swarm: network rewrite merge
This commit is contained in:
390
swarm/bmt/bmt_test.go
Normal file
390
swarm/bmt/bmt_test.go
Normal file
@ -0,0 +1,390 @@
|
||||
// Copyright 2017 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package bmt
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
crand "crypto/rand"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"io"
|
||||
"math/rand"
|
||||
"sync"
|
||||
"sync/atomic"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto/sha3"
|
||||
)
|
||||
|
||||
// the actual data length generated (could be longer than max datalength of the BMT)
|
||||
const BufferSize = 4128
|
||||
|
||||
func sha3hash(data ...[]byte) []byte {
|
||||
h := sha3.NewKeccak256()
|
||||
for _, v := range data {
|
||||
h.Write(v)
|
||||
}
|
||||
return h.Sum(nil)
|
||||
}
|
||||
|
||||
// TestRefHasher tests that the RefHasher computes the expected BMT hash for
|
||||
// all data lengths between 0 and 256 bytes
|
||||
func TestRefHasher(t *testing.T) {
|
||||
|
||||
// the test struct is used to specify the expected BMT hash for
|
||||
// segment counts between from and to and lengths from 1 to datalength
|
||||
type test struct {
|
||||
from int
|
||||
to int
|
||||
expected func([]byte) []byte
|
||||
}
|
||||
|
||||
var tests []*test
|
||||
// all lengths in [0,64] should be:
|
||||
//
|
||||
// sha3hash(data)
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 1,
|
||||
to: 2,
|
||||
expected: func(d []byte) []byte {
|
||||
data := make([]byte, 64)
|
||||
copy(data, d)
|
||||
return sha3hash(data)
|
||||
},
|
||||
})
|
||||
|
||||
// all lengths in [3,4] should be:
|
||||
//
|
||||
// sha3hash(
|
||||
// sha3hash(data[:64])
|
||||
// sha3hash(data[64:])
|
||||
// )
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 3,
|
||||
to: 4,
|
||||
expected: func(d []byte) []byte {
|
||||
data := make([]byte, 128)
|
||||
copy(data, d)
|
||||
return sha3hash(sha3hash(data[:64]), sha3hash(data[64:]))
|
||||
},
|
||||
})
|
||||
|
||||
// all segmentCounts in [5,8] should be:
|
||||
//
|
||||
// sha3hash(
|
||||
// sha3hash(
|
||||
// sha3hash(data[:64])
|
||||
// sha3hash(data[64:128])
|
||||
// )
|
||||
// sha3hash(
|
||||
// sha3hash(data[128:192])
|
||||
// sha3hash(data[192:])
|
||||
// )
|
||||
// )
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 5,
|
||||
to: 8,
|
||||
expected: func(d []byte) []byte {
|
||||
data := make([]byte, 256)
|
||||
copy(data, d)
|
||||
return sha3hash(sha3hash(sha3hash(data[:64]), sha3hash(data[64:128])), sha3hash(sha3hash(data[128:192]), sha3hash(data[192:])))
|
||||
},
|
||||
})
|
||||
|
||||
// run the tests
|
||||
for _, x := range tests {
|
||||
for segmentCount := x.from; segmentCount <= x.to; segmentCount++ {
|
||||
for length := 1; length <= segmentCount*32; length++ {
|
||||
t.Run(fmt.Sprintf("%d_segments_%d_bytes", segmentCount, length), func(t *testing.T) {
|
||||
data := make([]byte, length)
|
||||
if _, err := io.ReadFull(crand.Reader, data); err != nil && err != io.EOF {
|
||||
t.Fatal(err)
|
||||
}
|
||||
expected := x.expected(data)
|
||||
actual := NewRefHasher(sha3.NewKeccak256, segmentCount).Hash(data)
|
||||
