crypto/secp256k1: update to github.com/bitcoin-core/secp256k1 @ 9d560f9 (#3544)
- Use defined constants instead of hard-coding their integer value. - Allocate secp256k1 structs on the C stack instead of converting []byte - Remove dead code
This commit is contained in:
@@ -7,12 +7,57 @@
|
||||
#ifndef _SECP256K1_GROUP_IMPL_H_
|
||||
#define _SECP256K1_GROUP_IMPL_H_
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "num.h"
|
||||
#include "field.h"
|
||||
#include "group.h"
|
||||
|
||||
/* These points can be generated in sage as follows:
|
||||
*
|
||||
* 0. Setup a worksheet with the following parameters.
|
||||
* b = 4 # whatever CURVE_B will be set to
|
||||
* F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
|
||||
* C = EllipticCurve ([F (0), F (b)])
|
||||
*
|
||||
* 1. Determine all the small orders available to you. (If there are
|
||||
* no satisfactory ones, go back and change b.)
|
||||
* print C.order().factor(limit=1000)
|
||||
*
|
||||
* 2. Choose an order as one of the prime factors listed in the above step.
|
||||
* (You can also multiply some to get a composite order, though the
|
||||
* tests will crash trying to invert scalars during signing.) We take a
|
||||
* random point and scale it to drop its order to the desired value.
|
||||
* There is some probability this won't work; just try again.
|
||||
* order = 199
|
||||
* P = C.random_point()
|
||||
* P = (int(P.order()) / int(order)) * P
|
||||
* assert(P.order() == order)
|
||||
*
|
||||
* 3. Print the values. You'll need to use a vim macro or something to
|
||||
* split the hex output into 4-byte chunks.
|
||||
* print "%x %x" % P.xy()
|
||||
*/
|
||||
#if defined(EXHAUSTIVE_TEST_ORDER)
|
||||
# if EXHAUSTIVE_TEST_ORDER == 199
|
||||
const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
|
||||
0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069,
|
||||
0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18,
|
||||
0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868,
|
||||
0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED
|
||||
);
|
||||
|
||||
const int CURVE_B = 4;
|
||||
# elif EXHAUSTIVE_TEST_ORDER == 13
|
||||
const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
|
||||
0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0,
|
||||
0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15,
|
||||
0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e,
|
||||
0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac
|
||||
);
|
||||
const int CURVE_B = 2;
|
||||
# else
|
||||
# error No known generator for the specified exhaustive test group order.
|
||||
# endif
|
||||
#else
|
||||
/** Generator for secp256k1, value 'g' defined in
|
||||
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
|
||||
*/
|
||||
@@ -23,8 +68,11 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
|
||||
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
|
||||
);
|
||||
|
||||
const int CURVE_B = 7;
|
||||
#endif
|
||||
|
||||
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
|
||||
secp256k1_fe zi2;
|
||||
secp256k1_fe zi2;
|
||||
secp256k1_fe zi3;
|
||||
secp256k1_fe_sqr(&zi2, zi);
|
||||
secp256k1_fe_mul(&zi3, &zi2, zi);
|
||||
@@ -33,10 +81,6 @@ static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, c
|
||||
r->infinity = a->infinity;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
|
||||
r->infinity = 1;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
|
||||
r->infinity = 0;
|
||||
r->x = *x;
|
||||
@@ -82,7 +126,7 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
|
||||
r->y = a->y;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) {
|
||||
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) {
|
||||
secp256k1_fe *az;
|
||||
secp256k1_fe *azi;
|
||||
size_t i;
|
||||
@@ -95,7 +139,7 @@ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp
|
||||
}
|
||||
|
||||
azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
|
||||
secp256k1_fe_inv_all_var(count, azi, az);
|
||||
secp256k1_fe_inv_all_var(azi, az, count);
|
||||
free(az);
|
||||
|
||||
count = 0;
|
||||
@@ -108,7 +152,7 @@ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp
|
||||
