simple fetchers (#1492)

* network: disable shouldNOTRequestAgain
* vendor singleflight
* network: disable shouldNOTRequestAgain
* network, storage: fix tests
* network/storage: remove HopCount and SkipCheck
* network/stream: use localstore when providing chunks a node has offered
* storage: refactor lnetstore
* storage: rename FetcherItem to Fetcher
* storage/feed: no distinction between catastrophic err or chunk not found
* network/stream: remove TestDeliveryFromNodes, as FindPeer is changed, and Swarm connectivity is not a chain
* network/stream: fixed intervals tests
* swarm: fixes for linter
* storage: use LRU cache for fetchers
* network, storage: better godoc
* storage/netstore: explicit errors
* storage/feed/lookup: Clarify ReadFunc expected return error values
* storage: address comments by elad
This commit is contained in:
Anton Evangelatov
2019-06-18 08:47:27 +02:00
committed by acud
parent f57d4f0802
commit d589af14a8
23 changed files with 746 additions and 2246 deletions

View File

@ -1,336 +0,0 @@
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package network
import (
"context"
"fmt"
"sync"
"time"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethersphere/swarm/storage"
"github.com/ethersphere/swarm/tracing"
olog "github.com/opentracing/opentracing-go/log"
)
const (
defaultSearchTimeout = 1 * time.Second
// maximum number of forwarded requests (hops), to make sure requests are not
// forwarded forever in peer loops
maxHopCount uint8 = 20
)
// Time to consider peer to be skipped.
// Also used in stream delivery.
var RequestTimeout = 10 * time.Second
type RequestFunc func(context.Context, *Request) (*enode.ID, chan struct{}, error)
// Fetcher is created when a chunk is not found locally. It starts a request handler loop once and
// keeps it alive until all active requests are completed. This can happen:
// 1. either because the chunk is delivered
// 2. or because the requester cancelled/timed out
// Fetcher self destroys itself after it is completed.
// TODO: cancel all forward requests after termination
type Fetcher struct {
protoRequestFunc RequestFunc // request function fetcher calls to issue retrieve request for a chunk
addr storage.Address // the address of the chunk to be fetched
offerC chan *enode.ID // channel of sources (peer node id strings)
requestC chan uint8 // channel for incoming requests (with the hopCount value in it)
searchTimeout time.Duration
skipCheck bool
ctx context.Context
}
type Request struct {
Addr storage.Address // chunk address
Source *enode.ID // nodeID of peer to request from (can be nil)
SkipCheck bool // whether to offer the chunk first or deliver directly
peersToSkip *sync.Map // peers not to request chunk from (only makes sense if source is nil)
HopCount uint8 // number of forwarded requests (hops)
}
// NewRequest returns a new instance of Request based on chunk address skip check and
// a map of peers to skip.
func NewRequest(addr storage.Address, skipCheck bool, peersToSkip *sync.Map) *Request {
return &Request{
Addr: addr,
SkipCheck: skipCheck,
peersToSkip: peersToSkip,
}
}
// SkipPeer returns if the peer with nodeID should not be requested to deliver a chunk.
// Peers to skip are kept per Request and for a time period of RequestTimeout.
// This function is used in stream package in Delivery.RequestFromPeers to optimize
// requests for chunks.
func (r *Request) SkipPeer(nodeID string) bool {
val, ok := r.peersToSkip.Load(nodeID)
if !ok {
return false
}
t, ok := val.(time.Time)
if ok && time.Now().After(t.Add(RequestTimeout)) {
// deadline expired
r.peersToSkip.Delete(nodeID)
return false
}
return true
}
// FetcherFactory is initialised with a request function and can create fetchers
type FetcherFactory struct {
request RequestFunc
skipCheck bool
}
// NewFetcherFactory takes a request function and skip check parameter and creates a FetcherFactory
func NewFetcherFactory(request RequestFunc, skipCheck bool) *FetcherFactory {
return &FetcherFactory{
request: request,
skipCheck: skipCheck,
}
}
// New constructs a new Fetcher, for the given chunk. All peers in peersToSkip
// are not requested to deliver the given chunk. peersToSkip should always
// contain the peers which are actively requesting this chunk, to make sure we
// don't request back the chunks from them.
// The created Fetcher is started and returned.
func (f *FetcherFactory) New(ctx context.Context, source storage.Address, peers *sync.Map) storage.NetFetcher {
fetcher := NewFetcher(ctx, source, f.request, f.skipCheck)
go fetcher.run(peers)
return fetcher
}
// NewFetcher creates a new Fetcher for the given chunk address using the given request function.
func NewFetcher(ctx context.Context, addr storage.Address, rf RequestFunc, skipCheck bool) *Fetcher {
return &Fetcher{
addr: addr,
protoRequestFunc: rf,
offerC: make(chan *enode.ID),
requestC: make(chan uint8),
searchTimeout: defaultSearchTimeout,
skipCheck: skipCheck,
ctx: ctx,
}
}
// Offer is called when an upstream peer offers the chunk via syncing as part of `OfferedHashesMsg` and the node does not have the chunk locally.
func (f *Fetcher) Offer(source *enode.ID) {
// First we need to have this select to make sure that we return if context is done
select {
case <-f.ctx.Done():
return
default:
}
// This select alone would not guarantee that we return of context is done, it could potentially
// push to offerC instead if offerC is available (see number 2 in https://golang.org/ref/spec#Select_statements)
select {
case f.offerC <- source:
case <-f.ctx.Done():
}
}
// Request is called when an upstream peer request the chunk as part of `RetrieveRequestMsg`, or from a local request through FileStore, and the node does not have the chunk locally.
func (f *Fetcher) Request(hopCount uint8) {
// First we need to have this select to make sure that we return if context is done
select {
case <-f.ctx.Done():
return
default:
}
if hopCount >= maxHopCount {
log.Debug("fetcher request hop count limit reached", "hops", hopCount)
return
}
// This select alone would not guarantee that we return of context is done, it could potentially
// push to offerC instead if offerC is available (see number 2 in https://golang.org/ref/spec#Select_statements)
select {
case f.requestC <- hopCount + 1:
case <-f.ctx.Done():
}
}
// start prepares the Fetcher
// it keeps the Fetcher alive within the lifecycle of the passed context
func (f *Fetcher) run(peers *sync.Map) {
var (
doRequest bool // determines if retrieval is initiated in the current iteration
wait *time.Timer // timer for search timeout
waitC <-chan time.Time // timer channel
sources []*enode.ID // known sources, ie. peers that offered the chunk
requested bool // true if the chunk was actually requested
hopCount uint8
)
gone := make(chan *enode.ID) // channel to signal that a peer we requested from disconnected
// loop that keeps the fetching process alive
// after every request a timer is set. If this goes off we request again from another peer
// note that the previous request is still alive and has the chance to deliver, so
// requesting again extends the search. ie.,
// if a peer we requested from is gone we issue a new request, so the number of active
// requests never decreases
for {
select {
// incoming offer
case source := <-f.offerC:
log.Trace("new source", "peer addr", source, "request addr", f.addr)
// 1) the chunk is offered by a syncing peer
// add to known sources
sources = append(sources, source)
// launch a request to the source iff the chunk was requested (not just expected because its offered by a syncing peer)
doRequest = requested
// incoming request
case hopCount = <-f.requestC:
// 2) chunk is requested, set requested flag
// launch a request iff none been launched yet
doRequest = !requested
log.Trace("new request", "request addr", f.addr, "doRequest", doRequest)
requested = true
// peer we requested from is gone. fall back to another
// and remove the peer from the peers map
case id := <-gone:
peers.Delete(id.String())
doRequest = requested
log.Trace("peer gone", "peer id", id.String(), "request addr", f.addr, "doRequest", doRequest)
// search timeout: too much time passed since the last request,
// extend the search to a new peer if we can find one
case <-waitC:
doRequest = requested
log.Trace("search timed out: requesting", "request addr", f.addr, "doRequest", doRequest)
// all Fetcher context closed, can quit
case <-f.ctx.Done():
log.Trace("terminate fetcher", "request addr", f.addr)
// TODO: send cancellations to all peers left over in peers map (i.e., those we requested from)
return
}
// need to issue a new request
if doRequest {
var err error
sources, err = f.doRequest(gone, peers, sources, hopCount)
if err != nil {
log.Info("unable to request", "request addr", f.addr, "err", err)
}
}
// if wait channel is not set, set it to a timer
if requested {
if wait == nil {
wait = time.NewTimer(f.searchTimeout)
defer wait.Stop()
waitC = wait.C
} else {
// stop the timer and drain the channel if it was not drained earlier
if !wait.Stop() {
select {
case <-wait.C:
default:
}
}
// reset the timer to go off after defaultSearchTimeout
wait.Reset(f.searchTimeout)
}
}
doRequest = false
}
}
// doRequest attempts at finding a peer to request the chunk from
// * first it tries to request explicitly from peers that are known to have offered the chunk
// * if there are no such peers (available) it tries to request it from a peer closest to the chunk address
// excluding those in the peersToSkip map
// * if no such peer is found an error is returned
//
// if a request is successful,
// * the peer's address is added to the set of peers to skip
// * the peer's address is removed from prospective sources, and
// * a go routine is started that reports on the gone channel if the peer is disconnected (or terminated their streamer)
func (f *Fetcher) doRequest(gone chan *enode.ID, peersToSkip *sync.Map, sources []*enode.ID, hopCount uint8) ([]*enode.ID, error) {
var i int
var sourceID *enode.ID
var quit chan struct{}
req := &Request{
Addr: f.addr,
SkipCheck: f.skipCheck,
peersToSkip: peersToSkip,
HopCount: hopCount,
}
foundSource := false
// iterate over known sources
for i = 0; i < len(sources); i++ {
req.Source = sources[i]
var err error
log.Trace("fetcher.doRequest", "request addr", f.addr, "peer", req.Source.String())
sourceID, quit, err = f.protoRequestFunc(f.ctx, req)
if err == nil {
// remove the peer from known sources
// Note: we can modify the source although we are looping on it, because we break from the loop immediately
sources = append(sources[:i], sources[i+1:]...)
foundSource = true
break
}
}
// if there are no known sources, or none available, we try request from a closest node
if !foundSource {
req.Source = nil
var err error
sourceID, quit, err = f.protoRequestFunc(f.ctx, req)
if err != nil {
// if no peers found to request from
return sources, err
}
}
// add peer to the set of peers to skip from now
peersToSkip.Store(sourceID.String(), time.Now())
// if the quit channel is closed, it indicates that the source peer we requested from
// disconnected or terminated its streamer
// here start a go routine that watches this channel and reports the source peer on the gone channel
// this go routine quits if the fetcher global context is done to prevent process leak
go func() {
select {
case <-quit:
gone <- sourceID
case <-f.ctx.Done():
}
// finish the request span
spanId := fmt.Sprintf("stream.send.request.%v.%v", *sourceID, req.Addr)
span := tracing.ShiftSpanByKey(spanId)
if span != nil {
span.LogFields(olog.String("finish", "from doRequest"))
span.Finish()
}
}()
return sources, nil
}