if !bytes.Equal(actual, expected) {
|
||||
t.Fatalf("expected %x, got %x", expected, actual)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestHasherCorrectness(t *testing.T) {
|
||||
err := testHasher(testBaseHasher)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
func testHasher(f func(BaseHasherFunc, []byte, int, int) error) error {
|
||||
data := newData(BufferSize)
|
||||
hasher := sha3.NewKeccak256
|
||||
size := hasher().Size()
|
||||
counts := []int{1, 2, 3, 4, 5, 8, 16, 32, 64, 128}
|
||||
|
||||
var err error
|
||||
for _, count := range counts {
|
||||
max := count * size
|
||||
incr := 1
|
||||
for n := 1; n <= max; n += incr {
|
||||
err = f(hasher, data, n, count)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Tests that the BMT hasher can be synchronously reused with poolsizes 1 and PoolSize
|
||||
func TestHasherReuse(t *testing.T) {
|
||||
t.Run(fmt.Sprintf("poolsize_%d", 1), func(t *testing.T) {
|
||||
testHasherReuse(1, t)
|
||||
})
|
||||
t.Run(fmt.Sprintf("poolsize_%d", PoolSize), func(t *testing.T) {
|
||||
testHasherReuse(PoolSize, t)
|
||||
})
|
||||
}
|
||||
|
||||
func testHasherReuse(poolsize int, t *testing.T) {
|
||||
hasher := sha3.NewKeccak256
|
||||
pool := NewTreePool(hasher, SegmentCount, poolsize)
|
||||
defer pool.Drain(0)
|
||||
bmt := New(pool)
|
||||
|
||||
for i := 0; i < 100; i++ {
|
||||
data := newData(BufferSize)
|
||||
n := rand.Intn(bmt.DataLength())
|
||||
err := testHasherCorrectness(bmt, hasher, data, n, SegmentCount)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Tests if pool can be cleanly reused even in concurrent use
|
||||
func TestBMTHasherConcurrentUse(t *testing.T) {
|
||||
hasher := sha3.NewKeccak256
|
||||
pool := NewTreePool(hasher, SegmentCount, PoolSize)
|
||||
defer pool.Drain(0)
|
||||
cycles := 100
|
||||
errc := make(chan error)
|
||||
|
||||
for i := 0; i < cycles; i++ {
|
||||
go func() {
|
||||
bmt := New(pool)
|
||||
data := newData(BufferSize)
|
||||
n := rand.Intn(bmt.DataLength())
|
||||
errc <- testHasherCorrectness(bmt, hasher, data, n, 128)
|
||||
}()
|
||||
}
|
||||
LOOP:
|
||||
for {
|
||||
select {
|
||||
case <-time.NewTimer(5 * time.Second).C:
|
||||
t.Fatal("timed out")
|
||||
case err := <-errc:
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
cycles--
|
||||
if cycles == 0 {
|
||||
break LOOP
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// helper function that creates a tree pool
|
||||
func testBaseHasher(hasher BaseHasherFunc, d []byte, n, count int) error {
|
||||
pool := NewTreePool(hasher, count, 1)
|
||||
defer pool.Drain(0)
|
||||
bmt := New(pool)
|
||||
return testHasherCorrectness(bmt, hasher, d, n, count)
|
||||
}
|
||||
|
||||
// helper function that compares reference and optimised implementations on
|
||||
// correctness
|
||||
func testHasherCorrectness(bmt *Hasher, hasher BaseHasherFunc, d []byte, n, count int) (err error) {
|
||||
span := make([]byte, 8)
|
||||
if len(d) < n {
|
||||
n = len(d)
|
||||
}
|
||||
binary.BigEndian.PutUint64(span, uint64(n))
|
||||
data := d[:n]
|
||||
rbmt := NewRefHasher(hasher, count)
|
||||
exp := sha3hash(span, rbmt.Hash(data))
|
||||
