crypto/secp256k1: update to github.com/bitcoin-core/secp256k1 @ 9d560f9 (#3544)
- Use defined constants instead of hard-coding their integer value. - Allocate secp256k1 structs on the C stack instead of converting []byte - Remove dead code
This commit is contained in:
@ -14,10 +14,9 @@
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// Package secp256k1 wraps the bitcoin secp256k1 C library.
|
||||
package secp256k1
|
||||
|
||||
// TODO: set USE_SCALAR_4X64 depending on platform?
|
||||
|
||||
/*
|
||||
#cgo CFLAGS: -I./libsecp256k1
|
||||
#cgo CFLAGS: -I./libsecp256k1/src/
|
||||
@ -29,7 +28,7 @@ package secp256k1
|
||||
#define NDEBUG
|
||||
#include "./libsecp256k1/src/secp256k1.c"
|
||||
#include "./libsecp256k1/src/modules/recovery/main_impl.h"
|
||||
#include "pubkey_scalar_mul.h"
|
||||
#include "ext.h"
|
||||
|
||||
typedef void (*callbackFunc) (const char* msg, void* data);
|
||||
extern void secp256k1GoPanicIllegal(const char* msg, void* data);
|
||||
@ -45,16 +44,6 @@ import (
|
||||
"github.com/ethereum/go-ethereum/crypto/randentropy"
|
||||
)
|
||||
|
||||
//#define USE_FIELD_5X64
|
||||
|
||||
/*
|
||||
TODO:
|
||||
> store private keys in buffer and shuffle (deters persistence on swap disc)
|
||||
> byte permutation (changing)
|
||||
> xor with chaning random block (to deter scanning memory for 0x63) (stream cipher?)
|
||||
*/
|
||||
|
||||
// holds ptr to secp256k1_context_struct (see secp256k1/include/secp256k1.h)
|
||||
var (
|
||||
context *C.secp256k1_context
|
||||
N *big.Int
|
||||
@ -67,127 +56,57 @@ func init() {
|
||||
HalfN, _ = new(big.Int).SetString("7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0", 16)
|
||||
|
||||
// around 20 ms on a modern CPU.
|
||||
context = C.secp256k1_context_create(3) // SECP256K1_START_SIGN | SECP256K1_START_VERIFY
|
||||
context = C.secp256k1_context_create_sign_verify()
|
||||
C.secp256k1_context_set_illegal_callback(context, C.callbackFunc(C.secp256k1GoPanicIllegal), nil)
|
||||
C.secp256k1_context_set_error_callback(context, C.callbackFunc(C.secp256k1GoPanicError), nil)
|
||||
}
|
||||
|
||||
var (
|
||||
ErrInvalidMsgLen = errors.New("invalid message length for signature recovery")
|
||||
ErrInvalidMsgLen = errors.New("invalid message length, need 32 bytes")
|
||||
ErrInvalidSignatureLen = errors.New("invalid signature length")
|
||||
ErrInvalidRecoveryID = errors.New("invalid signature recovery id")
|
||||
ErrInvalidKey = errors.New("invalid private key")
|
||||
ErrSignFailed = errors.New("signing failed")
|
||||
ErrRecoverFailed = errors.New("recovery failed")
|
||||
)
|
||||
|
||||
func GenerateKeyPair() ([]byte, []byte) {
|
||||
var seckey []byte = randentropy.GetEntropyCSPRNG(32)
|
||||
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
|
||||
var pubkey64 []byte = make([]byte, 64) // secp256k1_pubkey
|
||||
var pubkey65 []byte = make([]byte, 65) // 65 byte uncompressed pubkey
|
||||
pubkey64_ptr := (*C.secp256k1_pubkey)(unsafe.Pointer(&pubkey64[0]))
|
||||
pubkey65_ptr := (*C.uchar)(unsafe.Pointer(&pubkey65[0]))
|
||||
|
||||
ret := C.secp256k1_ec_pubkey_create(
|
||||
context,
|
||||
pubkey64_ptr,
|
||||
seckey_ptr,
|
||||
)
|
||||
|
||||
if ret != C.int(1) {
|
||||
return GenerateKeyPair() // invalid secret, try again
|
||||
}
|
||||
|
||||
var output_len C.size_t
|
||||
|
||||
C.secp256k1_ec_pubkey_serialize( // always returns 1
|
||||
context,
|
||||
pubkey65_ptr,
|
||||
&output_len,
|
||||
pubkey64_ptr,
|
||||
0, // SECP256K1_EC_COMPRESSED
|
||||
)
|
||||
|
||||
return pubkey65, seckey
|
||||
}
|
||||
|
||||
func GeneratePubKey(seckey []byte) ([]byte, error) {
|
||||
if err := VerifySeckeyValidity(seckey); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var pubkey []byte = make([]byte, 64)
|
||||
var pubkey_ptr *C.secp256k1_pubkey = (*C.secp256k1_pubkey)(unsafe.Pointer(&pubkey[0]))
|
||||
|
||||
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
|
||||
|
||||
ret := C.secp256k1_ec_pubkey_create(
|
||||
context,
|
||||
pubkey_ptr,
|
||||
seckey_ptr,
|
||||
)
|
||||
|
||||
if ret != C.int(1) {
|
||||
return nil, errors.New("Unable to generate pubkey from seckey")
|
||||
}
|
||||
|
||||
return pubkey, nil
|
||||
}
|
||||
|
||||
// Sign creates a recoverable ECDSA signature.