View File

@ -1,476 +0,0 @@
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package network
import (
"context"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/p2p/enode"
)
var requestedPeerID = enode.HexID("3431c3939e1ee2a6345e976a8234f9870152d64879f30bc272a074f6859e75e8")
var sourcePeerID = enode.HexID("99d8594b52298567d2ca3f4c441a5ba0140ee9245e26460d01102a52773c73b9")
// mockRequester pushes every request to the requestC channel when its doRequest function is called
type mockRequester struct {
// requests []Request
requestC chan *Request // when a request is coming it is pushed to requestC
waitTimes []time.Duration // with waitTimes[i] you can define how much to wait on the ith request (optional)
count int //counts the number of requests
quitC chan struct{}
}
func newMockRequester(waitTimes ...time.Duration) *mockRequester {
return &mockRequester{
requestC: make(chan *Request),
waitTimes: waitTimes,
quitC: make(chan struct{}),
}
}
func (m *mockRequester) doRequest(ctx context.Context, request *Request) (*enode.ID, chan struct{}, error) {
waitTime := time.Duration(0)
if m.count < len(m.waitTimes) {
waitTime = m.waitTimes[m.count]
m.count++
}
time.Sleep(waitTime)
m.requestC <- request
// if there is a Source in the request use that, if not use the global requestedPeerId
source := request.Source
if source == nil {
source = &requestedPeerID
}
return source, m.quitC, nil
}
// TestFetcherSingleRequest creates a Fetcher using mockRequester, and run it with a sample set of peers to skip.
// mockRequester pushes a Request on a channel every time the request function is called. Using
// this channel we test if calling Fetcher.Request calls the request function, and whether it uses
// the correct peers to skip which we provided for the fetcher.run function.
func TestFetcherSingleRequest(t *testing.T) {
requester := newMockRequester()
addr := make([]byte, 32)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
fetcher := NewFetcher(ctx, addr, requester.doRequest, true)
peers := []string{"a", "b", "c", "d"}
peersToSkip := &sync.Map{}
for _, p := range peers {
peersToSkip.Store(p, time.Now())
}
go fetcher.run(peersToSkip)
fetcher.Request(0)
select {
case request := <-requester.requestC:
// request should contain all peers from peersToSkip provided to the fetcher
for _, p := range peers {
if _, ok := request.peersToSkip.Load(p); !ok {
t.Fatalf("request.peersToSkip misses peer")
}
}
// source peer should be also added to peersToSkip eventually
time.Sleep(100 * time.Millisecond)
if _, ok := request.peersToSkip.Load(requestedPeerID.String()); !ok {
t.Fatalf("request.peersToSkip does not contain peer returned by the request function")
}
// hopCount in the forwarded request should be incremented
if request.HopCount != 1 {
t.Fatalf("Expected request.HopCount 1 got %v", request.HopCount)
}
// fetch should trigger a request, if it doesn't happen in time, test should fail
case <-time.After(200 * time.Millisecond):
t.Fatalf("fetch timeout")
}
}
// TestCancelStopsFetcher tests that a cancelled fetcher does not initiate further requests even if its fetch function is called
func TestFetcherCancelStopsFetcher(t *testing.T) {
requester := newMockRequester()
addr := make([]byte, 32)
ctx, cancel := context.WithCancel(context.Background())
fetcher := NewFetcher(ctx, addr, requester.doRequest, true)
peersToSkip := &sync.Map{}
// we start the fetcher, and then we immediately cancel the context
go fetcher.run(peersToSkip)
cancel()
// we call Request with an active context
fetcher.Request(0)
// fetcher should not initiate request, we can only check by waiting a bit and making sure no request is happening
select {
case <-requester.requestC:
t.Fatalf("cancelled fetcher initiated request")
case <-time.After(200 * time.Millisecond):
}
}
// TestFetchCancelStopsRequest tests that calling a Request function with a cancelled context does not initiate a request
func TestFetcherCancelStopsRequest(t *testing.T) {
t.Skip("since context is now per fetcher, this test is likely redundant")
requester := newMockRequester(100 * time.Millisecond)
addr := make([]byte, 32)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
fetcher := NewFetcher(ctx, addr, requester.doRequest, true)
peersToSkip := &sync.Map{}
// we start the fetcher with an active context
go fetcher.run(peersToSkip)
// we call Request with a cancelled context
fetcher.Request(0)
// fetcher should not initiate request, we can only check by waiting a bit and making sure no request is happening
select {
case <-requester.requestC:
t.Fatalf("cancelled fetch function initiated request")
case <-time.After(200 * time.Millisecond):
}
// if there is another Request with active context, there should be a request, because the fetcher itself is not cancelled
fetcher.Request(0)
select {
case <-requester.requestC:
case <-time.After(200 * time.Millisecond):
t.Fatalf("expected request")
}
}
// TestOfferUsesSource tests Fetcher Offer behavior.
// In this case there should be 1 (and only one) request initiated from the source peer, and the
// source nodeid should appear in the peersToSkip map.
func TestFetcherOfferUsesSource(t *testing.T) {
requester := newMockRequester(100 * time.Millisecond)
addr := make([]byte, 32)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
fetcher := NewFetcher(ctx, addr, requester.doRequest, true)
peersToSkip := &sync.Map{}
// start the fetcher
go fetcher.run(peersToSkip)
// call the Offer function with the source peer
fetcher.Offer(&sourcePeerID)
// fetcher should not initiate request
select {
case <-requester.requestC:
t.Fatalf("fetcher initiated request")
case <-time.After(200 * time.Millisecond):
}
// call Request after the Offer
fetcher.Request(0)
// there should be exactly 1 request coming from fetcher
var request *Request
select {
case request = <-requester.requestC:
if *request.Source != sourcePeerID {
t.Fatalf("Expected source id %v got %v", sourcePeerID, request.Source)
}
case <-time.After(200 * time.Millisecond):
t.Fatalf("fetcher did not initiate request")
}
select {
case <-requester.requestC:
t.Fatalf("Fetcher number of requests expected 1 got 2")
case <-time.After(200 * time.Millisecond):
}
// source peer should be added to peersToSkip eventually
time.Sleep(100 * time.Millisecond)
if _, ok := request.peersToSkip.Load(sourcePeerID.String()); !ok {
t.Fatalf("SourcePeerId not added to peersToSkip")
}
}
func TestFetcherOfferAfterRequestUsesSourceFromContext(t *testing.T) {
requester := newMockRequester(100 * time.Millisecond)
addr := make([]byte, 32)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
fetcher := NewFetcher(ctx, addr, requester.doRequest, true)
peersToSkip := &sync.Map{}
// start the fetcher
go fetcher.run(peersToSkip)
// call Request first
fetcher.Request(0)
// there should be a request coming from fetcher
var request *Request
select {
case request = <-requester.requestC:
if request.Source != nil {
t.Fatalf("Incorrect source peer id, expected nil got %v", request.Source)
}
case <-time.After(200 * time.Millisecond):
t.Fatalf("fetcher did not initiate request")
}
// after the Request call Offer
fetcher.Offer(&sourcePeerID)
// there should be a request coming from fetcher
select {
case request = <-requester.requestC:
if *request.Source != sourcePeerID {
t.Fatalf("Incorrect source peer id, expected %v got %v", sourcePeerID, request.Source)
}
case <-time.After(200 * time.Millisecond):
t.Fatalf("fetcher did not initiate request")
}
// source peer should be added to peersToSkip eventually
time.Sleep(100 * time.Millisecond)
if _, ok := request.peersToSkip.Load(sourcePeerID.String()); !ok {
t.Fatalf("SourcePeerId not added to peersToSkip")
}
}
// TestFetcherRetryOnTimeout tests that fetch retries after searchTimeOut has passed
func TestFetcherRetryOnTimeout(t *testing.T) {
requester := newMockRequester()
addr := make([]byte, 32)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
fetcher := NewFetcher(ctx, addr, requester.doRequest, true)
// set searchTimeOut to low value so the test is quicker
fetcher.searchTimeout = 250 * time.Millisecond
peersToSkip := &sync.Map{}
// start the fetcher
go fetcher.run(peersToSkip)
// call the fetch function with an active context
fetcher.Request(0)
// after 100ms the first request should be initiated
time.Sleep(100 * time.Millisecond)
select {
case <-requester.requestC:
default:
t.Fatalf("fetch did not initiate request")
}
// after another 100ms no new request should be initiated, because search timeout is 250ms
time.Sleep(100 * time.Millisecond)
select {
case <-requester.requestC:
t.Fatalf("unexpected request from fetcher")
default:
}
// after another 300ms search timeout is over, there should be a new request
time.Sleep(300 * time.Millisecond)
select {
case <-requester.requestC:
default:
t.Fatalf("fetch did not retry request")
}
}
// TestFetcherFactory creates a FetcherFactory and checks if the factory really creates and starts
// a Fetcher when it return a fetch function. We test the fetching functionality just by checking if
// a request is initiated when the fetch function is called
func TestFetcherFactory(t *testing.T) {
requester := newMockRequester(100 * time.Millisecond)
addr := make([]byte, 32)
fetcherFactory := NewFetcherFactory(requester.doRequest, false)
peersToSkip := &sync.Map{}
fetcher := fetcherFactory.New(context.Background(), addr, peersToSkip)
fetcher.Request(0)
// check if the created fetchFunction really starts a fetcher and initiates a request
select {
case <-requester.requestC:
case <-time.After(200 * time.Millisecond):
t.Fatalf("fetch timeout")
}
}
func TestFetcherRequestQuitRetriesRequest(t *testing.T) {
requester := newMockRequester()
addr := make([]byte, 32)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
fetcher := NewFetcher(ctx, addr, requester.doRequest, true)
// make sure the searchTimeout is long so it is sure the request is not
// retried because of timeout
fetcher.searchTimeout = 10 * time.Second
peersToSkip := &sync.Map{}
go fetcher.run(peersToSkip)
fetcher.Request(0)
select {
case <-requester.requestC:
case <-time.After(200 * time.Millisecond):
t.Fatalf("request is not initiated")
}
close(requester.quitC)
select {
case <-requester.requestC:
case <-time.After(200 * time.Millisecond):
t.Fatalf("request is not initiated after failed request")
}
}
// TestRequestSkipPeer checks if PeerSkip function will skip provided peer
// and not skip unknown one.
func TestRequestSkipPeer(t *testing.T) {
addr := make([]byte, 32)
peers := []enode.ID{
enode.HexID("3431c3939e1ee2a6345e976a8234f9870152d64879f30bc272a074f6859e75e8"),
enode.HexID("99d8594b52298567d2ca3f4c441a5ba0140ee9245e26460d01102a52773c73b9"),
}
peersToSkip := new(sync.Map)
peersToSkip.Store(peers[0].String(), time.Now())
r := NewRequest(addr, false, peersToSkip)
if !r.SkipPeer(peers[0].String()) {
t.Errorf("peer not skipped")
}
if r.SkipPeer(peers[1].String()) {
t.Errorf("peer skipped")
}
}
// TestRequestSkipPeerExpired checks if a peer to skip is not skipped
// after RequestTimeout has passed.
func TestRequestSkipPeerExpired(t *testing.T) {
addr := make([]byte, 32)
peer := enode.HexID("3431c3939e1ee2a6345e976a8234f9870152d64879f30bc272a074f6859e75e8")
// set RequestTimeout to a low value and reset it after the test
defer func(t time.Duration) { RequestTimeout = t }(RequestTimeout)
RequestTimeout = 250 * time.Millisecond
peersToSkip := new(sync.Map)
peersToSkip.Store(peer.String(), time.Now())
r := NewRequest(addr, false, peersToSkip)
if !r.SkipPeer(peer.String()) {
t.Errorf("peer not skipped")
}
time.Sleep(500 * time.Millisecond)
if r.SkipPeer(peer.String()) {
t.Errorf("peer skipped")
}
}
// TestRequestSkipPeerPermanent checks if a peer to skip is not skipped
// after RequestTimeout is not skipped if it is set for a permanent skipping
// by value to peersToSkip map is not time.Duration.
func TestRequestSkipPeerPermanent(t *testing.T) {
addr := make([]byte, 32)
peer := enode.HexID("3431c3939e1ee2a6345e976a8234f9870152d64879f30bc272a074f6859e75e8")
// set RequestTimeout to a low value and reset it after the test
defer func(t time.Duration) { RequestTimeout = t }(RequestTimeout)
RequestTimeout = 250 * time.Millisecond
peersToSkip := new(sync.Map)
peersToSkip.Store(peer.String(), true)
r := NewRequest(addr, false, peersToSkip)
if !r.SkipPeer(peer.String()) {
t.Errorf("peer not skipped")
}
time.Sleep(500 * time.Millisecond)
if !r.SkipPeer(peer.String()) {
t.Errorf("peer not skipped")
}
}
func TestFetcherMaxHopCount(t *testing.T) {
requester := newMockRequester()
addr := make([]byte, 32)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
fetcher := NewFetcher(ctx, addr, requester.doRequest, true)
peersToSkip := &sync.Map{}
go fetcher.run(peersToSkip)
// if hopCount is already at max no request should be initiated
select {
case <-requester.requestC:
t.Fatalf("cancelled fetcher initiated request")
case <-time.After(200 * time.Millisecond):
}
}

View File

@ -56,7 +56,6 @@ var (
bucketKeyStore = simulation.BucketKey("store") bucketKeyStore = simulation.BucketKey("store")
bucketKeyFileStore = simulation.BucketKey("filestore") bucketKeyFileStore = simulation.BucketKey("filestore")
bucketKeyNetStore = simulation.BucketKey("netstore")
bucketKeyDelivery = simulation.BucketKey("delivery") bucketKeyDelivery = simulation.BucketKey("delivery")
bucketKeyRegistry = simulation.BucketKey("registry") bucketKeyRegistry = simulation.BucketKey("registry")
@ -81,7 +80,7 @@ func newNetStoreAndDelivery(ctx *adapters.ServiceContext, bucket *sync.Map) (*ne
return nil, nil, nil, nil, err return nil, nil, nil, nil, err
} }
netStore.NewNetFetcherFunc = network.NewFetcherFactory(delivery.RequestFromPeers, true).New netStore.RemoteGet = delivery.RequestFromPeers
return addr, netStore, delivery, cleanup, nil return addr, netStore, delivery, cleanup, nil
} }
@ -93,13 +92,13 @@ func newNetStoreAndDeliveryWithBzzAddr(ctx *adapters.ServiceContext, bucket *syn
return nil, nil, nil, err return nil, nil, nil, err
} }
netStore.NewNetFetcherFunc = network.NewFetcherFactory(delivery.RequestFromPeers, true).New netStore.RemoteGet = delivery.RequestFromPeers
return netStore, delivery, cleanup, nil return netStore, delivery, cleanup, nil
} }
// newNetStoreAndDeliveryWithRequestFunc is a constructor for NetStore and Delivery, used in Simulations, accepting any NetStore.RequestFunc // newNetStoreAndDeliveryWithRequestFunc is a constructor for NetStore and Delivery, used in Simulations, accepting any NetStore.RequestFunc
func newNetStoreAndDeliveryWithRequestFunc(ctx *adapters.ServiceContext, bucket *sync.Map, rf network.RequestFunc) (*network.BzzAddr, *storage.NetStore, *Delivery, func(), error) { func newNetStoreAndDeliveryWithRequestFunc(ctx *adapters.ServiceContext, bucket *sync.Map, rf storage.RemoteGetFunc) (*network.BzzAddr, *storage.NetStore, *Delivery, func(), error) {
addr := network.NewAddr(ctx.Config.Node()) addr := network.NewAddr(ctx.Config.Node())
netStore, delivery, cleanup, err := netStoreAndDeliveryWithAddr(ctx, bucket, addr) netStore, delivery, cleanup, err := netStoreAndDeliveryWithAddr(ctx, bucket, addr)
@ -107,7 +106,7 @@ func newNetStoreAndDeliveryWithRequestFunc(ctx *adapters.ServiceContext, bucket
return nil, nil, nil, nil, err return nil, nil, nil, nil, err
} }
netStore.NewNetFetcherFunc = network.NewFetcherFactory(rf, true).New netStore.RemoteGet = rf
return addr, netStore, delivery, cleanup, nil return addr, netStore, delivery, cleanup, nil
} }
@ -120,14 +119,9 @@ func netStoreAndDeliveryWithAddr(ctx *adapters.ServiceContext, bucket *sync.Map,
return nil, nil, nil, err return nil, nil, nil, err
} }
netStore, err := storage.NewNetStore(localStore, nil) netStore := storage.NewNetStore(localStore, enode.ID{})
if err != nil { lnetStore := storage.NewLNetStore(netStore)
localStore.Close() fileStore := storage.NewFileStore(lnetStore, storage.NewFileStoreParams(), chunk.NewTags())
localStoreCleanup()
return nil, nil, nil, err
}
fileStore := storage.NewFileStore(netStore, storage.NewFileStoreParams(), chunk.NewTags())
kad := network.NewKademlia(addr.Over(), network.NewKadParams()) kad := network.NewKademlia(addr.Over(), network.NewKadParams())
delivery := NewDelivery(kad, netStore) delivery := NewDelivery(kad, netStore)
@ -167,15 +161,11 @@ func newStreamerTester(registryOptions *RegistryOptions) (*p2ptest.ProtocolTeste
return nil, nil, nil, nil, err return nil, nil, nil, nil, err
} }
netStore, err := storage.NewNetStore(localStore, nil) netStore := storage.NewNetStore(localStore, enode.ID{})
if err != nil {
localStore.Close()
removeDataDir()
return nil, nil, nil, nil, err
}
delivery := NewDelivery(to, netStore) delivery := NewDelivery(to, netStore)
netStore.NewNetFetcherFunc = network.NewFetcherFactory(delivery.RequestFromPeers, true).New netStore.RemoteGet = delivery.RequestFromPeers
intervalsStore := state.NewInmemoryStore() intervalsStore := state.NewInmemoryStore()
streamer := NewRegistry(addr.ID(), delivery, netStore, intervalsStore, registryOptions, nil) streamer := NewRegistry(addr.ID(), delivery, netStore, intervalsStore, registryOptions, nil)

