trie: extend range proof (#21250)
* trie: support non-existent right proof * trie: improve test * trie: minor linter fix Co-authored-by: Péter Szilágyi <peterke@gmail.com>
This commit is contained in:
223
trie/proof.go
223
trie/proof.go
@ -129,10 +129,11 @@ func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader)
|
||||
}
|
||||
}
|
||||
|
||||
// proofToPath converts a merkle proof to trie node path.
|
||||
// The main purpose of this function is recovering a node
|
||||
// path from the merkle proof stream. All necessary nodes
|
||||
// will be resolved and leave the remaining as hashnode.
|
||||
// proofToPath converts a merkle proof to trie node path. The main purpose of
|
||||
// this function is recovering a node path from the merkle proof stream. All
|
||||
// necessary nodes will be resolved and leave the remaining as hashnode.
|
||||
//
|
||||
// The given edge proof is allowed to be an existent or non-existent proof.
|
||||
func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
|
||||
// resolveNode retrieves and resolves trie node from merkle proof stream
|
||||
resolveNode := func(hash common.Hash) (node, error) {
|
||||
@ -205,54 +206,61 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
|
||||
}
|
||||
|
||||
// unsetInternal removes all internal node references(hashnode, embedded node).
|
||||
// It should be called after a trie is constructed with two edge proofs. Also
|
||||
// the given boundary keys must be the one used to construct the edge proofs.
|
||||
// It should be called after a trie is constructed with two edge paths. Also
|
||||
// the given boundary keys must be the one used to construct the edge paths.
|
||||
//
|
||||
// It's the key step for range proof. All visited nodes should be marked dirty
|
||||
// since the node content might be modified. Besides it can happen that some
|
||||
// fullnodes only have one child which is disallowed. But if the proof is valid,
|
||||
// the missing children will be filled, otherwise it will be thrown anyway.
|
||||
//
|
||||
// Note we have the assumption here the given boundary keys are different
|
||||
// and right is larger than left.
|
||||
func unsetInternal(n node, left []byte, right []byte) error {
|
||||
left, right = keybytesToHex(left), keybytesToHex(right)
|
||||
|
||||
// todo(rjl493456442) different length edge keys should be supported
|
||||
if len(left) != len(right) {
|
||||
return errors.New("inconsistent edge path")
|
||||
}
|
||||
// Step down to the fork point. There are two scenarios can happen:
|
||||
// - the fork point is a shortnode: the left proof MUST point to a
|
||||
// non-existent key and the key doesn't match with the shortnode
|
||||
// - the fork point is a fullnode: the left proof can point to an
|
||||
// existent key or not.
|
||||
// - the fork point is a shortnode: either the key of left proof or
|
||||
// right proof doesn't match with shortnode's key.
|
||||
// - the fork point is a fullnode: both two edge proofs are allowed
|
||||
// to point to a non-existent key.
|
||||
var (
|
||||
pos = 0
|
||||
parent node
|
||||
|
||||
// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
|
||||
shortForkLeft, shortForkRight int
|
||||
)
|
||||
findFork:
|
||||
for {
|
||||
switch rn := (n).(type) {
|
||||
case *shortNode:
|
||||
// The right proof must point to an existent key.
|
||||
if len(right)-pos < len(rn.Key) || !bytes.Equal(rn.Key, right[pos:pos+len(rn.Key)]) {
|
||||
return errors.New("invalid edge path")
|
||||
}
|
||||
rn.flags = nodeFlag{dirty: true}
|
||||
// Special case, the non-existent proof points to the same path
|
||||
// as the existent proof, but the path of existent proof is longer.
|
||||
// In this case, the fork point is this shortnode.
|
||||
if len(left)-pos < len(rn.Key) || !bytes.Equal(rn.Key, left[pos:pos+len(rn.Key)]) {
|
||||
|
||||
// If either the key of left proof or right proof doesn't match with
|
||||
// shortnode, stop here and the forkpoint is the shortnode.
|
||||
if len(left)-pos < len(rn.Key) {
|
||||
shortForkLeft = bytes.Compare(left[pos:], rn.Key)
|
||||
} else {
|
||||
shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
|
||||
}
|
||||
if len(right)-pos < len(rn.Key) {
|
||||
shortForkRight = bytes.Compare(right[pos:], rn.Key)
|
||||
} else {
|
||||
shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
|
||||
}
|
||||
if shortForkLeft != 0 || shortForkRight != 0 {
|
||||
break findFork
|
||||
}
|
||||
parent = n
|
||||
n, pos = rn.Val, pos+len(rn.Key)
|
||||
case *fullNode:
|
||||
leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
|
||||
// The right proof must point to an existent key.