got := Hash(bmt, span, data)
|
||||
if !bytes.Equal(got, exp) {
|
||||
return fmt.Errorf("wrong hash: expected %x, got %x", exp, got)
|
||||
}
|
||||
return err
|
||||
}
|
||||
|
||||
func BenchmarkSHA3_4k(t *testing.B) { benchmarkSHA3(4096, t) }
|
||||
func BenchmarkSHA3_2k(t *testing.B) { benchmarkSHA3(4096/2, t) }
|
||||
func BenchmarkSHA3_1k(t *testing.B) { benchmarkSHA3(4096/4, t) }
|
||||
func BenchmarkSHA3_512b(t *testing.B) { benchmarkSHA3(4096/8, t) }
|
||||
func BenchmarkSHA3_256b(t *testing.B) { benchmarkSHA3(4096/16, t) }
|
||||
func BenchmarkSHA3_128b(t *testing.B) { benchmarkSHA3(4096/32, t) }
|
||||
|
||||
func BenchmarkBMTBaseline_4k(t *testing.B) { benchmarkBMTBaseline(4096, t) }
|
||||
func BenchmarkBMTBaseline_2k(t *testing.B) { benchmarkBMTBaseline(4096/2, t) }
|
||||
func BenchmarkBMTBaseline_1k(t *testing.B) { benchmarkBMTBaseline(4096/4, t) }
|
||||
func BenchmarkBMTBaseline_512b(t *testing.B) { benchmarkBMTBaseline(4096/8, t) }
|
||||
func BenchmarkBMTBaseline_256b(t *testing.B) { benchmarkBMTBaseline(4096/16, t) }
|
||||
func BenchmarkBMTBaseline_128b(t *testing.B) { benchmarkBMTBaseline(4096/32, t) }
|
||||
|
||||
func BenchmarkRefHasher_4k(t *testing.B) { benchmarkRefHasher(4096, t) }
|
||||
func BenchmarkRefHasher_2k(t *testing.B) { benchmarkRefHasher(4096/2, t) }
|
||||
func BenchmarkRefHasher_1k(t *testing.B) { benchmarkRefHasher(4096/4, t) }
|
||||
func BenchmarkRefHasher_512b(t *testing.B) { benchmarkRefHasher(4096/8, t) }
|
||||
func BenchmarkRefHasher_256b(t *testing.B) { benchmarkRefHasher(4096/16, t) }
|
||||
func BenchmarkRefHasher_128b(t *testing.B) { benchmarkRefHasher(4096/32, t) }
|
||||
|
||||
func BenchmarkBMTHasher_4k(t *testing.B) { benchmarkBMTHasher(4096, t) }
|
||||
func BenchmarkBMTHasher_2k(t *testing.B) { benchmarkBMTHasher(4096/2, t) }
|
||||
func BenchmarkBMTHasher_1k(t *testing.B) { benchmarkBMTHasher(4096/4, t) }
|
||||
func BenchmarkBMTHasher_512b(t *testing.B) { benchmarkBMTHasher(4096/8, t) }
|
||||
func BenchmarkBMTHasher_256b(t *testing.B) { benchmarkBMTHasher(4096/16, t) }
|
||||
func BenchmarkBMTHasher_128b(t *testing.B) { benchmarkBMTHasher(4096/32, t) }
|
||||
|
||||
func BenchmarkBMTHasherNoPool_4k(t *testing.B) { benchmarkBMTHasherPool(1, 4096, t) }
|
||||
func BenchmarkBMTHasherNoPool_2k(t *testing.B) { benchmarkBMTHasherPool(1, 4096/2, t) }
|
||||
func BenchmarkBMTHasherNoPool_1k(t *testing.B) { benchmarkBMTHasherPool(1, 4096/4, t) }
|
||||
func BenchmarkBMTHasherNoPool_512b(t *testing.B) { benchmarkBMTHasherPool(1, 4096/8, t) }
|
||||
func BenchmarkBMTHasherNoPool_256b(t *testing.B) { benchmarkBMTHasherPool(1, 4096/16, t) }
|
||||
func BenchmarkBMTHasherNoPool_128b(t *testing.B) { benchmarkBMTHasherPool(1, 4096/32, t) }
|
||||
|
||||
func BenchmarkBMTHasherPool_4k(t *testing.B) { benchmarkBMTHasherPool(PoolSize, 4096, t) }
|
||||
func BenchmarkBMTHasherPool_2k(t *testing.B) { benchmarkBMTHasherPool(PoolSize, 4096/2, t) }
|
||||
func BenchmarkBMTHasherPool_1k(t *testing.B) { benchmarkBMTHasherPool(PoolSize, 4096/4, t) }
|
||||
func BenchmarkBMTHasherPool_512b(t *testing.B) { benchmarkBMTHasherPool(PoolSize, 4096/8, t) }
|
||||
