consensus/ethash: implement faster difficulty calculators (#21976)
This PR adds re-written difficulty calculators, which are based on uint256. It also adds a fuzzer + oss-fuzz integration for the new fuzzer. It does differential fuzzing between the new and old calculators. Note: this PR does not actually enable the new calculators.
This commit is contained in:
committed by
GitHub
parent
88c696240d
commit
efe6dd2904
145
tests/fuzzers/difficulty/difficulty-fuzz.go
Normal file
145
tests/fuzzers/difficulty/difficulty-fuzz.go
Normal file
@ -0,0 +1,145 @@
|
||||
// Copyright 2020 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package difficulty
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"io"
|
||||
"math/big"
|
||||
|
||||
"github.com/ethereum/go-ethereum/consensus/ethash"
|
||||
"github.com/ethereum/go-ethereum/core/types"
|
||||
)
|
||||
|
||||
type fuzzer struct {
|
||||
input io.Reader
|
||||
exhausted bool
|
||||
debugging bool
|
||||
}
|
||||
|
||||
func (f *fuzzer) read(size int) []byte {
|
||||
out := make([]byte, size)
|
||||
if _, err := f.input.Read(out); err != nil {
|
||||
f.exhausted = true
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func (f *fuzzer) readSlice(min, max int) []byte {
|
||||
var a uint16
|
||||
binary.Read(f.input, binary.LittleEndian, &a)
|
||||
size := min + int(a)%(max-min)
|
||||
out := make([]byte, size)
|
||||
if _, err := f.input.Read(out); err != nil {
|
||||
f.exhausted = true
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func (f *fuzzer) readUint64(min, max uint64) uint64 {
|
||||
if min == max {
|
||||
return min
|
||||
}
|
||||
var a uint64
|
||||
if err := binary.Read(f.input, binary.LittleEndian, &a); err != nil {
|
||||
f.exhausted = true
|
||||
}
|
||||
a = min + a%(max-min)
|
||||
return a
|
||||
}
|
||||
func (f *fuzzer) readBool() bool {
|
||||
return f.read(1)[0]&0x1 == 0
|
||||
}
|
||||
|
||||
// The function must return
|
||||
// 1 if the fuzzer should increase priority of the
|
||||
// given input during subsequent fuzzing (for example, the input is lexically
|
||||
// correct and was parsed successfully);
|
||||
// -1 if the input must not be added to corpus even if gives new coverage; and
|
||||
// 0 otherwise
|
||||
// other values are reserved for future use.
|
||||
func Fuzz(data []byte) int {
|
||||
f := fuzzer{
|
||||
input: bytes.NewReader(data),
|
||||
exhausted: false,
|
||||
}
|
||||
return f.fuzz()
|
||||
}
|
||||
|
||||
var minDifficulty = big.NewInt(0x2000)
|
||||
|
||||
type calculator func(time uint64, parent *types.Header) *big.Int
|
||||
|
||||
func (f *fuzzer) fuzz() int {
|
||||
// A parent header
|
||||
header := &types.Header{}
|
||||
if f.readBool() {
|
||||
header.UncleHash = types.EmptyUncleHash
|
||||
}
|
||||
// Difficulty can range between 0x2000 (2 bytes) and up to 32 bytes
|
||||
{
|
||||
diff := new(big.Int).SetBytes(f.readSlice(2, 32))
|
||||
if diff.Cmp(minDifficulty) < 0 {
|
||||
diff.Set(minDifficulty)
|
||||
}
|
||||
header.Difficulty = diff
|
||||
}
|
||||
// Number can range between 0 and up to 32 bytes (but not so that the child exceeds it)
|
||||
{
|
||||
// However, if we use astronomic numbers, then the bomb exp karatsuba calculation
|
||||
// in the legacy methods)
|
||||
// times out, so we limit it to fit within reasonable bounds
|
||||
number := new(big.Int).SetBytes(f.readSlice(0, 4)) // 4 bytes: 32 bits: block num max 4 billion
|
||||
header.Number = number
|
||||
}
|
||||
// Both parent and child time must fit within uint64
|
||||
var time uint64
|
||||
{
|
||||
childTime := f.readUint64(1, 0xFFFFFFFFFFFFFFFF)
|
||||
//fmt.Printf("childTime: %x\n",childTime)
|
||||
delta := f.readUint64(1, childTime)
|
||||
//fmt.Printf("delta: %v\n", delta)
|
||||
pTime := childTime - delta
|
||||
header.Time = pTime
|
||||
time = childTime
|
||||
}
|
||||
// Bomb delay will never exceed uint64
|
||||
bombDelay := new(big.Int).SetUint64(f.readUint64(1, 0xFFFFFFFFFFFFFFFe))
|
||||
|
||||
if f.exhausted {
|
||||
return 0
|
||||
}
|
||||
|
||||
for i, pair := range []struct {
|
||||
bigFn calculator
|
||||
u256Fn calculator
|
||||
}{
|
||||
{ethash.FrontierDifficultyCalulator, ethash.CalcDifficultyFrontierU256},
|
||||
{ethash.HomesteadDifficultyCalulator, ethash.CalcDifficultyHomesteadU256},
|
||||
{ethash.DynamicDifficultyCalculator(bombDelay), ethash.MakeDifficultyCalculatorU256(bombDelay)},
|
||||
} {
|
||||
want := pair.bigFn(time, header)
|
||||
have := pair.u256Fn(time, header)
|
||||
if want.Cmp(have) != 0 {
|
||||
panic(fmt.Sprintf("pair %d: want %x have %x\nparent.Number: %x\np.Time: %x\nc.Time: %x\nBombdelay: %v\n", i, want, have,
|
||||
header.Number, header.Time, time, bombDelay))
|
||||
}
|
||||
}
|
||||
return 1
|
||||
}
|
Reference in New Issue
Block a user