|
||||
if rightnode == nil {
|
||||
return errors.New("invalid edge path")
|
||||
}
|
||||
rn.flags = nodeFlag{dirty: true}
|
||||
if leftnode != rightnode {
|
||||
|
||||
// If either the node pointed by left proof or right proof is nil,
|
||||
// stop here and the forkpoint is the fullnode.
|
||||
leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
|
||||
if leftnode == nil || rightnode == nil || leftnode != rightnode {
|
||||
break findFork
|
||||
}
|
||||
parent = n
|
||||
@ -263,12 +271,42 @@ findFork:
|
||||
}
|
||||
switch rn := n.(type) {
|
||||
case *shortNode:
|
||||
if _, ok := rn.Val.(valueNode); ok {
|
||||
parent.(*fullNode).Children[right[pos-1]] = nil
|
||||
// There can have these five scenarios:
|
||||
// - both proofs are less than the trie path => no valid range
|
||||
// - both proofs are greater than the trie path => no valid range
|
||||
// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
|
||||
// - left proof points to the shortnode, but right proof is greater
|
||||
// - right proof points to the shortnode, but left proof is less
|
||||
if shortForkLeft == -1 && shortForkRight == -1 {
|
||||
return errors.New("empty range")
|
||||
}
|
||||
if shortForkLeft == 1 && shortForkRight == 1 {
|
||||
return errors.New("empty range")
|
||||
}
|
||||
if shortForkLeft != 0 && shortForkRight != 0 {
|
||||
parent.(*fullNode).Children[left[pos-1]] = nil
|
||||
return nil
|
||||
}
|
||||
return unset(rn, rn.Val, right[pos:], len(rn.Key), true)
|
||||
// Only one proof points to non-existent key.
|
||||
if shortForkRight != 0 {
|
||||
// Unset left proof's path
|
||||
if _, ok := rn.Val.(valueNode); ok {
|
||||
parent.(*fullNode).Children[left[pos-1]] = nil
|
||||
return nil
|
||||
}
|
||||
return unset(rn, rn.Val, left[pos:], len(rn.Key), false)
|
||||
}
|
||||
if shortForkLeft != 0 {
|
||||
// Unset right proof's path.
|
||||
if _, ok := rn.Val.(valueNode); ok {
|
||||
parent.(*fullNode).Children[right[pos-1]] = nil
|
||||
return nil
|
||||
}
|
||||
return unset(rn, rn.Val, right[pos:], len(rn.Key), true)
|
||||
}
|
||||
return nil
|
||||
case *fullNode:
|
||||
// unset all internal nodes in the forkpoint
|
||||
for i := left[pos] + 1; i < right[pos]; i++ {
|
||||
rn.Children[i] = nil
|
||||
}
|
||||
@ -285,19 +323,17 @@ findFork:
|
||||
}
|
||||
|
||||
// unset removes all internal node references either the left most or right most.
|
||||
// If we try to unset all right most references, it can meet these scenarios:
|
||||
// It can meet these scenarios:
|
||||
//
|
||||
// - The given path is existent in the trie, unset the associated shortnode
|
||||
// - The given path is existent in the trie, unset the associated nodes with the
|
||||
// specific direction
|
||||
// - The given path is non-existent in the trie
|
||||
// - the fork point is a fullnode, the corresponding child pointed by path
|
||||
// is nil, return
|
||||
// - the fork point is a shortnode, the key of shortnode is less than path,
|
||||
// - the fork point is a shortnode, the shortnode is included in the range,
|
||||
// keep the entire branch and return.
|
||||
// - the fork point is a shortnode, the key of shortnode is greater than path,
|
||||
// - the fork point is a shortnode, the shortnode is excluded in the range,
|
||||
// unset the entire branch.
|
||||
//
|
||||
// If we try to unset all left most references, then the given path should
|
||||
// be existent.
|
||||
func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
|
||||
switch cld := child.(type) {
|
||||
case *fullNode:
|
||||
@ -317,18 +353,29 @@ func unset(parent node, child node, key []byte, pos int, removeLeft bool) error
|
||||
if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
|
||||
// Find the fork point, it's an non-existent branch.
