core/secp256k1: update libsecp256k1 Go wrapper and tests
This commit is contained in:
@ -18,169 +18,130 @@ package secp256k1
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"log"
|
||||
"encoding/hex"
|
||||
"testing"
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto/randentropy"
|
||||
)
|
||||
|
||||
const TESTS = 10000 // how many tests
|
||||
const SigSize = 65 //64+1
|
||||
const TestCount = 10000
|
||||
|
||||
func Test_Secp256_00(t *testing.T) {
|
||||
|
||||
var nonce []byte = randentropy.GetEntropyCSPRNG(32) //going to get bitcoins stolen!
|
||||
|
||||
if len(nonce) != 32 {
|
||||
t.Fatal()
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//tests for Malleability
|
||||
//highest bit of S must be 0; 32nd byte
|
||||
func CompactSigTest(sig []byte) {
|
||||
|
||||
var b int = int(sig[32])
|
||||
if b < 0 {
|
||||
log.Panic()
|
||||
}
|
||||
if ((b >> 7) == 1) != ((b & 0x80) == 0x80) {
|
||||
log.Panic("b= %v b2= %v \n", b, b>>7)
|
||||
}
|
||||
if (b & 0x80) == 0x80 {
|
||||
log.Panic("b= %v b2= %v \n", b, b&0x80)
|
||||
}
|
||||
}
|
||||
|
||||
//test pubkey/private generation
|
||||
func Test_Secp256_01(t *testing.T) {
|
||||
pubkey, seckey := GenerateKeyPair()
|
||||
func TestPrivkeyGenerate(t *testing.T) {
|
||||
_, seckey := GenerateKeyPair()
|
||||
if err := VerifySeckeyValidity(seckey); err != nil {
|
||||
t.Fatal()
|
||||
}
|
||||
if err := VerifyPubkeyValidity(pubkey); err != nil {
|
||||
t.Fatal()
|
||||
t.Errorf("seckey not valid: %s", err)
|
||||
}
|
||||
}
|
||||
|
||||
//test size of messages
|
||||
func Test_Secp256_02s(t *testing.T) {
|
||||
func TestSignatureValidity(t *testing.T) {
|
||||
pubkey, seckey := GenerateKeyPair()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
sig, _ := Sign(msg, seckey)
|
||||
CompactSigTest(sig)
|
||||
if sig == nil {
|
||||
t.Fatal("Signature nil")
|
||||
sig, err := Sign(msg, seckey)
|
||||
if err != nil {
|
||||
t.Errorf("signature error: %s", err)
|
||||
}
|
||||
compactSigCheck(t, sig)
|
||||
if len(pubkey) != 65 {
|
||||
t.Fail()
|
||||
t.Errorf("pubkey length mismatch: want: 65 have: %d", len(pubkey))
|
||||
}
|
||||
if len(seckey) != 32 {
|
||||
t.Fail()
|
||||
t.Errorf("seckey length mismatch: want: 32 have: %d", len(seckey))
|
||||
}
|
||||
if len(sig) != 64+1 {
|
||||
t.Fail()
|
||||
if len(sig) != 65 {
|
||||
t.Errorf("sig length mismatch: want: 65 have: %d", len(sig))
|
||||
}
|
||||
recid := int(sig[64])
|
||||
if recid > 4 || recid < 0 {
|
||||
t.Errorf("sig recid mismatch: want: within 0 to 4 have: %d", int(sig[64]))
|
||||
}
|
||||
if int(sig[64]) > 4 {
|
||||
t.Fail()
|
||||
} //should be 0 to 4
|
||||
}
|
||||
|
||||
//test signing message
|
||||
func Test_Secp256_02(t *testing.T) {
|
||||
func TestSignAndRecover(t *testing.T) {
|
||||
pubkey1, seckey := GenerateKeyPair()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
sig, _ := Sign(msg, seckey)
|
||||
if sig == nil {
|
||||
t.Fatal("Signature nil")
|
||||
}
|
||||
|
||||
pubkey2, _ := RecoverPubkey(msg, sig)
|
||||
if pubkey2 == nil {
|
||||
t.Fatal("Recovered pubkey invalid")
|
||||
}
|
||||
if bytes.Equal(pubkey1, pubkey2) == false {
|
||||
t.Fatal("Recovered pubkey does not match")