View File

@ -27,9 +27,9 @@ import (
"github.com/ethersphere/swarm/chunk" "github.com/ethersphere/swarm/chunk"
"github.com/ethersphere/swarm/log" "github.com/ethersphere/swarm/log"
"github.com/ethersphere/swarm/network" "github.com/ethersphere/swarm/network"
"github.com/ethersphere/swarm/network/timeouts"
"github.com/ethersphere/swarm/spancontext" "github.com/ethersphere/swarm/spancontext"
"github.com/ethersphere/swarm/storage" "github.com/ethersphere/swarm/storage"
"github.com/ethersphere/swarm/tracing"
opentracing "github.com/opentracing/opentracing-go" opentracing "github.com/opentracing/opentracing-go"
olog "github.com/opentracing/opentracing-go/log" olog "github.com/opentracing/opentracing-go/log"
) )
@ -39,9 +39,6 @@ var (
handleRetrieveRequestMsgCount = metrics.NewRegisteredCounter("network.stream.handle_retrieve_request_msg.count", nil) handleRetrieveRequestMsgCount = metrics.NewRegisteredCounter("network.stream.handle_retrieve_request_msg.count", nil)
retrieveChunkFail = metrics.NewRegisteredCounter("network.stream.retrieve_chunks_fail.count", nil) retrieveChunkFail = metrics.NewRegisteredCounter("network.stream.retrieve_chunks_fail.count", nil)
requestFromPeersCount = metrics.NewRegisteredCounter("network.stream.request_from_peers.count", nil)
requestFromPeersEachCount = metrics.NewRegisteredCounter("network.stream.request_from_peers_each.count", nil)
lastReceivedChunksMsg = metrics.GetOrRegisterGauge("network.stream.received_chunks", nil) lastReceivedChunksMsg = metrics.GetOrRegisterGauge("network.stream.received_chunks", nil)
) )
@ -62,52 +59,42 @@ func NewDelivery(kad *network.Kademlia, netStore *storage.NetStore) *Delivery {
// RetrieveRequestMsg is the protocol msg for chunk retrieve requests // RetrieveRequestMsg is the protocol msg for chunk retrieve requests
type RetrieveRequestMsg struct { type RetrieveRequestMsg struct {
Addr storage.Address Addr storage.Address
SkipCheck bool
HopCount uint8
} }
func (d *Delivery) handleRetrieveRequestMsg(ctx context.Context, sp *Peer, req *RetrieveRequestMsg) error { func (d *Delivery) handleRetrieveRequestMsg(ctx context.Context, sp *Peer, req *RetrieveRequestMsg) error {
log.Trace("received request", "peer", sp.ID(), "hash", req.Addr) log.Trace("handle retrieve request", "peer", sp.ID(), "hash", req.Addr)
handleRetrieveRequestMsgCount.Inc(1) handleRetrieveRequestMsgCount.Inc(1)
var osp opentracing.Span ctx, osp := spancontext.StartSpan(
ctx, osp = spancontext.StartSpan(
ctx, ctx,
"stream.handle.retrieve") "handle.retrieve.request")
osp.LogFields(olog.String("ref", req.Addr.String())) osp.LogFields(olog.String("ref", req.Addr.String()))
var cancel func() defer osp.Finish()
// TODO: do something with this hardcoded timeout, maybe use TTL in the future
ctx = context.WithValue(ctx, "peer", sp.ID().String())
ctx = context.WithValue(ctx, "hopcount", req.HopCount)
ctx, cancel = context.WithTimeout(ctx, network.RequestTimeout)
go func() { ctx, cancel := context.WithTimeout(ctx, timeouts.FetcherGlobalTimeout)
select { defer cancel()
case <-ctx.Done():
case <-d.quit:
}
cancel()
}()
go func() { r := &storage.Request{
defer osp.Finish() Addr: req.Addr,
ch, err := d.netStore.Get(ctx, chunk.ModeGetRequest, req.Addr) Origin: sp.ID(),
if err != nil { }
retrieveChunkFail.Inc(1) chunk, err := d.netStore.Get(ctx, chunk.ModeGetRequest, r)
log.Debug("ChunkStore.Get can not retrieve chunk", "peer", sp.ID().String(), "addr", req.Addr, "hopcount", req.HopCount, "err", err) if err != nil {
return retrieveChunkFail.Inc(1)
} log.Debug("ChunkStore.Get can not retrieve chunk", "peer", sp.ID().String(), "addr", req.Addr, "err", err)
syncing := false return nil
}
err = sp.Deliver(ctx, ch, Top, syncing) log.Trace("retrieve request, delivery", "ref", req.Addr, "peer", sp.ID())
if err != nil { syncing := false
log.Warn("ERROR in handleRetrieveRequestMsg", "err", err) err = sp.Deliver(ctx, chunk, 0, syncing)
} if err != nil {
osp.LogFields(olog.Bool("delivered", true)) log.Error("sp.Deliver errored", "err", err)
}() }
osp.LogFields(olog.Bool("delivered", true))
return nil return nil
} }
@ -189,57 +176,166 @@ func (d *Delivery) Close() {
close(d.quit) close(d.quit)
} }
// RequestFromPeers sends a chunk retrieve request to a peer // getOriginPo returns the originPo if the incoming Request has an Origin
// The most eligible peer that hasn't already been sent to is chosen // if our node is the first node that requests this chunk, then we don't have an Origin,
// TODO: define "eligible" // and return -1
func (d *Delivery) RequestFromPeers(ctx context.Context, req *network.Request) (*enode.ID, chan struct{}, error) { // this is used only for tracing, and can probably be refactor so that we don't have to
requestFromPeersCount.Inc(1) // iterater over Kademlia
var sp *Peer func (d *Delivery) getOriginPo(req *storage.Request) int {
spID := req.Source originPo := -1
if spID != nil { d.kad.EachConn(req.Addr[:], 255, func(p *network.Peer, po int) bool {
sp = d.getPeer(*spID) id := p.ID()
if sp == nil {
return nil, nil, fmt.Errorf("source peer %v not found", spID.String()) // get po between chunk and origin
} if req.Origin.String() == id.String() {
} else { originPo = po
d.kad.EachConn(req.Addr[:], 255, func(p *network.Peer, po int) bool {
id := p.ID()
if p.LightNode {
// skip light nodes
return true
}
if req.SkipPeer(id.String()) {
log.Trace("Delivery.RequestFromPeers: skip peer", "peer id", id)
return true
}
sp = d.getPeer(id)
// sp is nil, when we encounter a peer that is not registered for delivery, i.e. doesn't support the `stream` protocol
if sp == nil {
return true
}
spID = &id
return false return false
})
if sp == nil {
return nil, nil, errors.New("no peer found")
} }
return true
})
return originPo
}
// FindPeer is returning the closest peer from Kademlia that a chunk
// request hasn't already been sent to
func (d *Delivery) FindPeer(ctx context.Context, req *storage.Request) (*Peer, error) {
var sp *Peer
var err error
osp, _ := ctx.Value("remote.fetch").(opentracing.Span)
// originPo - proximity of the node that made the request; -1 if the request originator is our node;
// myPo - this node's proximity with the requested chunk
// selectedPeerPo - kademlia suggested node's proximity with the requested chunk (computed further below)
originPo := d.getOriginPo(req)
myPo := chunk.Proximity(req.Addr, d.kad.BaseAddr())
selectedPeerPo := -1
depth := d.kad.NeighbourhoodDepth()
if osp != nil {
osp.LogFields(olog.Int("originPo", originPo))
osp.LogFields(olog.Int("depth", depth))
osp.LogFields(olog.Int("myPo", myPo))
}
// do not forward requests if origin proximity is bigger than our node's proximity
// this means that origin is closer to the chunk
if originPo > myPo {
return nil, errors.New("not forwarding request, origin node is closer to chunk than this node")
}
d.kad.EachConn(req.Addr[:], 255, func(p *network.Peer, po int) bool {
id := p.ID()
// skip light nodes
if p.LightNode {
return true
}
// do not send request back to peer who asked us. maybe merge with SkipPeer at some point
if req.Origin.String() == id.String() {
return true
}
// skip peers that we have already tried
if req.SkipPeer(id.String()) {
log.Trace("findpeer skip peer", "peer", id, "ref", req.Addr.String())
return true
}
if myPo < depth { // chunk is NOT within the neighbourhood
if po <= myPo { // always choose a peer strictly closer to chunk than us
log.Trace("findpeer1a", "originpo", originPo, "mypo", myPo, "po", po, "depth", depth, "peer", id, "ref", req.Addr.String())
return false
} else {
log.Trace("findpeer1b", "originpo", originPo, "mypo", myPo, "po", po, "depth", depth, "peer", id, "ref", req.Addr.String())
}
} else { // chunk IS WITHIN neighbourhood
if po < depth { // do not select peer outside the neighbourhood. But allows peers further from the chunk than us
log.Trace("findpeer2a", "originpo", originPo, "mypo", myPo, "po", po, "depth", depth, "peer", id, "ref", req.Addr.String())
return false
} else if po <= originPo { // avoid loop in neighbourhood, so not forward when a request comes from the neighbourhood
log.Trace("findpeer2b", "originpo", originPo, "mypo", myPo, "po", po, "depth", depth, "peer", id, "ref", req.Addr.String())
return false
} else {
log.Trace("findpeer2c", "originpo", originPo, "mypo", myPo, "po", po, "depth", depth, "peer", id, "ref", req.Addr.String())
}
}
// if selected peer is not in the depth (2nd condition; if depth <= po, then peer is in nearest neighbourhood)
// and they have a lower po than ours, return error
if po < myPo && depth > po {
log.Trace("findpeer4 skip peer because origin was closer", "originpo", originPo, "po", po, "depth", depth, "peer", id, "ref", req.Addr.String())
err = fmt.Errorf("not asking peers further away from origin; ref=%s originpo=%v po=%v depth=%v myPo=%v", req.Addr.String(), originPo, po, depth, myPo)
return false
}
// if chunk falls in our nearest neighbourhood (1st condition), but suggested peer is not in
// the nearest neighbourhood (2nd condition), don't forward the request to suggested peer
if depth <= myPo && depth > po {
log.Trace("findpeer5 skip peer because depth", "originpo", originPo, "po", po, "depth", depth, "peer", id, "ref", req.Addr.String())
err = fmt.Errorf("not going outside of depth; ref=%s originpo=%v po=%v depth=%v myPo=%v", req.Addr.String(), originPo, po, depth, myPo)
return false
}
sp = d.getPeer(id)
// sp could be nil, if we encountered a peer that is not registered for delivery, i.e. doesn't support the `stream` protocol
// if sp is not nil, then we have selected the next peer and we stop iterating
// if sp is nil, we continue iterating
if sp != nil {
selectedPeerPo = po
return false
}
// continue iterating
return true
})
if osp != nil {
osp.LogFields(olog.Int("selectedPeerPo", selectedPeerPo))
}
if err != nil {
return nil, err
}
if sp == nil {
return nil, errors.New("no peer found")
}
return sp, nil
}
// RequestFromPeers sends a chunk retrieve request to the next found peer
func (d *Delivery) RequestFromPeers(ctx context.Context, req *storage.Request, localID enode.ID) (*enode.ID, error) {
metrics.GetOrRegisterCounter("delivery.requestfrompeers", nil).Inc(1)
sp, err := d.FindPeer(ctx, req)
if err != nil {
log.Trace(err.Error())
return nil, err
} }
// setting this value in the context creates a new span that can persist across the sendpriority queue and the network roundtrip // setting this value in the context creates a new span that can persist across the sendpriority queue and the network roundtrip
// this span will finish only when delivery is handled (or times out) // this span will finish only when delivery is handled (or times out)
ctx = context.WithValue(ctx, tracing.StoreLabelId, "stream.send.request") r := &RetrieveRequestMsg{
ctx = context.WithValue(ctx, tracing.StoreLabelMeta, fmt.Sprintf("%v.%v", sp.ID(), req.Addr)) Addr: req.Addr,
log.Trace("request.from.peers", "peer", sp.ID(), "ref", req.Addr) }
err := sp.SendPriority(ctx, &RetrieveRequestMsg{ log.Trace("sending retrieve request", "ref", r.Addr, "peer", sp.ID().String(), "origin", localID)
Addr: req.Addr, err = sp.Send(ctx, r)
SkipCheck: req.SkipCheck, if err != nil {
HopCount: req.HopCount, log.Error(err.Error())
}, Top) return nil, err
if err != nil {
return nil, nil, err
} }
requestFromPeersEachCount.Inc(1)
return spID, sp.quit, nil spID := sp.ID()
return &spID, nil
} }

