21 +246,24 @@ out:
// Get a possible chunk. If nil is returned no chunk
// could be returned due to no hashes available.
chunk := d.queue.get(peer, maxBlockFetch)
if chunk != nil {
//fmt.Println("fetching for", peer.id)
// Fetch the chunk and check for error. If the peer was somehow
// already fetching a chunk due to a bug, it will be returned to
// the queue
if err := peer.fetch(chunk); err != nil {
// log for tracing
glog.V(logger.Debug).Infof("peer %s received double work (state = %v)\n", peer.id, peer.state)
d.queue.put(chunk.hashes)
}
if chunk == nil {
continue
}
//fmt.Println("fetching for", peer.id)
// XXX make fetch blocking.
// Fetch the chunk and check for error. If the peer was somehow
// already fetching a chunk due to a bug, it will be returned to
// the queue
if err := peer.fetch(chunk); err != nil {
// log for tracing
glog.V(logger.Debug).Infof("peer %s received double work (state = %v)\n", peer.id, peer.state)
d.queue.put(chunk.hashes)
}
}
atomic.StoreInt32(&d.downloadingBlocks, 1)
} else if len(d.queue.fetching) == 0 {
// Whene there are no more queue and no more `fetching`. We can
// When there are no more queue and no more `fetching`. We can
// safely assume we're done. Another part of the process will check
// for parent errors and will re-request anything that's missing
atomic.StoreInt32(&d.downloadingBlocks, 0)
@ -325,6 +308,88 @@ out:
return nil
}
// Add an (unrequested) block to the downloader. This is usually done through the
// NewBlockMsg by the protocol handler.
func (d *Downloader) AddBlock(id string, block *types.Block, td *big.Int) {
hash := block.Hash()
if d.hasBlock(hash) {
return
}
glog.V(logger.Detail).Infoln("Inserting new block from:", id)
d.queue.addBlock(id, block, td)
// if the peer is in our healthy list of peers; update the td
// here is a good chance to add the peer back to the list
if peer := d.peers.getPeer(id); peer != nil {
peer.mu.Lock()
peer.td = td
peer.recentHash = block.Hash()
peer.mu.Unlock()
}
// if neither go ahead to process
if !(d.isFetchingHashes() || d.isDownloadingBlocks()) {
d.process()
}
}
// Deliver a chunk to the downloader. This is usually done through the BlocksMsg by
// the protocol handler.
func (d *Downloader) DeliverChunk(id string, blocks []*types.Block) {
d.blockCh <- blockPack{id, blocks}
}
func (d *Downloader) process() error {
atomic.StoreInt32(&d.processingBlocks, 1)
defer atomic.StoreInt32(&d.processingBlocks, 0)
// XXX this will move when optimised
// Sort the blocks by number. This bit needs much improvement. Right now
// it assumes full honesty form peers (i.e. it's not checked when the blocks
// link). We should at least check whihc queue match. This code could move
// to a seperate goroutine where it periodically checks for linked pieces.
types.BlockBy(types.Number).Sort(d.queue.blocks)
blocks := d.queue.blocks
glog.V(logger.Debug).Infoln("Inserting chain with", len(blocks), "blocks")
var err error
// Loop untill we're out of blocks
for len(blocks) != 0 {
max := int(math.Min(float64(len(blocks)), 256))
// TODO check for parent error. When there's a parent error we should stop
// processing and start requesting the `block.hash` so that it's parent and
// grandparents can be requested and queued.
err = d.insertChain(blocks[:max])
if err != nil && core.IsParentErr(err) {
glog.V(logger.Debug).Infoln("Aborting process due to missing parent. Fetching hashes")
// TODO change this. This shite
for i, block := range blocks[:max] {
if !d.hasBlock(block.ParentHash()) {
d.syncCh <- syncPack{d.peers.bestPeer(), block.Hash()}
// remove processed blocks
blocks = blocks[i:]
break
}
}
break
}
blocks = blocks[max:]
}
// This will allow the GC to remove the in memory blocks
if len(blocks) == 0 {
d.queue.blocks = nil
} else {
d.queue.blocks = blocks
}
return err
}
func (d *Downloader) isFetchingHashes() bool {
return atomic.LoadInt32(&d.fetchingHashes) == 1
}
@ -332,3 +397,7 @@ func (d *Downloader) isFetchingHashes() bool {
func (d *Downloader) isDownloadingBlocks() bool {
return atomic.LoadInt32(&d.downloadingBlocks) == 1
}
func (d *Downloader) isProcessing() bool {
return atomic.LoadInt32(&d.processingBlocks) == 1
}