func BenchmarkBMTHasherPool_256b(t *testing.B) { benchmarkBMTHasherPool(PoolSize, 4096/16, t) }
|
||||
func BenchmarkBMTHasherPool_128b(t *testing.B) { benchmarkBMTHasherPool(PoolSize, 4096/32, t) }
|
||||
|
||||
// benchmarks simple sha3 hash on chunks
|
||||
func benchmarkSHA3(n int, t *testing.B) {
|
||||
data := newData(n)
|
||||
hasher := sha3.NewKeccak256
|
||||
h := hasher()
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
for i := 0; i < t.N; i++ {
|
||||
h.Reset()
|
||||
h.Write(data)
|
||||
h.Sum(nil)
|
||||
}
|
||||
}
|
||||
|
||||
// benchmarks the minimum hashing time for a balanced (for simplicity) BMT
|
||||
// by doing count/segmentsize parallel hashings of 2*segmentsize bytes
|
||||
// doing it on n PoolSize each reusing the base hasher
|
||||
// the premise is that this is the minimum computation needed for a BMT
|
||||
// therefore this serves as a theoretical optimum for concurrent implementations
|
||||
func benchmarkBMTBaseline(n int, t *testing.B) {
|
||||
hasher := sha3.NewKeccak256
|
||||
hashSize := hasher().Size()
|
||||
data := newData(hashSize)
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
for i := 0; i < t.N; i++ {
|
||||
count := int32((n-1)/hashSize + 1)
|
||||
wg := sync.WaitGroup{}
|
||||
wg.Add(PoolSize)
|
||||
var i int32
|
||||
for j := 0; j < PoolSize; j++ {
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
h := hasher()
|
||||
for atomic.AddInt32(&i, 1) < count {
|
||||
h.Reset()
|
||||
h.Write(data)
|
||||
h.Sum(nil)
|
||||
}
|
||||
}()
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
}
|
||||
|
||||
// benchmarks BMT Hasher
|
||||
func benchmarkBMTHasher(n int, t *testing.B) {
|
||||
data := newData(n)
|
||||
hasher := sha3.NewKeccak256
|
||||
pool := NewTreePool(hasher, SegmentCount, PoolSize)
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
for i := 0; i < t.N; i++ {
|
||||
bmt := New(pool)
|
||||
Hash(bmt, nil, data)
|
||||
}
|
||||
}
|
||||
|
||||
// benchmarks 100 concurrent bmt hashes with pool capacity
|
||||
func benchmarkBMTHasherPool(poolsize, n int, t *testing.B) {
|
||||
data := newData(n)
|
||||
hasher := sha3.NewKeccak256
|
||||
pool := NewTreePool(hasher, SegmentCount, poolsize)
|
||||
cycles := 100
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
wg := sync.WaitGroup{}
|
||||
for i := 0; i < t.N; i++ {
|
||||
wg.Add(cycles)
|
||||
for j := 0; j < cycles; j++ {
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
bmt := New(pool)
|
||||
Hash(bmt, nil, data)
|
||||
}()
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
}
|
||||
|
||||
// benchmarks the reference hasher
|
||||
func benchmarkRefHasher(n int, t *testing.B) {
|
||||
data := newData(n)
|
||||
hasher := sha3.NewKeccak256
|
||||
rbmt := NewRefHasher(hasher, 128)
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
for i := 0; i < t.N; i++ {
|
||||
rbmt.Hash(data)
|
||||
}
|
||||
}
|
||||
|
||||
func newData(bufferSize int) []byte {
|
||||
data := make([]byte, bufferSize)
|
||||
_, err := io.ReadFull(crand.Reader, data)
|
||||
if err != nil {
|
||||
panic(err.Error())
|
||||
}
|
||||
return data
|
||||
}
|
Reference in New Issue
Block a user