View File

@ -19,26 +19,17 @@ package stream
import ( import (
"bytes" "bytes"
"context" "context"
"errors"
"fmt"
"sync"
"testing" "testing"
"time" "time"
"github.com/ethereum/go-ethereum/node"
"github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
p2ptest "github.com/ethereum/go-ethereum/p2p/testing" p2ptest "github.com/ethereum/go-ethereum/p2p/testing"
"github.com/ethersphere/swarm/chunk" "github.com/ethersphere/swarm/chunk"
"github.com/ethersphere/swarm/log"
"github.com/ethersphere/swarm/network" "github.com/ethersphere/swarm/network"
pq "github.com/ethersphere/swarm/network/priorityqueue" pq "github.com/ethersphere/swarm/network/priorityqueue"
"github.com/ethersphere/swarm/network/simulation"
"github.com/ethersphere/swarm/p2p/protocols" "github.com/ethersphere/swarm/p2p/protocols"
"github.com/ethersphere/swarm/state"
"github.com/ethersphere/swarm/storage" "github.com/ethersphere/swarm/storage"
"github.com/ethersphere/swarm/testutil"
) )
//Test requesting a chunk from a peer then issuing a "empty" OfferedHashesMsg (no hashes available yet) //Test requesting a chunk from a peer then issuing a "empty" OfferedHashesMsg (no hashes available yet)
@ -160,18 +151,12 @@ func TestRequestFromPeers(t *testing.T) {
streamer: r, streamer: r,
} }
r.setPeer(sp) r.setPeer(sp)
req := network.NewRequest( req := storage.NewRequest(storage.Address(hash0[:]))
storage.Address(hash0[:]), id, err := delivery.FindPeer(context.TODO(), req)
true,
&sync.Map{},
)
ctx := context.Background()
id, _, err := delivery.RequestFromPeers(ctx, req)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
if *id != dummyPeerID { if id.ID() != dummyPeerID {
t.Fatalf("Expected an id, got %v", id) t.Fatalf("Expected an id, got %v", id)
} }
} }
@ -201,15 +186,10 @@ func TestRequestFromPeersWithLightNode(t *testing.T) {
} }
r.setPeer(sp) r.setPeer(sp)
req := network.NewRequest( req := storage.NewRequest(storage.Address(hash0[:]))
storage.Address(hash0[:]),
true,
&sync.Map{},
)
ctx := context.Background()
// making a request which should return with "no peer found" // making a request which should return with "no peer found"
_, _, err := delivery.RequestFromPeers(ctx, req) _, err := delivery.FindPeer(context.TODO(), req)
expectedError := "no peer found" expectedError := "no peer found"
if err.Error() != expectedError { if err.Error() != expectedError {
@ -300,293 +280,3 @@ func TestStreamerDownstreamChunkDeliveryMsgExchange(t *testing.T) {
} }
} }
func TestDeliveryFromNodes(t *testing.T) {
testDeliveryFromNodes(t, 2, dataChunkCount, true)
testDeliveryFromNodes(t, 2, dataChunkCount, false)
testDeliveryFromNodes(t, 4, dataChunkCount, true)
testDeliveryFromNodes(t, 4, dataChunkCount, false)
if testutil.RaceEnabled {
// Travis cannot handle more nodes with -race; would time out.
return
}
testDeliveryFromNodes(t, 8, dataChunkCount, true)
testDeliveryFromNodes(t, 8, dataChunkCount, false)
testDeliveryFromNodes(t, 16, dataChunkCount, true)
testDeliveryFromNodes(t, 16, dataChunkCount, false)
}
func testDeliveryFromNodes(t *testing.T, nodes, chunkCount int, skipCheck bool) {
t.Helper()
t.Run(fmt.Sprintf("testDeliveryFromNodes_%d_%d_skipCheck_%t", nodes, chunkCount, skipCheck), func(t *testing.T) {
sim := simulation.New(map[string]simulation.ServiceFunc{
"streamer": func(ctx *adapters.ServiceContext, bucket *sync.Map) (s node.Service, cleanup func(), err error) {
addr, netStore, delivery, clean, err := newNetStoreAndDelivery(ctx, bucket)
if err != nil {
return nil, nil, err
}
r := NewRegistry(addr.ID(), delivery, netStore, state.NewInmemoryStore(), &RegistryOptions{
SkipCheck: skipCheck,
Syncing: SyncingDisabled,
}, nil)
bucket.Store(bucketKeyRegistry, r)
cleanup = func() {
r.Close()
clean()
}
return r, cleanup, nil
},
})
defer sim.Close()
log.Info("Adding nodes to simulation")
_, err := sim.AddNodesAndConnectChain(nodes)
if err != nil {
t.Fatal(err)
}
log.Info("Starting simulation")
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
result := sim.Run(ctx, func(ctx context.Context, sim *simulation.Simulation) (err error) {
nodeIDs := sim.UpNodeIDs()
//determine the pivot node to be the first node of the simulation
pivot := nodeIDs[0]
//distribute chunks of a random file into Stores of nodes 1 to nodes
//we will do this by creating a file store with an underlying round-robin store:
//the file store will create a hash for the uploaded file, but every chunk will be
//distributed to different nodes via round-robin scheduling
log.Debug("Writing file to round-robin file store")
//to do this, we create an array for chunkstores (length minus one, the pivot node)
stores := make([]storage.ChunkStore, len(nodeIDs)-1)
//we then need to get all stores from the sim....
lStores := sim.NodesItems(bucketKeyStore)
i := 0
//...iterate the buckets...
for id, bucketVal := range lStores {
//...and remove the one which is the pivot node
if id == pivot {
continue
}
//the other ones are added to the array...
stores[i] = bucketVal.(storage.ChunkStore)
i++
}
//...which then gets passed to the round-robin file store
roundRobinFileStore := storage.NewFileStore(newRoundRobinStore(stores...), storage.NewFileStoreParams(), chunk.NewTags())
//now we can actually upload a (random) file to the round-robin store
size := chunkCount * chunkSize
log.Debug("Storing data to file store")
fileHash, wait, err := roundRobinFileStore.Store(ctx, testutil.RandomReader(1, size), int64(size), false)
// wait until all chunks stored
if err != nil {
return err
}
err = wait(ctx)
if err != nil {
return err
}
//get the pivot node's filestore
item, ok := sim.NodeItem(pivot, bucketKeyFileStore)
if !ok {
return fmt.Errorf("No filestore")
}
pivotFileStore := item.(*storage.FileStore)
log.Debug("Starting retrieval routine")
retErrC := make(chan error)
go func() {
// start the retrieval on the pivot node - this will spawn retrieve requests for missing chunks
// we must wait for the peer connections to have started before requesting
n, err := readAll(pivotFileStore, fileHash)
log.Info(fmt.Sprintf("retrieved %v", fileHash), "read", n, "err", err)
retErrC <- err
}()
disconnected := watchDisconnections(ctx, sim)
defer func() {
if err != nil && disconnected.bool() {
err = errors.New("disconnect events received")
}
}()
//finally check that the pivot node gets all chunks via the root hash
log.Debug("Check retrieval")
success := true
var total int64
total, err = readAll(pivotFileStore, fileHash)
if err != nil {
return err
}
log.Info(fmt.Sprintf("check if %08x is available locally: number of bytes read %v/%v (error: %v)", fileHash, total, size, err))
if err != nil || total != int64(size) {
success = false
}
if !success {
return fmt.Errorf("Test failed, chunks not available on all nodes")
}
if err := <-retErrC; err != nil {
return fmt.Errorf("requesting chunks: %v", err)
}
log.Debug("Test terminated successfully")
return nil
})
if result.Error != nil {
t.Fatal(result.Error)
}
})
}
func BenchmarkDeliveryFromNodesWithoutCheck(b *testing.B) {
for chunks := 32; chunks <= 128; chunks *= 2 {
for i := 2; i < 32; i *= 2 {
b.Run(
fmt.Sprintf("nodes=%v,chunks=%v", i, chunks),
func(b *testing.B) {
benchmarkDeliveryFromNodes(b, i, chunks, true)
},
)
}
}
}
func BenchmarkDeliveryFromNodesWithCheck(b *testing.B) {
for chunks := 32; chunks <= 128; chunks *= 2 {
for i := 2; i < 32; i *= 2 {
b.Run(
fmt.Sprintf("nodes=%v,chunks=%v", i, chunks),
func(b *testing.B) {
benchmarkDeliveryFromNodes(b, i, chunks, false)
},
)
}
}
}
func benchmarkDeliveryFromNodes(b *testing.B, nodes, chunkCount int, skipCheck bool) {
sim := simulation.New(map[string]simulation.ServiceFunc{
"streamer": func(ctx *adapters.ServiceContext, bucket *sync.Map) (s node.Service, cleanup func(), err error) {
addr, netStore, delivery, clean, err := newNetStoreAndDelivery(ctx, bucket)
if err != nil {
return nil, nil, err
}
r := NewRegistry(addr.ID(), delivery, netStore, state.NewInmemoryStore(), &RegistryOptions{
SkipCheck: skipCheck,
Syncing: SyncingDisabled,
SyncUpdateDelay: 0,
}, nil)
bucket.Store(bucketKeyRegistry, r)
cleanup = func() {
r.Close()
clean()
}
return r, cleanup, nil
},
})
defer sim.Close()
log.Info("Initializing test config")
_, err := sim.AddNodesAndConnectChain(nodes)
if err != nil {
b.Fatal(err)
}
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
result := sim.Run(ctx, func(ctx context.Context, sim *simulation.Simulation) (err error) {
nodeIDs := sim.UpNodeIDs()
node := nodeIDs[len(nodeIDs)-1]
item, ok := sim.NodeItem(node, bucketKeyFileStore)
if !ok {
return errors.New("No filestore")
}
remoteFileStore := item.(*storage.FileStore)
pivotNode := nodeIDs[0]
item, ok = sim.NodeItem(pivotNode, bucketKeyNetStore)
if !ok {
return errors.New("No filestore")
}
netStore := item.(*storage.NetStore)
if _, err := sim.WaitTillHealthy(ctx); err != nil {
return err
}
disconnected := watchDisconnections(ctx, sim)
defer func() {
if err != nil && disconnected.bool() {
err = errors.New("disconnect events received")
}
}()
// benchmark loop
b.ResetTimer()
b.StopTimer()
Loop:
for i := 0; i < b.N; i++ {
// uploading chunkCount random chunks to the last node
hashes := make([]storage.Address, chunkCount)
for i := 0; i < chunkCount; i++ {
// create actual size real chunks
ctx := context.TODO()
hash, wait, err := remoteFileStore.Store(ctx, testutil.RandomReader(i, chunkSize), int64(chunkSize), false)
if err != nil {
return fmt.Errorf("store: %v", err)
}
// wait until all chunks stored
err = wait(ctx)
if err != nil {
return fmt.Errorf("wait store: %v", err)
}
// collect the hashes
hashes[i] = hash
}
// now benchmark the actual retrieval
// netstore.Get is called for each hash in a go routine and errors are collected
b.StartTimer()
errs := make(chan error)
for _, hash := range hashes {
go func(h storage.Address) {
_, err := netStore.Get(ctx, chunk.ModeGetRequest, h)
log.Warn("test check netstore get", "hash", h, "err", err)
errs <- err
}(hash)
}
// count and report retrieval errors
// if there are misses then chunk timeout is too low for the distance and volume (?)
var total, misses int
for err := range errs {
if err != nil {
log.Warn(err.Error())
misses++
}
total++
if total == chunkCount {
break
}
}
b.StopTimer()
if misses > 0 {
err = fmt.Errorf("%v chunk not found out of %v", misses, total)
break Loop
}
}
return err
})
if result.Error != nil {
b.Fatal(result.Error)
}
}

View File

@ -30,6 +30,7 @@ import (
"github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/simulations/adapters" "github.com/ethereum/go-ethereum/p2p/simulations/adapters"
"github.com/ethersphere/swarm/network/simulation" "github.com/ethersphere/swarm/network/simulation"
"github.com/ethersphere/swarm/network/timeouts"
"github.com/ethersphere/swarm/state" "github.com/ethersphere/swarm/state"
"github.com/ethersphere/swarm/storage" "github.com/ethersphere/swarm/storage"
"github.com/ethersphere/swarm/testutil" "github.com/ethersphere/swarm/testutil"
@ -75,7 +76,7 @@ func testIntervals(t *testing.T, live bool, history *Range, skipCheck bool) {
return newTestExternalClient(netStore), nil return newTestExternalClient(netStore), nil
}) })
r.RegisterServerFunc(externalStreamName, func(p *Peer, t string, live bool) (Server, error) { r.RegisterServerFunc(externalStreamName, func(p *Peer, t string, live bool) (Server, error) {
return newTestExternalServer(t, externalStreamSessionAt, externalStreamMaxKeys, nil), nil return newTestExternalServer(t, externalStreamSessionAt, externalStreamMaxKeys), nil
}) })
cleanup := func() { cleanup := func() {
@ -298,38 +299,42 @@ func newTestExternalClient(netStore *storage.NetStore) *testExternalClient {
} }
} }
func (c *testExternalClient) NeedData(ctx context.Context, hash []byte) func(context.Context) error { func (c *testExternalClient) NeedData(ctx context.Context, key []byte) (bool, func(context.Context) error) {
wait := c.netStore.FetchFunc(ctx, storage.Address(hash)) fi, loaded, ok := c.netStore.GetOrCreateFetcher(ctx, key, "syncer")
if wait == nil { if !ok {
return nil return loaded, nil
} }
select { select {
case c.hashes <- hash: case c.hashes <- key:
case <-ctx.Done(): case <-ctx.Done():
log.Warn("testExternalClient NeedData context", "err", ctx.Err()) log.Warn("testExternalClient NeedData context", "err", ctx.Err())
return func(_ context.Context) error { return false, func(_ context.Context) error {
return ctx.Err() return ctx.Err()
} }
} }
return wait
return loaded, func(ctx context.Context) error {
select {
case <-fi.Delivered:
case <-time.After(timeouts.SyncerClientWaitTimeout):
return fmt.Errorf("chunk not delivered through syncing after %dsec. ref=%s", timeouts.SyncerClientWaitTimeout, fmt.Sprintf("%x", key))
}
return nil
}
} }
func (c *testExternalClient) Close() {} func (c *testExternalClient) Close() {}
type testExternalServer struct { type testExternalServer struct {
t string t string
keyFunc func(key []byte, index uint64)
sessionAt uint64 sessionAt uint64
maxKeys uint64 maxKeys uint64
} }
func newTestExternalServer(t string, sessionAt, maxKeys uint64, keyFunc func(key []byte, index uint64)) *testExternalServer { func newTestExternalServer(t string, sessionAt, maxKeys uint64) *testExternalServer {
if keyFunc == nil {
keyFunc = binary.BigEndian.PutUint64
}
return &testExternalServer{ return &testExternalServer{
t: t, t: t,
keyFunc: keyFunc,
sessionAt: sessionAt, sessionAt: sessionAt,
maxKeys: maxKeys, maxKeys: maxKeys,
} }
@ -345,7 +350,7 @@ func (s *testExternalServer) SetNextBatch(from uint64, to uint64) ([]byte, uint6
} }
b := make([]byte, HashSize*(to-from+1)) b := make([]byte, HashSize*(to-from+1))
for i := from; i <= to; i++ { for i := from; i <= to; i++ {
s.keyFunc(b[(i-from)*HashSize:(i-from+1)*HashSize], i) binary.BigEndian.PutUint64(b[(i-from)*HashSize:(i-from+1)*HashSize], i)
} }
return b, from, to, nil return b, from, to, nil
} }

View File

@ -225,9 +225,14 @@ func (p *Peer) handleOfferedHashesMsg(ctx context.Context, req *OfferedHashesMsg
for i := 0; i < lenHashes; i += HashSize { for i := 0; i < lenHashes; i += HashSize {
hash := hashes[i : i+HashSize] hash := hashes[i : i+HashSize]
if wait := c.NeedData(ctx, hash); wait != nil { log.Trace("checking offered hash", "ref", fmt.Sprintf("%x", hash))
if _, wait := c.NeedData(ctx, hash); wait != nil {
ctr++ ctr++
// set the bit, so create a request
want.Set(i/HashSize, true) want.Set(i/HashSize, true)
log.Trace("need data", "ref", fmt.Sprintf("%x", hash), "request", true)
// measure how long it takes before we mark chunks for retrieval, and actually send the request // measure how long it takes before we mark chunks for retrieval, and actually send the request
if !wantDelaySet { if !wantDelaySet {

View File

@ -63,8 +63,8 @@ const (
// Tests in this file should not request chunks from peers. // Tests in this file should not request chunks from peers.
// This function will panic indicating that there is a problem if request has been made. // This function will panic indicating that there is a problem if request has been made.
func dummyRequestFromPeers(_ context.Context, req *network.Request) (*enode.ID, chan struct{}, error) { func dummyRequestFromPeers(_ context.Context, req *storage.Request, _ enode.ID) (*enode.ID, error) {
panic(fmt.Sprintf("unexpected request: address %s, source %s", req.Addr.String(), req.Source.String())) panic(fmt.Sprintf("unexpected request: address %s", req.Addr.String()))
} }
//This test is a syncing test for nodes. //This test is a syncing test for nodes.