|
||||
if removeLeft {
|
||||
return errors.New("invalid right edge proof")
|
||||
}
|
||||
if bytes.Compare(cld.Key, key[pos:]) > 0 {
|
||||
// The key of fork shortnode is greater than the
|
||||
// path(it belongs to the range), unset the entrie
|
||||
// branch. The parent must be a fullnode.
|
||||
fn := parent.(*fullNode)
|
||||
fn.Children[key[pos-1]] = nil
|
||||
if bytes.Compare(cld.Key, key[pos:]) < 0 {
|
||||
// The key of fork shortnode is less than the path
|
||||
// (it belongs to the range), unset the entrie
|
||||
// branch. The parent must be a fullnode.
|
||||
fn := parent.(*fullNode)
|
||||
fn.Children[key[pos-1]] = nil
|
||||
} else {
|
||||
// The key of fork shortnode is greater than the
|
||||
// path(it doesn't belong to the range), keep
|
||||
// it with the cached hash available.
|
||||
}
|
||||
} else {
|
||||
// The key of fork shortnode is less than the
|
||||
// path(it doesn't belong to the range), keep
|
||||
// it with the cached hash available.
|
||||
if bytes.Compare(cld.Key, key[pos:]) > 0 {
|
||||
// The key of fork shortnode is greater than the
|
||||
// path(it belongs to the range), unset the entrie
|
||||
// branch. The parent must be a fullnode.
|
||||
fn := parent.(*fullNode)
|
||||
fn.Children[key[pos-1]] = nil
|
||||
} else {
|
||||
// The key of fork shortnode is less than the
|
||||
// path(it doesn't belong to the range), keep
|
||||
// it with the cached hash available.
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@ -340,11 +387,8 @@ func unset(parent node, child node, key []byte, pos int, removeLeft bool) error
|
||||
cld.flags = nodeFlag{dirty: true}
|
||||
return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
|
||||
case nil:
|
||||
// If the node is nil, it's a child of the fork point
|
||||
// fullnode(it's an non-existent branch).
|
||||
if removeLeft {
|
||||
return errors.New("invalid right edge proof")
|
||||
}
|
||||
// If the node is nil, then it's a child of the fork point
|
||||
// fullnode(it's a non-existent branch).
|
||||
return nil
|
||||
default:
|
||||
panic("it shouldn't happen") // hashNode, valueNode
|
||||
@ -380,34 +424,37 @@ func hasRightElement(node node, key []byte) bool {
|
||||
return false
|
||||
}
|
||||
|
||||
// VerifyRangeProof checks whether the given leaf nodes and edge proofs
|
||||
// can prove the given trie leaves range is matched with given root hash
|
||||
// and the range is consecutive(no gap inside) and monotonic increasing.
|
||||
// VerifyRangeProof checks whether the given leaf nodes and edge proof
|
||||
// can prove the given trie leaves range is matched with the specific root.
|
||||
// Besides, the range should be consecutive(no gap inside) and monotonic
|
||||
// increasing.
|
||||
//
|
||||
// Note the given first edge proof can be non-existing proof. For example
|
||||
// the first proof is for an non-existent values 0x03. The given batch
|
||||
// leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove. But the
|
||||
// last edge proof should always be an existent proof.
|
||||
// Note the given proof actually contains two edge proofs. Both of them can
|
||||
// be non-existent proofs. For example the first proof is for a non-existent
|
||||
// key 0x03, the last proof is for a non-existent key 0x10. The given batch
|
||||
// leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
|
||||
// batch is valid.
|
||||
//
|
||||
// The firstKey is paired with firstProof, not necessarily the same as keys[0]
|
||||
// (unless firstProof is an existent proof).
|
||||
// (unless firstProof is an existent proof). Similarly, lastKey and lastProof
|
||||
// are paired.
|
||||
//
|
||||
// Expect the normal case, this function can also be used to verify the following
|
||||
// range proofs:
|
||||
//
|
||||
// - All elements proof. In this case the left and right proof can be nil, but the
|
||||
// range should be all the leaves in the trie.
|
||||
// - All elements proof. In this case the proof can be nil, but the range should
|
||||
// be all the leaves in the trie.
|
||||
//
|
||||
// - One element proof. In this case no matter the left edge proof is a non-existent
|
||||
// - One element proof. In this case no matter the edge proof is a non-existent
|
||||
// proof or not, we can always verify the correctness of the proof.
