whisper: change the whisper message format so as to add the payload size (#15870)

* whisper: message format changed

* whisper: tests fixed

* whisper: style fixes

* whisper: fixed names, fixed failing tests

* whisper: fix merge issue in #15870

Occured while using the github online merge tool. Lesson learned.

* whisper: fix a gofmt error for #15870
This commit is contained in:
gluk256
2018-01-30 10:55:08 +02:00
committed by Péter Szilágyi
parent 59a852e418
commit a9e4a90d57
8 changed files with 194 additions and 184 deletions

View File

@ -25,6 +25,7 @@ import (
crand "crypto/rand"
"encoding/binary"
"errors"
mrand "math/rand"
"strconv"
"github.com/ethereum/go-ethereum/common"
@ -55,7 +56,7 @@ type sentMessage struct {
}
// ReceivedMessage represents a data packet to be received through the
// Whisper protocol.
// Whisper protocol and successfully decrypted.
type ReceivedMessage struct {
Raw []byte
@ -71,7 +72,7 @@ type ReceivedMessage struct {
Dst *ecdsa.PublicKey // Message recipient (identity used to decode the message)
Topic TopicType
SymKeyHash common.Hash // The Keccak256Hash of the key, associated with the Topic
SymKeyHash common.Hash // The Keccak256Hash of the key
EnvelopeHash common.Hash // Message envelope hash to act as a unique id
}
@ -89,81 +90,60 @@ func (msg *ReceivedMessage) isAsymmetricEncryption() bool {
// NewSentMessage creates and initializes a non-signed, non-encrypted Whisper message.
func newSentMessage(params *MessageParams) (*sentMessage, error) {
const payloadSizeFieldMaxSize = 4
msg := sentMessage{}
msg.Raw = make([]byte, 1, len(params.Payload)+len(params.Padding)+signatureLength+padSizeLimit)
msg.Raw = make([]byte, 1,
flagsLength+payloadSizeFieldMaxSize+len(params.Payload)+len(params.Padding)+signatureLength+padSizeLimit)
msg.Raw[0] = 0 // set all the flags to zero
err := msg.appendPadding(params)
if err != nil {
return nil, err
}
msg.addPayloadSizeField(params.Payload)
msg.Raw = append(msg.Raw, params.Payload...)
return &msg, nil
err := msg.appendPadding(params)
return &msg, err
}
// getSizeOfLength returns the number of bytes necessary to encode the entire size padding (including these bytes)
func getSizeOfLength(b []byte) (sz int, err error) {
sz = intSize(len(b)) // first iteration
sz = intSize(len(b) + sz) // second iteration
if sz > 3 {
err = errors.New("oversized padding parameter")
}
return sz, err
// addPayloadSizeField appends the auxiliary field containing the size of payload
func (msg *sentMessage) addPayloadSizeField(payload []byte) {
fieldSize := getSizeOfPayloadSizeField(payload)
field := make([]byte, 4)
binary.LittleEndian.PutUint32(field, uint32(len(payload)))
field = field[:fieldSize]
msg.Raw = append(msg.Raw, field...)
msg.Raw[0] |= byte(fieldSize)
}
// sizeOfIntSize returns minimal number of bytes necessary to encode an integer value
func intSize(i int) (s int) {
for s = 1; i >= 256; s++ {
i /= 256
// getSizeOfPayloadSizeField returns the number of bytes necessary to encode the size of payload
func getSizeOfPayloadSizeField(payload []byte) int {
s := 1
for i := len(payload); i >= 256; i /= 256 {
s++
}
return s
}
// appendPadding appends the pseudorandom padding bytes and sets the padding flag.
// The last byte contains the size of padding (thus, its size must not exceed 256).
// appendPadding appends the padding specified in params.
// If no padding is provided in params, then random padding is generated.
func (msg *sentMessage) appendPadding(params *MessageParams) error {
rawSize := len(params.Payload) + 1
if len(params.Padding) != 0 {
// padding data was provided by the Dapp, just use it as is
msg.Raw = append(msg.Raw, params.Padding...)
return nil
}
rawSize := flagsLength + getSizeOfPayloadSizeField(params.Payload) + len(params.Payload)
if params.Src != nil {
rawSize += signatureLength
}
if params.KeySym != nil {
rawSize += AESNonceLength
}
odd := rawSize % padSizeLimit