View File

@ -543,7 +543,7 @@ func (c *client) NextInterval() (start, end uint64, err error) {
// Client interface for incoming peer Streamer // Client interface for incoming peer Streamer
type Client interface { type Client interface {
NeedData(context.Context, []byte) func(context.Context) error NeedData(context.Context, []byte) (bool, func(context.Context) error)
Close() Close()
} }

View File

@ -93,20 +93,20 @@ func newTestClient(t string) *testClient {
} }
} }
func (self *testClient) NeedData(ctx context.Context, hash []byte) func(context.Context) error { func (self *testClient) NeedData(ctx context.Context, hash []byte) (bool, func(context.Context) error) {
self.receivedHashes[string(hash)] = hash self.receivedHashes[string(hash)] = hash
if bytes.Equal(hash, hash0[:]) { if bytes.Equal(hash, hash0[:]) {
return func(context.Context) error { return false, func(context.Context) error {
<-self.wait0 <-self.wait0
return nil return nil
} }
} else if bytes.Equal(hash, hash2[:]) { } else if bytes.Equal(hash, hash2[:]) {
return func(context.Context) error { return false, func(context.Context) error {
<-self.wait2 <-self.wait2
return nil return nil
} }
} }
return nil return false, nil
} }
func (self *testClient) Close() {} func (self *testClient) Close() {}

View File

@ -25,6 +25,7 @@ import (
"github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/metrics"
"github.com/ethersphere/swarm/chunk" "github.com/ethersphere/swarm/chunk"
"github.com/ethersphere/swarm/log" "github.com/ethersphere/swarm/log"
"github.com/ethersphere/swarm/network/timeouts"
"github.com/ethersphere/swarm/storage" "github.com/ethersphere/swarm/storage"
) )
@ -73,7 +74,7 @@ func (s *SwarmSyncerServer) Close() {
// GetData retrieves the actual chunk from netstore // GetData retrieves the actual chunk from netstore
func (s *SwarmSyncerServer) GetData(ctx context.Context, key []byte) ([]byte, error) { func (s *SwarmSyncerServer) GetData(ctx context.Context, key []byte) ([]byte, error) {
ch, err := s.netStore.Get(ctx, chunk.ModeGetSync, storage.Address(key)) ch, err := s.netStore.Store.Get(ctx, chunk.ModeGetSync, storage.Address(key))
if err != nil { if err != nil {
return nil, err return nil, err
} }
@ -198,9 +199,24 @@ func RegisterSwarmSyncerClient(streamer *Registry, netStore *storage.NetStore) {
}) })
} }
// NeedData func (s *SwarmSyncerClient) NeedData(ctx context.Context, key []byte) (loaded bool, wait func(context.Context) error) {
func (s *SwarmSyncerClient) NeedData(ctx context.Context, key []byte) (wait func(context.Context) error) { start := time.Now()
return s.netStore.FetchFunc(ctx, key)
fi, loaded, ok := s.netStore.GetOrCreateFetcher(ctx, key, "syncer")
if !ok {
return loaded, nil
}
return loaded, func(ctx context.Context) error {
select {
case <-fi.Delivered:
metrics.GetOrRegisterResettingTimer(fmt.Sprintf("fetcher.%s.syncer", fi.CreatedBy), nil).UpdateSince(start)
case <-time.After(timeouts.SyncerClientWaitTimeout):
metrics.GetOrRegisterCounter("fetcher.syncer.timeout", nil).Inc(1)
return fmt.Errorf("chunk not delivered through syncing after %dsec. ref=%s", timeouts.SyncerClientWaitTimeout, fmt.Sprintf("%x", key))
}
return nil
}
} }
func (s *SwarmSyncerClient) Close() {} func (s *SwarmSyncerClient) Close() {}

View File

@ -0,0 +1,24 @@
package timeouts
import "time"
// FailedPeerSkipDelay is the time we consider a peer to be skipped for a particular request/chunk,
// because this peer failed to deliver it during the SearchTimeout interval
var FailedPeerSkipDelay = 20 * time.Second
// FetcherGlobalTimeout is the max time a node tries to find a chunk for a client, after which it returns a 404
// Basically this is the amount of time a singleflight request for a given chunk lives
var FetcherGlobalTimeout = 10 * time.Second
// SearchTimeout is the max time requests wait for a peer to deliver a chunk, after which another peer is tried
var SearchTimeout = 500 * time.Millisecond
// SyncerClientWaitTimeout is the max time a syncer client waits for a chunk to be delivered during syncing
var SyncerClientWaitTimeout = 20 * time.Second
// Within handleOfferedHashesMsg - how long to wait for a given batch of chunks to be delivered by the peer offering them
var SyncBatchTimeout = 10 * time.Second
// Within SwarmSyncerServer - If at least one chunk is added to the batch and no new chunks
// are added in BatchTimeout period, the batch will be returned.
var BatchTimeout = 2 * time.Second

View File

@ -192,12 +192,13 @@ func (h *Handler) Lookup(ctx context.Context, query *Query) (*cacheEntry, error)
ctx, cancel := context.WithTimeout(ctx, defaultRetrieveTimeout) ctx, cancel := context.WithTimeout(ctx, defaultRetrieveTimeout)
defer cancel() defer cancel()
ch, err := h.chunkStore.Get(ctx, chunk.ModeGetLookup, id.Addr()) r := storage.NewRequest(id.Addr())
ch, err := h.chunkStore.Get(ctx, chunk.ModeGetLookup, r)
if err != nil { if err != nil {
if err == context.DeadlineExceeded { // chunk not found if err == context.DeadlineExceeded || err == storage.ErrNoSuitablePeer { // chunk not found
return nil, nil return nil, nil
} }
return nil, err //something else happened or context was cancelled. return nil, err
} }
var request Request var request Request

View File

@ -58,6 +58,8 @@ var TimeAfter = time.After
// It should return <nil> if a value is found, but its timestamp is higher than "now" // It should return <nil> if a value is found, but its timestamp is higher than "now"
// It should only return an error in case the handler wants to stop the // It should only return an error in case the handler wants to stop the
// lookup process entirely. // lookup process entirely.
// If the context is canceled, it must return context.Canceled
type ReadFunc func(ctx context.Context, epoch Epoch, now uint64) (interface{}, error) type ReadFunc func(ctx context.Context, epoch Epoch, now uint64) (interface{}, error)
// NoClue is a hint that can be provided when the Lookup caller does not have // NoClue is a hint that can be provided when the Lookup caller does not have

View File

@ -18,8 +18,8 @@ package feed
import ( import (
"context" "context"
"errors"
"path/filepath" "path/filepath"
"sync"
"github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethersphere/swarm/chunk" "github.com/ethersphere/swarm/chunk"
@ -39,17 +39,6 @@ func (t *TestHandler) Close() {
t.chunkStore.Close() t.chunkStore.Close()
} }
type mockNetFetcher struct{}
func (m *mockNetFetcher) Request(hopCount uint8) {
}
func (m *mockNetFetcher) Offer(source *enode.ID) {
}
func newFakeNetFetcher(context.Context, storage.Address, *sync.Map) storage.NetFetcher {
return &mockNetFetcher{}
}
// NewTestHandler creates Handler object to be used for testing purposes. // NewTestHandler creates Handler object to be used for testing purposes.
func NewTestHandler(datadir string, params *HandlerParams) (*TestHandler, error) { func NewTestHandler(datadir string, params *HandlerParams) (*TestHandler, error) {
path := filepath.Join(datadir, testDbDirName) path := filepath.Join(datadir, testDbDirName)
@ -62,11 +51,10 @@ func NewTestHandler(datadir string, params *HandlerParams) (*TestHandler, error)
localStore := chunk.NewValidatorStore(db, storage.NewContentAddressValidator(storage.MakeHashFunc(feedsHashAlgorithm)), fh) localStore := chunk.NewValidatorStore(db, storage.NewContentAddressValidator(storage.MakeHashFunc(feedsHashAlgorithm)), fh)
netStore, err := storage.NewNetStore(localStore, nil) netStore := storage.NewNetStore(localStore, enode.ID{})
if err != nil { netStore.RemoteGet = func(ctx context.Context, req *storage.Request, localID enode.ID) (*enode.ID, error) {
return nil, err return nil, errors.New("not found")
} }
netStore.NewNetFetcherFunc = newFakeNetFetcher
fh.SetStore(netStore) fh.SetStore(netStore)
return &TestHandler{fh}, nil return &TestHandler{fh}, nil
} }

View File

@ -39,9 +39,8 @@ implementation for storage or retrieval.
*/ */
const ( const (
defaultLDBCapacity = 5000000 // capacity for LevelDB, by default 5*10^6*4096 bytes == 20GB defaultLDBCapacity = 5000000 // capacity for LevelDB, by default 5*10^6*4096 bytes == 20GB
defaultCacheCapacity = 10000 // capacity for in-memory chunks' cache defaultCacheCapacity = 10000 // capacity for in-memory chunks' cache
defaultChunkRequestsCacheCapacity = 5000000 // capacity for container holding outgoing requests for chunks. should be set to LevelDB capacity
) )
type FileStore struct { type FileStore struct {

46
storage/lnetstore.go Normal file
View File

@ -0,0 +1,46 @@
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package storage
import (
"context"
"github.com/ethersphere/swarm/chunk"
"github.com/ethersphere/swarm/network/timeouts"
)
// LNetStore is a wrapper of NetStore, which implements the chunk.Store interface. It is used only by the FileStore,
// the component used by the Swarm API to store and retrieve content and to split and join chunks.
type LNetStore struct {
*NetStore
}
// NewLNetStore is a constructor for LNetStore
func NewLNetStore(store *NetStore) *LNetStore {
return &LNetStore{
NetStore: store,
}
}
// Get converts a chunk reference to a chunk Request (with empty Origin), handled by the NetStore, and
// returns the requested chunk, or error.
func (n *LNetStore) Get(ctx context.Context, mode chunk.ModeGet, ref Address) (ch Chunk, err error) {
ctx, cancel := context.WithTimeout(ctx, timeouts.FetcherGlobalTimeout)
defer cancel()
return n.NetStore.Get(ctx, mode, NewRequest(ref))
}