|
||||
//
|
||||
// - Zero element proof(left edge proof should be a non-existent proof). In this
|
||||
// case if there are still some other leaves available on the right side, then
|
||||
// - Zero element proof. In this case a single non-existent proof is enough to prove.
|
||||
// Besides, if there are still some other leaves available on the right side, then
|
||||
// an error will be returned.
|
||||
//
|
||||
// Except returning the error to indicate the proof is valid or not, the function will
|
||||
// also return a flag to indicate whether there exists more accounts/slots in the trie.
|
||||
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) (error, bool) {
|
||||
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (error, bool) {
|
||||
if len(keys) != len(values) {
|
||||
return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)), false
|
||||
}
|
||||
@ -419,7 +466,7 @@ func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, valu
|
||||
}
|
||||
// Special case, there is no edge proof at all. The given range is expected
|
||||
// to be the whole leaf-set in the trie.
|
||||
if firstProof == nil && lastProof == nil {
|
||||
if proof == nil {
|
||||
emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New()))
|
||||
if err != nil {
|
||||
return err, false
|
||||
@ -432,10 +479,10 @@ func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, valu
|
||||
}
|
||||
return nil, false // no more element.
|
||||
}
|
||||
// Special case, there is a provided left edge proof and zero key/value
|
||||
// Special case, there is a provided edge proof but zero key/value
|
||||
// pairs, ensure there are no more accounts / slots in the trie.
|
||||
if len(keys) == 0 {
|
||||
root, val, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
|
||||
root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
|
||||
if err != nil {
|
||||
return err, false
|
||||
}
|
||||
@ -444,35 +491,47 @@ func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, valu
|
||||
}
|
||||
return nil, false
|
||||
}
|
||||
// Special case, there is only one element and left edge
|
||||
// proof is an existent one.
|
||||
if len(keys) == 1 && bytes.Equal(keys[0], firstKey) {
|
||||
root, val, err := proofToPath(rootHash, nil, firstKey, firstProof, false)
|
||||
// Special case, there is only one element and two edge keys are same.
|
||||
// In this case, we can't construct two edge paths. So handle it here.
|
||||
if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
|
||||
root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
|
||||
if err != nil {
|
||||
return err, false
|
||||
}
|
||||
if !bytes.Equal(val, values[0]) {
|
||||
return fmt.Errorf("correct proof but invalid data"), false
|
||||
if !bytes.Equal(firstKey, keys[0]) {
|
||||
return errors.New("correct proof but invalid key"), false
|
||||
}
|
||||
return nil, hasRightElement(root, keys[0])
|
||||
if !bytes.Equal(val, values[0]) {
|
||||
return errors.New("correct proof but invalid data"), false
|
||||
}
|
||||
return nil, hasRightElement(root, firstKey)
|
||||
}
|
||||
// Ok, in all other cases, we require two edge paths available.
|
||||
// First check the validity of edge keys.
|
||||
if bytes.Compare(firstKey, lastKey) >= 0 {
|
||||
return errors.New("invalid edge keys"), false
|
||||
}
|
||||
// todo(rjl493456442) different length edge keys should be supported
|
||||
if len(firstKey) != len(lastKey) {
|
||||
return errors.New("inconsistent edge keys"), false
|
||||
}
|
||||
// Convert the edge proofs to edge trie paths. Then we can
|
||||
// have the same tree architecture with the original one.
|
||||
// For the first edge proof, non-existent proof is allowed.
|
||||
root, _, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
|
||||
root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
|
||||
if err != nil {
|
||||
return err, false
|
||||
}
|
||||
// Pass the root node here, the second path will be merged
|
||||
// with the first one. For the last edge proof, non-existent
|
||||
// proof is not allowed.
|
||||
root, _, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false)
|
||||
// proof is also allowed.
|
||||
root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
|
||||
if err != nil {
|
||||
return err, false
|
||||
}
|
||||
// Remove all internal references. All the removed parts should
|
||||
// be re-filled(or re-constructed) by the given leaves range.
|
||||
if err := unsetInternal(root, firstKey, keys[len(keys)-1]); err != nil {
|
||||
if err := unsetInternal(root, firstKey, lastKey); err != nil {
|
||||
return err, false
|
||||
}
|
||||
// Rebuild the trie with the leave stream, the shape of trie
|
||||
|
Reference in New Issue
Block a user