|
||||
// The produced signature is in the 65-byte [R || S || V] format where V is 0 or 1.
|
||||
//
|
||||
// The caller is responsible for ensuring that msg cannot be chosen
|
||||
// directly by an attacker. It is usually preferable to use a cryptographic
|
||||
// hash function on any input before handing it to this function.
|
||||
func Sign(msg []byte, seckey []byte) ([]byte, error) {
|
||||
msg_ptr := (*C.uchar)(unsafe.Pointer(&msg[0]))
|
||||
seckey_ptr := (*C.uchar)(unsafe.Pointer(&seckey[0]))
|
||||
|
||||
sig := make([]byte, 65)
|
||||
sig_ptr := (*C.secp256k1_ecdsa_recoverable_signature)(unsafe.Pointer(&sig[0]))
|
||||
|
||||
nonce := randentropy.GetEntropyCSPRNG(32)
|
||||
ndata_ptr := unsafe.Pointer(&nonce[0])
|
||||
|
||||
noncefp_ptr := &(*C.secp256k1_nonce_function_default)
|
||||
|
||||
if C.secp256k1_ec_seckey_verify(context, seckey_ptr) != C.int(1) {
|
||||
return nil, errors.New("Invalid secret key")
|
||||
if len(msg) != 32 {
|
||||
return nil, ErrInvalidMsgLen
|
||||
}
|
||||
|
||||
ret := C.secp256k1_ecdsa_sign_recoverable(
|
||||
context,
|
||||
sig_ptr,
|
||||
msg_ptr,
|
||||
seckey_ptr,
|
||||
noncefp_ptr,
|
||||
ndata_ptr,
|
||||
)
|
||||
|
||||
if ret == C.int(0) {
|
||||
return Sign(msg, seckey) //invalid secret, try again
|
||||
}
|
||||
|
||||
sig_serialized := make([]byte, 65)
|
||||
sig_serialized_ptr := (*C.uchar)(unsafe.Pointer(&sig_serialized[0]))
|
||||
var recid C.int
|
||||
|
||||
C.secp256k1_ecdsa_recoverable_signature_serialize_compact(
|
||||
context,
|
||||
sig_serialized_ptr, // 64 byte compact signature
|
||||
&recid,
|
||||
sig_ptr, // 65 byte "recoverable" signature
|
||||
)
|
||||
|
||||
sig_serialized[64] = byte(int(recid)) // add back recid to get 65 bytes sig
|
||||
|
||||
return sig_serialized, nil
|
||||
|
||||
}
|
||||
|
||||
func VerifySeckeyValidity(seckey []byte) error {
|
||||
if len(seckey) != 32 {
|
||||
return errors.New("priv key is not 32 bytes")
|
||||
return nil, ErrInvalidKey
|
||||
}
|
||||
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
|
||||
ret := C.secp256k1_ec_seckey_verify(context, seckey_ptr)
|
||||
if int(ret) != 1 {
|
||||
return errors.New("invalid seckey")
|
||||
seckeydata := (*C.uchar)(unsafe.Pointer(&seckey[0]))
|
||||
if C.secp256k1_ec_seckey_verify(context, seckeydata) != 1 {
|
||||
return nil, ErrInvalidKey
|
||||
}
|
||||
return nil
|
||||
|
||||
var (
|
||||
msgdata = (*C.uchar)(unsafe.Pointer(&msg[0]))
|
||||
nonce = randentropy.GetEntropyCSPRNG(32)
|
||||
noncefunc = &(*C.secp256k1_nonce_function_default)
|
||||
noncefuncData = unsafe.Pointer(&nonce[0])
|
||||
sigstruct C.secp256k1_ecdsa_recoverable_signature