View File

@ -18,318 +18,291 @@ package storage
import ( import (
"context" "context"
"encoding/hex" "errors"
"fmt" "fmt"
"sync" "sync"
"sync/atomic"
"time" "time"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethersphere/swarm/chunk" "github.com/ethersphere/swarm/chunk"
"github.com/ethersphere/swarm/log" "github.com/ethersphere/swarm/log"
"github.com/ethersphere/swarm/network/timeouts"
"github.com/ethersphere/swarm/spancontext" "github.com/ethersphere/swarm/spancontext"
"github.com/opentracing/opentracing-go" lru "github.com/hashicorp/golang-lru"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/p2p/enode"
olog "github.com/opentracing/opentracing-go/log" olog "github.com/opentracing/opentracing-go/log"
"github.com/syndtr/goleveldb/leveldb" "github.com/syndtr/goleveldb/leveldb"
"golang.org/x/sync/singleflight"
lru "github.com/hashicorp/golang-lru"
) )
type ( const (
NewNetFetcherFunc func(ctx context.Context, addr Address, peers *sync.Map) NetFetcher // capacity for the fetchers LRU cache
fetchersCapacity = 500000
) )
type NetFetcher interface { var (
Request(hopCount uint8) ErrNoSuitablePeer = errors.New("no suitable peer")
Offer(source *enode.ID) )
// Fetcher is a struct which maintains state of remote requests.
// Fetchers are stored in fetchers map and signal to all interested parties if a given chunk is delivered
// the mutex controls who closes the channel, and make sure we close the channel only once
type Fetcher struct {
Delivered chan struct{} // when closed, it means that the chunk this Fetcher refers to is delivered
// it is possible for multiple actors to be delivering the same chunk,
// for example through syncing and through retrieve request. however we want the `Delivered` channel to be closed only
// once, even if we put the same chunk multiple times in the NetStore.
once sync.Once
CreatedAt time.Time // timestamp when the fetcher was created, used for metrics measuring lifetime of fetchers
CreatedBy string // who created the fetcher - "request" or "syncing", used for metrics measuring lifecycle of fetchers
RequestedBySyncer bool // whether we have issued at least once a request through Offered/Wanted hashes flow
} }
// NetStore is an extension of local storage // NewFetcher is a constructor for a Fetcher
func NewFetcher() *Fetcher {
return &Fetcher{make(chan struct{}), sync.Once{}, time.Now(), "", false}
}
// SafeClose signals to interested parties (those waiting for a signal on fi.Delivered) that a chunk is delivered.
// It closes the fi.Delivered channel through the sync.Once object, because it is possible for a chunk to be
// delivered multiple times concurrently.
func (fi *Fetcher) SafeClose() {
fi.once.Do(func() {
close(fi.Delivered)
})
}
type RemoteGetFunc func(ctx context.Context, req *Request, localID enode.ID) (*enode.ID, error)
// NetStore is an extension of LocalStore
// it implements the ChunkStore interface // it implements the ChunkStore interface
// on request it initiates remote cloud retrieval using a fetcher // on request it initiates remote cloud retrieval
// fetchers are unique to a chunk and are stored in fetchers LRU memory cache
// fetchFuncFactory is a factory object to create a fetch function for a specific chunk address
type NetStore struct { type NetStore struct {
chunk.Store chunk.Store
mu sync.Mutex localID enode.ID // our local enode - used when issuing RetrieveRequests
fetchers *lru.Cache fetchers *lru.Cache
NewNetFetcherFunc NewNetFetcherFunc putMu sync.Mutex
closeC chan struct{} requestGroup singleflight.Group
RemoteGet RemoteGetFunc
} }
var fetcherTimeout = 2 * time.Minute // timeout to cancel the fetcher even if requests are coming in // NewNetStore creates a new NetStore using the provided chunk.Store and localID of the node.
func NewNetStore(store chunk.Store, localID enode.ID) *NetStore {
fetchers, _ := lru.New(fetchersCapacity)
// NewNetStore creates a new NetStore object using the given local store. newFetchFunc is a
// constructor function that can create a fetch function for a specific chunk address.
func NewNetStore(store chunk.Store, nnf NewNetFetcherFunc) (*NetStore, error) {
fetchers, err := lru.New(defaultChunkRequestsCacheCapacity)
if err != nil {
return nil, err
}
return &NetStore{ return &NetStore{
Store: store, fetchers: fetchers,
fetchers: fetchers, Store: store,
NewNetFetcherFunc: nnf, localID: localID,
closeC: make(chan struct{}), }
}, nil
} }
// Put stores a chunk in localstore, and delivers to all requestor peers using the fetcher stored in // Put stores a chunk in localstore, and delivers to all requestor peers using the fetcher stored in
// the fetchers cache // the fetchers cache
func (n *NetStore) Put(ctx context.Context, mode chunk.ModePut, ch Chunk) (bool, error) { func (n *NetStore) Put(ctx context.Context, mode chunk.ModePut, ch Chunk) (bool, error) {
n.mu.Lock() n.putMu.Lock()
defer n.mu.Unlock() defer n.putMu.Unlock()
// put to the chunk to the store, there should be no error log.Trace("netstore.put", "ref", ch.Address().String(), "mode", mode)
// put the chunk to the localstore, there should be no error
exists, err := n.Store.Put(ctx, mode, ch) exists, err := n.Store.Put(ctx, mode, ch)
if err != nil { if err != nil {
return exists, err return exists, err
} }
// if chunk is now put in the store, check if there was an active fetcher and call deliver on it // notify RemoteGet (or SwarmSyncerClient) about a chunk delivery and it being stored
// (this delivers the chunk to requestors via the fetcher) fi, ok := n.fetchers.Get(ch.Address().String())
log.Trace("n.getFetcher", "ref", ch.Address()) if ok {
if f := n.getFetcher(ch.Address()); f != nil { // we need SafeClose, because it is possible for a chunk to both be
log.Trace("n.getFetcher deliver", "ref", ch.Address()) // delivered through syncing and through a retrieve request
f.deliver(ctx, ch) fii := fi.(*Fetcher)
fii.SafeClose()
log.Trace("netstore.put chunk delivered and stored", "ref", ch.Address().String())
metrics.GetOrRegisterResettingTimer(fmt.Sprintf("netstore.fetcher.lifetime.%s", fii.CreatedBy), nil).UpdateSince(fii.CreatedAt)
// helper snippet to log if a chunk took way to long to be delivered
slowChunkDeliveryThreshold := 5 * time.Second
if time.Since(fii.CreatedAt) > slowChunkDeliveryThreshold {
log.Trace("netstore.put slow chunk delivery", "ref", ch.Address().String())
}
n.fetchers.Remove(ch.Address().String())
} }
return exists, nil return exists, nil
} }
// Get retrieves the chunk from the NetStore DPA synchronously.
// It calls NetStore.get, and if the chunk is not in local Storage
// it calls fetch with the request, which blocks until the chunk
// arrived or context is done
func (n *NetStore) Get(rctx context.Context, mode chunk.ModeGet, ref Address) (Chunk, error) {
chunk, fetch, err := n.get(rctx, mode, ref)
if err != nil {
return nil, err
}
if chunk != nil {
// this is not measuring how long it takes to get the chunk for the localstore, but
// rather just adding a span for clarity when inspecting traces in Jaeger, in order
// to make it easier to reason which is the node that actually delivered a chunk.
_, sp := spancontext.StartSpan(
rctx,
"localstore.get")
defer sp.Finish()
return chunk, nil
}
return fetch(rctx)
}
// FetchFunc returns nil if the store contains the given address. Otherwise it returns a wait function,
// which returns after the chunk is available or the context is done
func (n *NetStore) FetchFunc(ctx context.Context, ref Address) func(context.Context) error {
chunk, fetch, _ := n.get(ctx, chunk.ModeGetRequest, ref)
if chunk != nil {
return nil
}
return func(ctx context.Context) error {
_, err := fetch(ctx)
return err
}
}
// Close chunk store // Close chunk store
func (n *NetStore) Close() (err error) { func (n *NetStore) Close() error {
close(n.closeC)
wg := sync.WaitGroup{}
for _, key := range n.fetchers.Keys() {
if f, ok := n.fetchers.Get(key); ok {
if fetch, ok := f.(*fetcher); ok {
wg.Add(1)
go func(fetch *fetcher) {
defer wg.Done()
fetch.cancel()
select {
case <-fetch.deliveredC:
case <-fetch.cancelledC:
}
}(fetch)
}
}
}
wg.Wait()
return n.Store.Close() return n.Store.Close()
} }
// get attempts at retrieving the chunk from LocalStore // Get retrieves a chunk
// If it is not found then using getOrCreateFetcher: // If it is not found in the LocalStore then it uses RemoteGet to fetch from the network.
// 1. Either there is already a fetcher to retrieve it func (n *NetStore) Get(ctx context.Context, mode chunk.ModeGet, req *Request) (Chunk, error) {
// 2. A new fetcher is created and saved in the fetchers cache metrics.GetOrRegisterCounter("netstore.get", nil).Inc(1)
// From here on, all Get will hit on this fetcher until the chunk is delivered start := time.Now()
// or all fetcher contexts are done.
// It returns a chunk, a fetcher function and an error
// If chunk is nil, the returned fetch function needs to be called with a context to return the chunk.
func (n *NetStore) get(ctx context.Context, mode chunk.ModeGet, ref Address) (Chunk, func(context.Context) (Chunk, error), error) {
n.mu.Lock()
defer n.mu.Unlock()
chunk, err := n.Store.Get(ctx, mode, ref) ref := req.Addr
log.Trace("netstore.get", "ref", ref.String())
ch, err := n.Store.Get(ctx, mode, ref)
if err != nil { if err != nil {
// TODO: Fix comparison - we should be comparing against leveldb.ErrNotFound, this error should be wrapped. // TODO: fix comparison - we should be comparing against leveldb.ErrNotFound, this error should be wrapped.
if err != ErrChunkNotFound && err != leveldb.ErrNotFound { if err != ErrChunkNotFound && err != leveldb.ErrNotFound {
log.Debug("Received error from LocalStore other than ErrNotFound", "err", err) log.Error("localstore get error", "err", err)
} }
// The chunk is not available in the LocalStore, let's get the fetcher for it, or create a new one
// if it doesn't exist yet
f := n.getOrCreateFetcher(ctx, ref)
// If the caller needs the chunk, it has to use the returned fetch function to get it
return nil, f.Fetch, nil
}
return chunk, nil, nil log.Trace("netstore.chunk-not-in-localstore", "ref", ref.String())
}
// getOrCreateFetcher attempts at retrieving an existing fetchers v, err, _ := n.requestGroup.Do(ref.String(), func() (interface{}, error) {
// if none exists, creates one and saves it in the fetchers cache // currently we issue a retrieve request if a fetcher
// caller must hold the lock // has already been created by a syncer for that particular chunk.
func (n *NetStore) getOrCreateFetcher(ctx context.Context, ref Address) *fetcher { // so it is possible to
if f := n.getFetcher(ref); f != nil { // have 2 in-flight requests for the same chunk - one by a
return f // syncer (offered/wanted/deliver flow) and one from
} // here - retrieve request
fi, _, ok := n.GetOrCreateFetcher(ctx, ref, "request")
if ok {
err := n.RemoteFetch(ctx, req, fi)
if err != nil {
return nil, err
}
}
// no fetcher for the given address, we have to create a new one ch, err := n.Store.Get(ctx, mode, ref)
key := hex.EncodeToString(ref) if err != nil {
// create the context during which fetching is kept alive log.Error(err.Error(), "ref", ref)
cctx, cancel := context.WithTimeout(ctx, fetcherTimeout) return nil, errors.New("item should have been in localstore, but it is not")
// destroy is called when all requests finish }
destroy := func() {
// remove fetcher from fetchers
n.fetchers.Remove(key)
// stop fetcher by cancelling context called when
// all requests cancelled/timedout or chunk is delivered
cancel()
}
// peers always stores all the peers which have an active request for the chunk. It is shared
// between fetcher and the NewFetchFunc function. It is needed by the NewFetchFunc because
// the peers which requested the chunk should not be requested to deliver it.
peers := &sync.Map{}
cctx, sp := spancontext.StartSpan( // fi could be nil (when ok == false) if the chunk was added to the NetStore between n.store.Get and the call to n.GetOrCreateFetcher
cctx, if fi != nil {
"netstore.fetcher", metrics.GetOrRegisterResettingTimer(fmt.Sprintf("fetcher.%s.request", fi.CreatedBy), nil).UpdateSince(start)
) }
sp.LogFields(olog.String("ref", ref.String())) return ch, nil
fetcher := newFetcher(sp, ref, n.NewNetFetcherFunc(cctx, ref, peers), destroy, peers, n.closeC) })
n.fetchers.Add(key, fetcher)
return fetcher if err != nil {
} log.Trace(err.Error(), "ref", ref)
// getFetcher retrieves the fetcher for the given address from the fetchers cache if it exists,
// otherwise it returns nil
func (n *NetStore) getFetcher(ref Address) *fetcher {
key := hex.EncodeToString(ref)
f, ok := n.fetchers.Get(key)
if ok {
return f.(*fetcher)
}
return nil
}
// RequestsCacheLen returns the current number of outgoing requests stored in the cache
func (n *NetStore) RequestsCacheLen() int {
return n.fetchers.Len()
}
// One fetcher object is responsible to fetch one chunk for one address, and keep track of all the
// peers who have requested it and did not receive it yet.
type fetcher struct {
addr Address // address of chunk
chunk Chunk // fetcher can set the chunk on the fetcher
deliveredC chan struct{} // chan signalling chunk delivery to requests
cancelledC chan struct{} // chan signalling the fetcher has been cancelled (removed from fetchers in NetStore)
netFetcher NetFetcher // remote fetch function to be called with a request source taken from the context
cancel func() // cleanup function for the remote fetcher to call when all upstream contexts are called
peers *sync.Map // the peers which asked for the chunk
requestCnt int32 // number of requests on this chunk. If all the requests are done (delivered or context is done) the cancel function is called
deliverOnce *sync.Once // guarantees that we only close deliveredC once
span opentracing.Span // measure retrieve time per chunk
}
// newFetcher creates a new fetcher object for the fiven addr. fetch is the function which actually
// does the retrieval (in non-test cases this is coming from the network package). cancel function is
// called either
// 1. when the chunk has been fetched all peers have been either notified or their context has been done
// 2. the chunk has not been fetched but all context from all the requests has been done
// The peers map stores all the peers which have requested chunk.
func newFetcher(span opentracing.Span, addr Address, nf NetFetcher, cancel func(), peers *sync.Map, closeC chan struct{}) *fetcher {
cancelOnce := &sync.Once{} // cancel should only be called once
return &fetcher{
addr: addr,
deliveredC: make(chan struct{}),
deliverOnce: &sync.Once{},
cancelledC: closeC,
netFetcher: nf,
cancel: func() {
cancelOnce.Do(func() {
cancel()
})
},
peers: peers,
span: span,
}
}
// Fetch fetches the chunk synchronously, it is called by NetStore.Get is the chunk is not available
// locally.
func (f *fetcher) Fetch(rctx context.Context) (Chunk, error) {
atomic.AddInt32(&f.requestCnt, 1)
defer func() {
// if all the requests are done the fetcher can be cancelled
if atomic.AddInt32(&f.requestCnt, -1) == 0 {
f.cancel()
}
f.span.Finish()
}()
// The peer asking for the chunk. Store in the shared peers map, but delete after the request
// has been delivered
peer := rctx.Value("peer")
if peer != nil {
f.peers.Store(peer, time.Now())
defer f.peers.Delete(peer)
}
// If there is a source in the context then it is an offer, otherwise a request
sourceIF := rctx.Value("source")
hopCount, _ := rctx.Value("hopcount").(uint8)
if sourceIF != nil {
var source enode.ID
if err := source.UnmarshalText([]byte(sourceIF.(string))); err != nil {
return nil, err return nil, err
} }
f.netFetcher.Offer(&source)
c := v.(Chunk)
log.Trace("netstore.singleflight returned", "ref", ref.String(), "err", err)
return c, nil
}
ctx, ssp := spancontext.StartSpan(
ctx,
"localstore.get")
defer ssp.Finish()
return ch, nil
}
// RemoteFetch is handling the retry mechanism when making a chunk request to our peers.
// For a given chunk Request, we call RemoteGet, which selects the next eligible peer and
// issues a RetrieveRequest and we wait for a delivery. If a delivery doesn't arrive within the SearchTimeout
// we retry.
func (n *NetStore) RemoteFetch(ctx context.Context, req *Request, fi *Fetcher) error {
// while we haven't timed-out, and while we don't have a chunk,
// iterate over peers and try to find a chunk
metrics.GetOrRegisterCounter("remote.fetch", nil).Inc(1)
ref := req.Addr
for {
metrics.GetOrRegisterCounter("remote.fetch.inner", nil).Inc(1)
ctx, osp := spancontext.StartSpan(
ctx,
"remote.fetch")
osp.LogFields(olog.String("ref", ref.String()))
log.Trace("remote.fetch", "ref", ref)
currentPeer, err := n.RemoteGet(ctx, req, n.localID)
if err != nil {
log.Trace(err.Error(), "ref", ref)
osp.LogFields(olog.String("err", err.Error()))
osp.Finish()
return ErrNoSuitablePeer
}
// add peer to the set of peers to skip from now
log.Trace("remote.fetch, adding peer to skip", "ref", ref, "peer", currentPeer.String())
req.PeersToSkip.Store(currentPeer.String(), time.Now())
select {
case <-fi.Delivered:
log.Trace("remote.fetch, chunk delivered", "ref", ref)
osp.LogFields(olog.Bool("delivered", true))
osp.Finish()
return nil
case <-time.After(timeouts.SearchTimeout):
metrics.GetOrRegisterCounter("remote.fetch.timeout.search", nil).Inc(1)
osp.LogFields(olog.Bool("timeout", true))
osp.Finish()
break
case <-ctx.Done(): // global fetcher timeout
log.Trace("remote.fetch, fail", "ref", ref)
metrics.GetOrRegisterCounter("remote.fetch.timeout.global", nil).Inc(1)
osp.LogFields(olog.Bool("fail", true))
osp.Finish()
return ctx.Err()
}
}
}
// Has is the storage layer entry point to query the underlying
// database to return if it has a chunk or not.
func (n *NetStore) Has(ctx context.Context, ref Address) (bool, error) {
return n.Store.Has(ctx, ref)
}
// GetOrCreateFetcher returns the Fetcher for a given chunk, if this chunk is not in the LocalStore.
// If the chunk is in the LocalStore, it returns nil for the Fetcher and ok == false
func (n *NetStore) GetOrCreateFetcher(ctx context.Context, ref Address, interestedParty string) (f *Fetcher, loaded bool, ok bool) {
n.putMu.Lock()
defer n.putMu.Unlock()
has, err := n.Store.Has(ctx, ref)
if err != nil {
log.Error(err.Error())
}
if has {
return nil, false, false
}
f = NewFetcher()
v, loaded := n.fetchers.Get(ref.String())
log.Trace("netstore.has-with-callback.loadorstore", "ref", ref.String(), "loaded", loaded)
if loaded {
f = v.(*Fetcher)
} else { } else {
f.netFetcher.Request(hopCount) f.CreatedBy = interestedParty
n.fetchers.Add(ref.String(), f)
} }
// wait until either the chunk is delivered or the context is done // if fetcher created by request, but we get a call from syncer, make sure we issue a second request
select { if f.CreatedBy != interestedParty && !f.RequestedBySyncer {
case <-rctx.Done(): f.RequestedBySyncer = true
return nil, rctx.Err() return f, false, true
case <-f.deliveredC:
return f.chunk, nil
case <-f.cancelledC:
return nil, fmt.Errorf("fetcher cancelled")
} }
}
// deliver is called by NetStore.Put to notify all pending requests return f, loaded, true
func (f *fetcher) deliver(ctx context.Context, ch Chunk) {
f.deliverOnce.Do(func() {
f.chunk = ch
// closing the deliveredC channel will terminate ongoing requests
close(f.deliveredC)
log.Trace("n.getFetcher close deliveredC", "ref", ch.Address())
})
} }