if len(params.Padding) != 0 {
padSize := len(params.Padding)
padLengthSize, err := getSizeOfLength(params.Padding)
if err != nil {
return err
}
totalPadSize := padSize + padLengthSize
buf := make([]byte, 8)
binary.LittleEndian.PutUint32(buf, uint32(totalPadSize))
buf = buf[:padLengthSize]
msg.Raw = append(msg.Raw, buf...)
msg.Raw = append(msg.Raw, params.Padding...)
msg.Raw[0] |= byte(padLengthSize) // number of bytes indicating the padding size
} else if odd != 0 {
totalPadSize := padSizeLimit - odd
if totalPadSize > 255 {
// this algorithm is only valid if padSizeLimit < 256.
// if padSizeLimit will ever change, please fix the algorithm
// (please see also ReceivedMessage.extractPadding() function).
panic("please fix the padding algorithm before releasing new version")
}
buf := make([]byte, totalPadSize)
_, err := crand.Read(buf[1:])
if err != nil {
return err
}
if totalPadSize > 6 && !validateSymmetricKey(buf) {
return errors.New("failed to generate random padding of size " + strconv.Itoa(totalPadSize))
}
buf[0] = byte(totalPadSize)
msg.Raw = append(msg.Raw, buf...)
msg.Raw[0] |= byte(0x1) // number of bytes indicating the padding size
paddingSize := padSizeLimit - odd
pad := make([]byte, paddingSize)
_, err := crand.Read(pad)
if err != nil {
return err
}
if !validateDataIntegrity(pad, paddingSize) {
return errors.New("failed to generate random padding of size " + strconv.Itoa(paddingSize))
}
msg.Raw = append(msg.Raw, pad...)
return nil
}
@ -176,11 +156,11 @@ func (msg *sentMessage) sign(key *ecdsa.PrivateKey) error {
return nil
}
msg.Raw[0] |= signatureFlag
msg.Raw[0] |= signatureFlag // it is important to set this flag before signing
hash := crypto.Keccak256(msg.Raw)
signature, err := crypto.Sign(hash, key)
if err != nil {
msg.Raw[0] &= ^signatureFlag // clear the flag
msg.Raw[0] &= (0xFF ^ signatureFlag) // clear the flag
return err
}
msg.Raw = append(msg.Raw, signature...)
@ -202,10 +182,9 @@ func (msg *sentMessage) encryptAsymmetric(key *ecdsa.PublicKey) error {
// encryptSymmetric encrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func (msg *sentMessage) encryptSymmetric(key []byte) (err error) {
if !validateSymmetricKey(key) {
return errors.New("invalid key provided for symmetric encryption")
if !validateDataIntegrity(key, aesKeyLength) {
return errors.New("invalid key provided for symmetric encryption, size: " + strconv.Itoa(len(key)))
}
block, err := aes.NewCipher(key)
if err != nil {
return err
@ -214,20 +193,46 @@ func (msg *sentMessage) encryptSymmetric(key []byte) (err error) {
if err != nil {
return err
}
// never use more than 2^32 random nonces with a given key
salt := make([]byte, aesgcm.NonceSize())
_, err = crand.Read(salt)
salt, err := generateSecureRandomData(aesNonceLength) // never use more than 2^32 random nonces with a given key
if err != nil {
return err
} else if !validateSymmetricKey(salt) {
return errors.New("crypto/rand failed to generate salt")
}
msg.Raw = append(aesgcm.Seal(nil, salt, msg.Raw, nil), salt...)
encrypted := aesgcm.Seal(nil, salt, msg.Raw, nil)
msg.Raw = append(encrypted, salt...)
return nil
}
// generateSecureRandomData generates random data where extra security is required.
// The purpose of this function is to prevent some bugs in software or in hardware
// from delivering not-very-random data. This is especially useful for AES nonce,
// where true randomness does not really matter, but it is very important to have
// a unique nonce for every message.
func generateSecureRandomData(length int) ([]byte, error) {
x := make([]byte, length)
y := make([]byte, length)
res := make([]byte, length)
_, err := crand.Read(x)
if err != nil {
return nil, err
} else if !validateDataIntegrity(x, length) {
return nil, errors.New("crypto/rand failed to generate secure random data")
}
_, err = mrand.Read(y)
if err != nil {
return nil, err
} else if !validateDataIntegrity(y, length) {