free(azi);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) {
|
||||
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) {
|
||||
size_t i = len - 1;
|
||||
secp256k1_fe zi;
|
||||
|
||||
@@ -151,16 +195,9 @@ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp
|
||||
|
||||
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
|
||||
r->infinity = 1;
|
||||
secp256k1_fe_set_int(&r->x, 0);
|
||||
secp256k1_fe_set_int(&r->y, 0);
|
||||
secp256k1_fe_set_int(&r->z, 0);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y) {
|
||||
r->infinity = 0;
|
||||
r->x = *x;
|
||||
r->y = *y;
|
||||
secp256k1_fe_set_int(&r->z, 1);
|
||||
secp256k1_fe_clear(&r->x);
|
||||
secp256k1_fe_clear(&r->y);
|
||||
secp256k1_fe_clear(&r->z);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_clear(secp256k1_gej *r) {
|
||||
@@ -176,15 +213,19 @@ static void secp256k1_ge_clear(secp256k1_ge *r) {
|
||||
secp256k1_fe_clear(&r->y);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
||||
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe x2, x3, c;
|
||||
r->x = *x;
|
||||
secp256k1_fe_sqr(&x2, x);
|
||||
secp256k1_fe_mul(&x3, x, &x2);
|
||||
r->infinity = 0;
|
||||
secp256k1_fe_set_int(&c, 7);
|
||||
secp256k1_fe_set_int(&c, CURVE_B);
|
||||
secp256k1_fe_add(&c, &x3);
|
||||
if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
|
||||
return secp256k1_fe_sqrt(&r->y, &c);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
||||
if (!secp256k1_ge_set_xquad(r, x)) {
|
||||
return 0;
|
||||
}
|
||||
secp256k1_fe_normalize_var(&r->y);
|
||||
@@ -192,6 +233,7 @@ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int o
|
||||
secp256k1_fe_negate(&r->y, &r->y, 1);
|
||||
}
|
||||
return 1;
|
||||
|
||||
}
|
||||
|
||||
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
|
||||
@@ -236,7 +278,7 @@ static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
|
||||
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
|
||||
secp256k1_fe_sqr(&z2, &a->z);
|
||||
secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
|
||||
secp256k1_fe_mul_int(&z6, 7);
|
||||
secp256k1_fe_mul_int(&z6, CURVE_B);
|
||||
secp256k1_fe_add(&x3, &z6);
|
||||
secp256k1_fe_normalize_weak(&x3);
|
||||
return secp256k1_fe_equal_var(&y2, &x3);
|
||||
@@ -250,18 +292,30 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
|
||||
/* y^2 = x^3 + 7 */
|
||||
secp256k1_fe_sqr(&y2, &a->y);
|
||||
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
|
||||
secp256k1_fe_set_int(&c, 7);
|
||||
secp256k1_fe_set_int(&c, CURVE_B);
|
||||
secp256k1_fe_add(&x3, &c);
|
||||
secp256k1_fe_normalize_weak(&x3);
|
||||
return secp256k1_fe_equal_var(&y2, &x3);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
|
||||
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
|
||||
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
|
||||
*
|
||||
* Note that there is an implementation described at
|
||||
* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
||||
* which trades a multiply for a square, but in practice this is actually slower,
|
||||
* mainly because it requires more normalizations.
|
||||
*/
|
||||
secp256k1_fe t1,t2,t3,t4;
|
||||
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
|
||||
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
|
||||
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
|
||||
*
|
||||
* Having said this, if this function receives a point on a sextic twist, e.g. by
|
||||
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
|
||||
* since -6 does have a cube root mod p. For this point, this function will not set
|
||||
* the infinity flag even though the point doubles to infinity, and the result
|
||||
* point will be gibberish (z = 0 but infinity = 0).
|
||||
*/
|
||||
r->infinity = a->infinity;
|
||||
if (r->infinity) {
|
||||
@@ -629,4 +683,18 @@ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
|
||||
secp256k1_fe yz;
|
||||
|
||||
if (a->infinity) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
|
||||
* that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
|
||||
is */
|
||||
secp256k1_fe_mul(&yz, &a->y, &a->z);
|
||||
return secp256k1_fe_is_quad_var(&yz);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user