View File

@ -1,702 +0,0 @@
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package storage
import (
"bytes"
"context"
"crypto/rand"
"errors"
"fmt"
"io/ioutil"
"os"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethersphere/swarm/chunk"
"github.com/ethersphere/swarm/storage/localstore"
)
var sourcePeerID = enode.HexID("99d8594b52298567d2ca3f4c441a5ba0140ee9245e26460d01102a52773c73b9")
type mockNetFetcher struct {
peers *sync.Map
sources []*enode.ID
peersPerRequest [][]Address
requestCalled bool
offerCalled bool
quit <-chan struct{}
ctx context.Context
hopCounts []uint8
mu sync.Mutex
}
func (m *mockNetFetcher) Offer(source *enode.ID) {
m.offerCalled = true
m.sources = append(m.sources, source)
}
func (m *mockNetFetcher) Request(hopCount uint8) {
m.mu.Lock()
defer m.mu.Unlock()
m.requestCalled = true
var peers []Address
m.peers.Range(func(key interface{}, _ interface{}) bool {
peers = append(peers, common.FromHex(key.(string)))
return true
})
m.peersPerRequest = append(m.peersPerRequest, peers)
m.hopCounts = append(m.hopCounts, hopCount)
}
type mockNetFetchFuncFactory struct {
fetcher *mockNetFetcher
}
func (m *mockNetFetchFuncFactory) newMockNetFetcher(ctx context.Context, _ Address, peers *sync.Map) NetFetcher {
m.fetcher.peers = peers
m.fetcher.quit = ctx.Done()
m.fetcher.ctx = ctx
return m.fetcher
}
func newTestNetStore(t *testing.T) (netStore *NetStore, fetcher *mockNetFetcher, cleanup func()) {
t.Helper()
dir, err := ioutil.TempDir("", "swarm-storage-")
if err != nil {
t.Fatal(err)
}
localStore, err := localstore.New(dir, make([]byte, 32), nil)
if err != nil {
os.RemoveAll(dir)
t.Fatal(err)
}
cleanup = func() {
localStore.Close()
os.RemoveAll(dir)
}
fetcher = new(mockNetFetcher)
mockNetFetchFuncFactory := &mockNetFetchFuncFactory{
fetcher: fetcher,
}
netStore, err = NewNetStore(localStore, mockNetFetchFuncFactory.newMockNetFetcher)
if err != nil {
cleanup()
t.Fatal(err)
}
return netStore, fetcher, cleanup
}
// TestNetStoreGetAndPut tests calling NetStore.Get which is blocked until the same chunk is Put.
// After the Put there should no active fetchers, and the context created for the fetcher should
// be cancelled.
func TestNetStoreGetAndPut(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
ch := GenerateRandomChunk(chunk.DefaultSize)
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
defer cancel()
c := make(chan struct{}) // this channel ensures that the gouroutine with the Put does not run earlier than the Get
putErrC := make(chan error)
go func() {
<-c // wait for the Get to be called
time.Sleep(200 * time.Millisecond) // and a little more so it is surely called
// check if netStore created a fetcher in the Get call for the unavailable chunk
if netStore.fetchers.Len() != 1 || netStore.getFetcher(ch.Address()) == nil {
putErrC <- errors.New("Expected netStore to use a fetcher for the Get call")
return
}
_, err := netStore.Put(ctx, chunk.ModePutRequest, ch)
if err != nil {
putErrC <- fmt.Errorf("Expected no err got %v", err)
return
}
putErrC <- nil
}()
close(c)
recChunk, err := netStore.Get(ctx, chunk.ModeGetRequest, ch.Address()) // this is blocked until the Put above is done
if err != nil {
t.Fatalf("Expected no err got %v", err)
}
if err := <-putErrC; err != nil {
t.Fatal(err)
}
// the retrieved chunk should be the same as what we Put
if !bytes.Equal(recChunk.Address(), ch.Address()) || !bytes.Equal(recChunk.Data(), ch.Data()) {
t.Fatalf("Different chunk received than what was put")
}
// the chunk is already available locally, so there should be no active fetchers waiting for it
if netStore.fetchers.Len() != 0 {
t.Fatal("Expected netStore to remove the fetcher after delivery")
}
// A fetcher was created when the Get was called (and the chunk was not available). The chunk
// was delivered with the Put call, so the fetcher should be cancelled now.
select {
case <-fetcher.ctx.Done():
default:
t.Fatal("Expected fetcher context to be cancelled")
}
}
// TestNetStoreGetAndPut tests calling NetStore.Put and then NetStore.Get.
// After the Put the chunk is available locally, so the Get can just retrieve it from LocalStore,
// there is no need to create fetchers.
func TestNetStoreGetAfterPut(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
ch := GenerateRandomChunk(chunk.DefaultSize)
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer cancel()
// First we Put the chunk, so the chunk will be available locally
_, err := netStore.Put(ctx, chunk.ModePutRequest, ch)
if err != nil {
t.Fatalf("Expected no err got %v", err)
}
// Get should retrieve the chunk from LocalStore, without creating fetcher
recChunk, err := netStore.Get(ctx, chunk.ModeGetRequest, ch.Address())
if err != nil {
t.Fatalf("Expected no err got %v", err)
}
// the retrieved chunk should be the same as what we Put
if !bytes.Equal(recChunk.Address(), ch.Address()) || !bytes.Equal(recChunk.Data(), ch.Data()) {
t.Fatalf("Different chunk received than what was put")
}
// no fetcher offer or request should be created for a locally available chunk
if fetcher.offerCalled || fetcher.requestCalled {
t.Fatal("NetFetcher.offerCalled or requestCalled not expected to be called")
}
// no fetchers should be created for a locally available chunk
if netStore.fetchers.Len() != 0 {
t.Fatal("Expected netStore to not have fetcher")
}
}
// TestNetStoreGetTimeout tests a Get call for an unavailable chunk and waits for timeout
func TestNetStoreGetTimeout(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
ch := GenerateRandomChunk(chunk.DefaultSize)
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer cancel()
c := make(chan struct{}) // this channel ensures that the gouroutine does not run earlier than the Get
fetcherErrC := make(chan error)
go func() {
<-c // wait for the Get to be called
time.Sleep(200 * time.Millisecond) // and a little more so it is surely called
// check if netStore created a fetcher in the Get call for the unavailable chunk
if netStore.fetchers.Len() != 1 || netStore.getFetcher(ch.Address()) == nil {
fetcherErrC <- errors.New("Expected netStore to use a fetcher for the Get call")
return
}
fetcherErrC <- nil
}()
close(c)
// We call Get on this chunk, which is not in LocalStore. We don't Put it at all, so there will
// be a timeout
_, err := netStore.Get(ctx, chunk.ModeGetRequest, ch.Address())
// Check if the timeout happened
if err != context.DeadlineExceeded {
t.Fatalf("Expected context.DeadLineExceeded err got %v", err)
}
if err := <-fetcherErrC; err != nil {
t.Fatal(err)
}
// A fetcher was created, check if it has been removed after timeout
if netStore.fetchers.Len() != 0 {
t.Fatal("Expected netStore to remove the fetcher after timeout")
}
// Check if the fetcher context has been cancelled after the timeout
select {
case <-fetcher.ctx.Done():
default:
t.Fatal("Expected fetcher context to be cancelled")
}
}
// TestNetStoreGetCancel tests a Get call for an unavailable chunk, then cancels the context and checks
// the errors
func TestNetStoreGetCancel(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
ch := GenerateRandomChunk(chunk.DefaultSize)
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Second)
c := make(chan struct{}) // this channel ensures that the gouroutine with the cancel does not run earlier than the Get
fetcherErrC := make(chan error, 1)
go func() {
<-c // wait for the Get to be called
time.Sleep(200 * time.Millisecond) // and a little more so it is surely called
// check if netStore created a fetcher in the Get call for the unavailable chunk
if netStore.fetchers.Len() != 1 || netStore.getFetcher(ch.Address()) == nil {
fetcherErrC <- errors.New("Expected netStore to use a fetcher for the Get call")
return
}
fetcherErrC <- nil
cancel()
}()
close(c)
// We call Get with an unavailable chunk, so it will create a fetcher and wait for delivery
_, err := netStore.Get(ctx, chunk.ModeGetRequest, ch.Address())
if err := <-fetcherErrC; err != nil {
t.Fatal(err)
}
// After the context is cancelled above Get should return with an error
if err != context.Canceled {
t.Fatalf("Expected context.Canceled err got %v", err)
}
// A fetcher was created, check if it has been removed after cancel
if netStore.fetchers.Len() != 0 {
t.Fatal("Expected netStore to remove the fetcher after cancel")
}
// Check if the fetcher context has been cancelled after the request context cancel
select {
case <-fetcher.ctx.Done():
default:
t.Fatal("Expected fetcher context to be cancelled")
}
}
// TestNetStoreMultipleGetAndPut tests four Get calls for the same unavailable chunk. The chunk is
// delivered with a Put, we have to make sure all Get calls return, and they use a single fetcher
// for the chunk retrieval
func TestNetStoreMultipleGetAndPut(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
ch := GenerateRandomChunk(chunk.DefaultSize)
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
defer cancel()
putErrC := make(chan error)
go func() {
// sleep to make sure Put is called after all the Get
time.Sleep(500 * time.Millisecond)
// check if netStore created exactly one fetcher for all Get calls
if netStore.fetchers.Len() != 1 {
putErrC <- errors.New("Expected netStore to use one fetcher for all Get calls")
return
}
_, err := netStore.Put(ctx, chunk.ModePutRequest, ch)
if err != nil {
putErrC <- fmt.Errorf("Expected no err got %v", err)
return
}
putErrC <- nil
}()
count := 4
// call Get 4 times for the same unavailable chunk. The calls will be blocked until the Put above.
errC := make(chan error)
for i := 0; i < count; i++ {
go func() {
recChunk, err := netStore.Get(ctx, chunk.ModeGetRequest, ch.Address())
if err != nil {
errC <- fmt.Errorf("Expected no err got %v", err)
}
if !bytes.Equal(recChunk.Address(), ch.Address()) || !bytes.Equal(recChunk.Data(), ch.Data()) {
errC <- errors.New("Different chunk received than what was put")
}
errC <- nil
}()
}
if err := <-putErrC; err != nil {
t.Fatal(err)
}
timeout := time.After(1 * time.Second)
// The Get calls should return after Put, so no timeout expected
for i := 0; i < count; i++ {
select {
case err := <-errC:
if err != nil {
t.Fatal(err)
}
case <-timeout:
t.Fatalf("Timeout waiting for Get calls to return")
}
}
// A fetcher was created, check if it has been removed after cancel
if netStore.fetchers.Len() != 0 {
t.Fatal("Expected netStore to remove the fetcher after delivery")
}
// A fetcher was created, check if it has been removed after delivery
select {
case <-fetcher.ctx.Done():
default:
t.Fatal("Expected fetcher context to be cancelled")
}
}
// TestNetStoreFetchFuncTimeout tests a FetchFunc call for an unavailable chunk and waits for timeout
func TestNetStoreFetchFuncTimeout(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
chunk := GenerateRandomChunk(chunk.DefaultSize)
ctx, cancel := context.WithTimeout(context.Background(), 200*time.Millisecond)
defer cancel()
// FetchFunc is called for an unavaible chunk, so the returned wait function should not be nil
wait := netStore.FetchFunc(ctx, chunk.Address())
if wait == nil {
t.Fatal("Expected wait function to be not nil")
}
// There should an active fetcher for the chunk after the FetchFunc call
if netStore.fetchers.Len() != 1 || netStore.getFetcher(chunk.Address()) == nil {
t.Fatalf("Expected netStore to have one fetcher for the requested chunk")
}
// wait function should timeout because we don't deliver the chunk with a Put
err := wait(ctx)
if err != context.DeadlineExceeded {
t.Fatalf("Expected context.DeadLineExceeded err got %v", err)
}
// the fetcher should be removed after timeout
if netStore.fetchers.Len() != 0 {
t.Fatal("Expected netStore to remove the fetcher after timeout")
}
// the fetcher context should be cancelled after timeout
select {
case <-fetcher.ctx.Done():
default:
t.Fatal("Expected fetcher context to be cancelled")
}
}
// TestNetStoreFetchFuncAfterPut tests that the FetchFunc should return nil for a locally available chunk
func TestNetStoreFetchFuncAfterPut(t *testing.T) {
netStore, _, cleanup := newTestNetStore(t)
defer cleanup()
ch := GenerateRandomChunk(chunk.DefaultSize)
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Second)
defer cancel()
// We deliver the created the chunk with a Put
_, err := netStore.Put(ctx, chunk.ModePutRequest, ch)
if err != nil {
t.Fatalf("Expected no err got %v", err)
}
// FetchFunc should return nil, because the chunk is available locally, no need to fetch it
wait := netStore.FetchFunc(ctx, ch.Address())
if wait != nil {
t.Fatal("Expected wait to be nil")
}
// No fetchers should be created at all
if netStore.fetchers.Len() != 0 {
t.Fatal("Expected netStore to not have fetcher")
}
}
// TestNetStoreGetCallsRequest tests if Get created a request on the NetFetcher for an unavailable chunk
func TestNetStoreGetCallsRequest(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
ch := GenerateRandomChunk(chunk.DefaultSize)
ctx := context.WithValue(context.Background(), "hopcount", uint8(5))
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
defer cancel()
// We call get for a not available chunk, it will timeout because the chunk is not delivered
_, err := netStore.Get(ctx, chunk.ModeGetRequest, ch.Address())
if err != context.DeadlineExceeded {
t.Fatalf("Expected context.DeadlineExceeded err got %v", err)
}
// NetStore should call NetFetcher.Request and wait for the chunk
if !fetcher.requestCalled {
t.Fatal("Expected NetFetcher.Request to be called")
}
if fetcher.hopCounts[0] != 5 {
t.Fatalf("Expected NetFetcher.Request be called with hopCount 5, got %v", fetcher.hopCounts[0])
}
}
// TestNetStoreGetCallsOffer tests if Get created a request on the NetFetcher for an unavailable chunk
// in case of a source peer provided in the context.
func TestNetStoreGetCallsOffer(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
ch := GenerateRandomChunk(chunk.DefaultSize)
// If a source peer is added to the context, NetStore will handle it as an offer
ctx := context.WithValue(context.Background(), "source", sourcePeerID.String())
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
defer cancel()
// We call get for a not available chunk, it will timeout because the chunk is not delivered
_, err := netStore.Get(ctx, chunk.ModeGetRequest, ch.Address())
if err != context.DeadlineExceeded {
t.Fatalf("Expect error %v got %v", context.DeadlineExceeded, err)
}
// NetStore should call NetFetcher.Offer with the source peer
if !fetcher.offerCalled {
t.Fatal("Expected NetFetcher.Request to be called")
}
if len(fetcher.sources) != 1 {
t.Fatalf("Expected fetcher sources length 1 got %v", len(fetcher.sources))
}
if fetcher.sources[0].String() != sourcePeerID.String() {
t.Fatalf("Expected fetcher source %v got %v", sourcePeerID, fetcher.sources[0])
}
}
// TestNetStoreFetcherCountPeers tests multiple NetStore.Get calls with peer in the context.
// There is no Put call, so the Get calls timeout
func TestNetStoreFetcherCountPeers(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
addr := randomAddr()
peers := []string{randomAddr().Hex(), randomAddr().Hex(), randomAddr().Hex()}
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Second)
defer cancel()
errC := make(chan error)
nrGets := 3
// Call Get 3 times with a peer in context
for i := 0; i < nrGets; i++ {
peer := peers[i]
go func() {
ctx := context.WithValue(ctx, "peer", peer)
_, err := netStore.Get(ctx, chunk.ModeGetRequest, addr)
errC <- err
}()
}
// All 3 Get calls should timeout
for i := 0; i < nrGets; i++ {
err := <-errC
if err != context.DeadlineExceeded {
t.Fatalf("Expected \"%v\" error got \"%v\"", context.DeadlineExceeded, err)
}
}
// fetcher should be closed after timeout
select {
case <-fetcher.quit:
case <-time.After(3 * time.Second):
t.Fatalf("mockNetFetcher not closed after timeout")
}
// All 3 peers should be given to NetFetcher after the 3 Get calls
if len(fetcher.peersPerRequest) != nrGets {
t.Fatalf("Expected 3 got %v", len(fetcher.peersPerRequest))
}
for i, peers := range fetcher.peersPerRequest {
if len(peers) < i+1 {
t.Fatalf("Expected at least %v got %v", i+1, len(peers))
}
}
}
// TestNetStoreFetchFuncCalledMultipleTimes calls the wait function given by FetchFunc three times,
// and checks there is still exactly one fetcher for one chunk. Afthe chunk is delivered, it checks
// if the fetcher is closed.
func TestNetStoreFetchFuncCalledMultipleTimes(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
ch := GenerateRandomChunk(chunk.DefaultSize)
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer cancel()
// FetchFunc should return a non-nil wait function, because the chunk is not available
wait := netStore.FetchFunc(ctx, ch.Address())
if wait == nil {
t.Fatal("Expected wait function to be not nil")
}
// There should be exactly one fetcher for the chunk
if netStore.fetchers.Len() != 1 || netStore.getFetcher(ch.Address()) == nil {
t.Fatalf("Expected netStore to have one fetcher for the requested chunk")
}
// Call wait three times in parallel
count := 3
errC := make(chan error)
for i := 0; i < count; i++ {
go func() {
errC <- wait(ctx)
}()
}
// sleep a little so the wait functions are called above
time.Sleep(100 * time.Millisecond)
// there should be still only one fetcher, because all wait calls are for the same chunk
if netStore.fetchers.Len() != 1 || netStore.getFetcher(ch.Address()) == nil {
t.Fatal("Expected netStore to have one fetcher for the requested chunk")
}
// Deliver the chunk with a Put
_, err := netStore.Put(ctx, chunk.ModePutRequest, ch)
if err != nil {
t.Fatalf("Expected no err got %v", err)
}
// wait until all wait calls return (because the chunk is delivered)
for i := 0; i < count; i++ {
err := <-errC
if err != nil {
t.Fatal(err)
}
}
// There should be no more fetchers for the delivered chunk
if netStore.fetchers.Len() != 0 {
t.Fatal("Expected netStore to remove the fetcher after delivery")
}
// The context for the fetcher should be cancelled after delivery
select {
case <-fetcher.ctx.Done():
default:
t.Fatal("Expected fetcher context to be cancelled")
}
}
// TestNetStoreFetcherLifeCycleWithTimeout is similar to TestNetStoreFetchFuncCalledMultipleTimes,
// the only difference is that we don't deilver the chunk, just wait for timeout
func TestNetStoreFetcherLifeCycleWithTimeout(t *testing.T) {
netStore, fetcher, cleanup := newTestNetStore(t)
defer cleanup()
chunk := GenerateRandomChunk(chunk.DefaultSize)
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Second)
defer cancel()
// FetchFunc should return a non-nil wait function, because the chunk is not available
wait := netStore.FetchFunc(ctx, chunk.Address())
if wait == nil {
t.Fatal("Expected wait function to be not nil")
}
// There should be exactly one fetcher for the chunk
if netStore.fetchers.Len() != 1 || netStore.getFetcher(chunk.Address()) == nil {
t.Fatalf("Expected netStore to have one fetcher for the requested chunk")
}
// Call wait three times in parallel
count := 3
errC := make(chan error)
for i := 0; i < count; i++ {
go func() {
rctx, rcancel := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer rcancel()
err := wait(rctx)
if err != context.DeadlineExceeded {
errC <- fmt.Errorf("Expected err %v got %v", context.DeadlineExceeded, err)
return
}
errC <- nil
}()
}
// wait until all wait calls timeout
for i := 0; i < count; i++ {
err := <-errC
if err != nil {
t.Fatal(err)
}
}
// There should be no more fetchers after timeout
if netStore.fetchers.Len() != 0 {
t.Fatal("Expected netStore to remove the fetcher after delivery")
}
// The context for the fetcher should be cancelled after timeout
select {
case <-fetcher.ctx.Done():
default:
t.Fatal("Expected fetcher context to be cancelled")
}
}
func randomAddr() Address {
addr := make([]byte, 32)
rand.Read(addr)
return Address(addr)
}