return nil, errors.New("math/rand failed to generate secure random data")
}
for i := 0; i < length; i++ {
res[i] = x[i] ^ y[i]
}
if !validateDataIntegrity(res, length) {
return nil, errors.New("failed to generate secure random data")
}
return res, nil
}
// Wrap bundles the message into an Envelope to transmit over the network.
func (msg *sentMessage) Wrap(options *MessageParams) (envelope *Envelope, err error) {
if options.TTL == 0 {
@ -259,12 +264,11 @@ func (msg *sentMessage) Wrap(options *MessageParams) (envelope *Envelope, err er
// decryptSymmetric decrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func (msg *ReceivedMessage) decryptSymmetric(key []byte) error {
// In v6, symmetric messages are expected to contain the 12-byte
// "salt" at the end of the payload.
if len(msg.Raw) < AESNonceLength {
// symmetric messages are expected to contain the 12-byte nonce at the end of the payload
if len(msg.Raw) < aesNonceLength {
return errors.New("missing salt or invalid payload in symmetric message")
}
salt := msg.Raw[len(msg.Raw)-AESNonceLength:]
salt := msg.Raw[len(msg.Raw)-aesNonceLength:]
block, err := aes.NewCipher(key)
if err != nil {
@ -274,11 +278,7 @@ func (msg *ReceivedMessage) decryptSymmetric(key []byte) error {
if err != nil {
return err
}
if len(salt) != aesgcm.NonceSize() {
log.Error("decrypting the message", "AES salt size", len(salt))
return errors.New("wrong AES salt size")
}
decrypted, err := aesgcm.Open(nil, salt, msg.Raw[:len(msg.Raw)-AESNonceLength], nil)
decrypted, err := aesgcm.Open(nil, salt, msg.Raw[:len(msg.Raw)-aesNonceLength], nil)
if err != nil {
return err
}
@ -296,8 +296,8 @@ func (msg *ReceivedMessage) decryptAsymmetric(key *ecdsa.PrivateKey) error {
return err
}
// Validate checks the validity and extracts the fields in case of success
func (msg *ReceivedMessage) Validate() bool {
// ValidateAndParse checks the message validity and extracts the fields in case of success.
func (msg *ReceivedMessage) ValidateAndParse() bool {
end := len(msg.Raw)
if end < 1 {
return false
@ -308,38 +308,28 @@ func (msg *ReceivedMessage) Validate() bool {
if end <= 1 {
return false
}
msg.Signature = msg.Raw[end:]
msg.Signature = msg.Raw[end : end+signatureLength]
msg.Src = msg.SigToPubKey()
if msg.Src == nil {
return false
}
}
padSize, ok := msg.extractPadding(end)
if !ok {
return false
}
msg.Payload = msg.Raw[1+padSize : end]
return true
}
// extractPadding extracts the padding from raw message.
// although we don't support sending messages with padding size
// exceeding 255 bytes, such messages are perfectly valid, and
// can be successfully decrypted.
func (msg *ReceivedMessage) extractPadding(end int) (int, bool) {
paddingSize := 0
sz := int(msg.Raw[0] & paddingMask) // number of bytes indicating the entire size of padding (including these bytes)
// could be zero -- it means no padding
if sz != 0 {
paddingSize = int(bytesToUintLittleEndian(msg.Raw[1 : 1+sz]))
if paddingSize < sz || paddingSize+1 > end {
return 0, false
beg := 1
payloadSize := 0
sizeOfPayloadSizeField := int(msg.Raw[0] & SizeMask) // number of bytes indicating the size of payload
if sizeOfPayloadSizeField != 0 {
payloadSize = int(bytesToUintLittleEndian(msg.Raw[beg : beg+sizeOfPayloadSizeField]))
if payloadSize+1 > end {
return false
}
msg.Padding = msg.Raw[1+sz : 1+paddingSize]
beg += sizeOfPayloadSizeField
msg.Payload = msg.Raw[beg : beg+payloadSize]
}
return paddingSize, true
beg += payloadSize
msg.Padding = msg.Raw[beg:end]
return true
}
// SigToPubKey returns the public key associated to the message's
@ -355,7 +345,7 @@ func (msg *ReceivedMessage) SigToPubKey() *ecdsa.PublicKey {
return pub
}
// hash calculates the SHA3 checksum of the message flags, payload and padding.
// hash calculates the SHA3 checksum of the message flags, payload size field, payload and padding.
func (msg *ReceivedMessage) hash() []byte {
if isMessageSigned(msg.Raw[0]) {
sz := len(msg.Raw) - signatureLength