|
||||
)
|
||||
if C.secp256k1_ecdsa_sign_recoverable(context, &sigstruct, msgdata, seckeydata, noncefunc, noncefuncData) == 0 {
|
||||
return nil, ErrSignFailed
|
||||
}
|
||||
|
||||
var (
|
||||
sig = make([]byte, 65)
|
||||
sigdata = (*C.uchar)(unsafe.Pointer(&sig[0]))
|
||||
recid C.int
|
||||
)
|
||||
C.secp256k1_ecdsa_recoverable_signature_serialize_compact(context, sigdata, &recid, &sigstruct)
|
||||
sig[64] = byte(recid) // add back recid to get 65 bytes sig
|
||||
return sig, nil
|
||||
}
|
||||
|
||||
// RecoverPubkey returns the the public key of the signer.
|
||||
@ -202,49 +121,15 @@ func RecoverPubkey(msg []byte, sig []byte) ([]byte, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
msg_ptr := (*C.uchar)(unsafe.Pointer(&msg[0]))
|
||||
sig_ptr := (*C.uchar)(unsafe.Pointer(&sig[0]))
|
||||
pubkey := make([]byte, 64)
|
||||
/*
|
||||
this slice is used for both the recoverable signature and the
|
||||
resulting serialized pubkey (both types in libsecp256k1 are 65
|
||||
bytes). this saves one allocation of 65 bytes, which is nice as
|
||||
pubkey recovery is one bottleneck during load in Ethereum
|
||||
*/
|
||||
bytes65 := make([]byte, 65)
|
||||
pubkey_ptr := (*C.secp256k1_pubkey)(unsafe.Pointer(&pubkey[0]))
|
||||
recoverable_sig_ptr := (*C.secp256k1_ecdsa_recoverable_signature)(unsafe.Pointer(&bytes65[0]))
|
||||
recid := C.int(sig[64])
|
||||
|
||||
ret := C.secp256k1_ecdsa_recoverable_signature_parse_compact(
|
||||
context,
|
||||
recoverable_sig_ptr,
|
||||
sig_ptr,
|
||||
recid)
|
||||
if ret == C.int(0) {
|
||||
return nil, errors.New("Failed to parse signature")
|
||||
}
|
||||
|
||||
ret = C.secp256k1_ecdsa_recover(
|
||||
context,
|
||||
pubkey_ptr,
|
||||
recoverable_sig_ptr,
|
||||
msg_ptr,
|
||||
var (
|
||||
pubkey = make([]byte, 65)
|
||||
sigdata = (*C.uchar)(unsafe.Pointer(&sig[0]))
|
||||
msgdata = (*C.uchar)(unsafe.Pointer(&msg[0]))
|
||||
)
|
||||
if ret == C.int(0) {
|
||||
return nil, errors.New("Failed to recover public key")
|
||||
if C.secp256k1_ecdsa_recover_pubkey(context, (*C.uchar)(unsafe.Pointer(&pubkey[0])), sigdata, msgdata) == 0 {
|
||||
return nil, ErrRecoverFailed
|
||||
}
|
||||
|
||||
serialized_pubkey_ptr := (*C.uchar)(unsafe.Pointer(&bytes65[0]))
|
||||
var output_len C.size_t
|
||||
C.secp256k1_ec_pubkey_serialize( // always returns 1
|
||||
context,
|
||||
serialized_pubkey_ptr,
|
||||
&output_len,
|
||||
pubkey_ptr,
|
||||
0, // SECP256K1_EC_COMPRESSED
|
||||
)
|
||||
return bytes65, nil
|
||||
return pubkey, nil
|
||||
}
|
||||
|
||||
func checkSignature(sig []byte) error {
|
||||
|
Reference in New Issue
Block a user