58
storage/request.go Normal file
View File

@ -0,0 +1,58 @@
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package storage
import (
"sync"
"time"
"github.com/ethersphere/swarm/network/timeouts"
"github.com/ethereum/go-ethereum/p2p/enode"
)
// Request encapsulates all the necessary arguments when making a request to NetStore.
// These could have also been added as part of the interface of NetStore.Get, but a request struct seemed
// like a better option
type Request struct {
Addr Address // chunk address
Origin enode.ID // who is sending us that request? we compare Origin to the suggested peer from RequestFromPeers
PeersToSkip sync.Map // peers not to request chunk from
}
// NewRequest returns a new instance of Request based on chunk address skip check and
// a map of peers to skip.
func NewRequest(addr Address) *Request {
return &Request{
Addr: addr,
}
}
// SkipPeer returns if the peer with nodeID should not be requested to deliver a chunk.
// Peers to skip are kept per Request and for a time period of FailedPeerSkipDelay.
func (r *Request) SkipPeer(nodeID string) bool {
val, ok := r.PeersToSkip.Load(nodeID)
if !ok {
return false
}
t, ok := val.(time.Time)
if ok && time.Now().After(t.Add(timeouts.FailedPeerSkipDelay)) {
r.PeersToSkip.Delete(nodeID)
return false
}
return true
}

View File

@ -64,7 +64,6 @@ var (
startCounter = metrics.NewRegisteredCounter("stack,start", nil) startCounter = metrics.NewRegisteredCounter("stack,start", nil)
stopCounter = metrics.NewRegisteredCounter("stack,stop", nil) stopCounter = metrics.NewRegisteredCounter("stack,stop", nil)
uptimeGauge = metrics.NewRegisteredGauge("stack.uptime", nil) uptimeGauge = metrics.NewRegisteredGauge("stack.uptime", nil)
requestsCacheGauge = metrics.NewRegisteredGauge("storage.cache.requests.size", nil)
) )
// the swarm stack // the swarm stack
@ -174,17 +173,15 @@ func NewSwarm(config *api.Config, mockStore *mock.NodeStore) (self *Swarm, err e
feedsHandler, feedsHandler,
) )
self.netStore, err = storage.NewNetStore(lstore, nil) nodeID := config.Enode.ID()
if err != nil { self.netStore = storage.NewNetStore(lstore, nodeID)
return nil, err
}
to := network.NewKademlia( to := network.NewKademlia(
common.FromHex(config.BzzKey), common.FromHex(config.BzzKey),
network.NewKadParams(), network.NewKadParams(),
) )
delivery := stream.NewDelivery(to, self.netStore) delivery := stream.NewDelivery(to, self.netStore)
self.netStore.NewNetFetcherFunc = network.NewFetcherFactory(delivery.RequestFromPeers, config.DeliverySkipCheck).New self.netStore.RemoteGet = delivery.RequestFromPeers
feedsHandler.SetStore(self.netStore) feedsHandler.SetStore(self.netStore)
@ -197,8 +194,6 @@ func NewSwarm(config *api.Config, mockStore *mock.NodeStore) (self *Swarm, err e
self.accountingMetrics = protocols.SetupAccountingMetrics(10*time.Second, filepath.Join(config.Path, "metrics.db")) self.accountingMetrics = protocols.SetupAccountingMetrics(10*time.Second, filepath.Join(config.Path, "metrics.db"))
} }
nodeID := config.Enode.ID()
syncing := stream.SyncingAutoSubscribe syncing := stream.SyncingAutoSubscribe
if !config.SyncEnabled || config.LightNodeEnabled { if !config.SyncEnabled || config.LightNodeEnabled {
syncing = stream.SyncingDisabled syncing = stream.SyncingDisabled
@ -214,7 +209,8 @@ func NewSwarm(config *api.Config, mockStore *mock.NodeStore) (self *Swarm, err e
tags := chunk.NewTags() //todo load from state store tags := chunk.NewTags() //todo load from state store
// Swarm Hash Merklised Chunking for Arbitrary-length Document/File storage // Swarm Hash Merklised Chunking for Arbitrary-length Document/File storage
self.fileStore = storage.NewFileStore(self.netStore, self.config.FileStoreParams, tags) lnetStore := storage.NewLNetStore(self.netStore)
self.fileStore = storage.NewFileStore(lnetStore, self.config.FileStoreParams, tags)
log.Debug("Setup local storage") log.Debug("Setup local storage")
@ -411,7 +407,6 @@ func (s *Swarm) Start(srv *p2p.Server) error {
select { select {
case <-time.After(updateGaugesPeriod): case <-time.After(updateGaugesPeriod):
uptimeGauge.Update(time.Since(startTime).Nanoseconds()) uptimeGauge.Update(time.Since(startTime).Nanoseconds())
requestsCacheGauge.Update(int64(s.netStore.RequestsCacheLen()))
case <-doneC: case <-doneC:
return return
} }

120
vendor/golang.org/x/sync/singleflight/singleflight.go generated vendored Normal file
View File

@ -0,0 +1,120 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package singleflight provides a duplicate function call suppression
// mechanism.
package singleflight // import "golang.org/x/sync/singleflight"
import "sync"
// call is an in-flight or completed singleflight.Do call
type call struct {
wg sync.WaitGroup
// These fields are written once before the WaitGroup is done
// and are only read after the WaitGroup is done.
val interface{}
err error
// forgotten indicates whether Forget was called with this call's key
// while the call was still in flight.
forgotten bool
// These fields are read and written with the singleflight
// mutex held before the WaitGroup is done, and are read but
// not written after the WaitGroup is done.
dups int
chans []chan<- Result
}
// Group represents a class of work and forms a namespace in
// which units of work can be executed with duplicate suppression.
type Group struct {
mu sync.Mutex // protects m
m map[string]*call // lazily initialized
}
// Result holds the results of Do, so they can be passed
// on a channel.
type Result struct {
Val interface{}
Err error
Shared bool
}
// Do executes and returns the results of the given function, making
// sure that only one execution is in-flight for a given key at a
// time. If a duplicate comes in, the duplicate caller waits for the
// original to complete and receives the same results.
// The return value shared indicates whether v was given to multiple callers.
func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) {
g.mu.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
if c, ok := g.m[key]; ok {
c.dups++
g.mu.Unlock()
c.wg.Wait()
return c.val, c.err, true
}
c := new(call)
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock()
g.doCall(c, key, fn)
return c.val, c.err, c.dups > 0
}
// DoChan is like Do but returns a channel that will receive the
// results when they are ready.
func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result {
ch := make(chan Result, 1)
g.mu.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
if c, ok := g.m[key]; ok {
c.dups++
c.chans = append(c.chans, ch)
g.mu.Unlock()
return ch
}
c := &call{chans: []chan<- Result{ch}}
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock()
go g.doCall(c, key, fn)
return ch
}
// doCall handles the single call for a key.
func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) {
c.val, c.err = fn()
c.wg.Done()
g.mu.Lock()
if !c.forgotten {
delete(g.m, key)
}
for _, ch := range c.chans {
ch <- Result{c.val, c.err, c.dups > 0}
}
g.mu.Unlock()
}
// Forget tells the singleflight to forget about a key. Future calls
// to Do for this key will call the function rather than waiting for
// an earlier call to complete.
func (g *Group) Forget(key string) {
g.mu.Lock()
if c, ok := g.m[key]; ok {
c.forgotten = true
}
delete(g.m, key)
g.mu.Unlock()
}

6
vendor/vendor.json vendored
View File

@ -1240,6 +1240,12 @@
"revision": "eb5bcb51f2a31c7d5141d810b70815c05d9c9146", "revision": "eb5bcb51f2a31c7d5141d810b70815c05d9c9146",
"revisionTime": "2019-04-03T01:06:53Z" "revisionTime": "2019-04-03T01:06:53Z"
}, },
{
"checksumSHA1": "FuQoDr6zh5GsiVVyo3oDZcUVC3c=",
"path": "golang.org/x/sync/singleflight",
"revision": "112230192c580c3556b8cee6403af37a4fc5f28c",
"revisionTime": "2019-04-22T22:11:18Z"
},
{ {
"checksumSHA1": "4TEYFKrAUuwBMqExjQBsnf/CgjQ=", "checksumSHA1": "4TEYFKrAUuwBMqExjQBsnf/CgjQ=",
"path": "golang.org/x/sync/syncmap", "path": "golang.org/x/sync/syncmap",