|
||||
}
|
||||
|
||||
err := VerifySignature(msg, sig, pubkey1)
|
||||
sig, err := Sign(msg, seckey)
|
||||
if err != nil {
|
||||
t.Fatal("Signature invalid")
|
||||
t.Errorf("signature error: %s", err)
|
||||
}
|
||||
pubkey2, err := RecoverPubkey(msg, sig)
|
||||
if err != nil {
|
||||
t.Errorf("recover error: %s", err)
|
||||
}
|
||||
if !bytes.Equal(pubkey1, pubkey2) {
|
||||
t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
|
||||
}
|
||||
err = VerifySignature(msg, sig, pubkey1)
|
||||
if err != nil {
|
||||
t.Errorf("signature verification error: %s", err)
|
||||
}
|
||||
}
|
||||
|
||||
//test pubkey recovery
|
||||
func Test_Secp256_02a(t *testing.T) {
|
||||
pubkey1, seckey1 := GenerateKeyPair()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
sig, _ := Sign(msg, seckey1)
|
||||
|
||||
if sig == nil {
|
||||
t.Fatal("Signature nil")
|
||||
}
|
||||
err := VerifySignature(msg, sig, pubkey1)
|
||||
if err != nil {
|
||||
t.Fatal("Signature invalid")
|
||||
}
|
||||
|
||||
pubkey2, _ := RecoverPubkey(msg, sig)
|
||||
if len(pubkey1) != len(pubkey2) {
|
||||
t.Fatal()
|
||||
}
|
||||
for i, _ := range pubkey1 {
|
||||
if pubkey1[i] != pubkey2[i] {
|
||||
t.Fatal()
|
||||
}
|
||||
}
|
||||
if bytes.Equal(pubkey1, pubkey2) == false {
|
||||
t.Fatal()
|
||||
func TestRandomMessagesWithSameKey(t *testing.T) {
|
||||
pubkey, seckey := GenerateKeyPair()
|
||||
keys := func() ([]byte, []byte) {
|
||||
// Sign function zeroes the privkey so we need a new one in each call
|
||||
newkey := make([]byte, len(seckey))
|
||||
copy(newkey, seckey)
|
||||
return pubkey, newkey
|
||||
}
|
||||
signAndRecoverWithRandomMessages(t, keys)
|
||||
}
|
||||
|
||||
//test random messages for the same pub/private key
|
||||
func Test_Secp256_03(t *testing.T) {
|
||||
_, seckey := GenerateKeyPair()
|
||||
for i := 0; i < TESTS; i++ {
|
||||
func TestRandomMessagesWithRandomKeys(t *testing.T) {
|
||||
keys := func() ([]byte, []byte) {
|
||||
pubkey, seckey := GenerateKeyPair()
|
||||
return pubkey, seckey
|
||||
}
|
||||
signAndRecoverWithRandomMessages(t, keys)
|
||||
}
|
||||
|
||||
func signAndRecoverWithRandomMessages(t *testing.T, keys func() ([]byte, []byte)) {
|
||||
for i := 0; i < TestCount; i++ {
|
||||
pubkey1, seckey := keys()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
sig, _ := Sign(msg, seckey)
|
||||
CompactSigTest(sig)
|
||||
sig, err := Sign(msg, seckey)
|
||||
if err != nil {
|
||||
t.Fatalf("signature error: %s", err)
|
||||
}
|
||||
if sig == nil {
|
||||
t.Fatal("signature is nil")
|
||||
}
|
||||
compactSigCheck(t, sig)
|
||||
|
||||
// TODO: why do we flip around the recovery id?
|
||||
sig[len(sig)-1] %= 4
|
||||
pubkey2, _ := RecoverPubkey(msg, sig)
|
||||
|
||||
pubkey2, err := RecoverPubkey(msg, sig)
|
||||
if err != nil {
|
||||
t.Fatalf("recover error: %s", err)
|
||||
}
|
||||
if pubkey2 == nil {
|
||||
t.Fail()
|
||||
t.Error("pubkey is nil")
|
||||
}
|
||||
if !bytes.Equal(pubkey1, pubkey2) {
|
||||
t.Fatalf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//test random messages for different pub/private keys
|
||||
func Test_Secp256_04(t *testing.T) {
|
||||
for i := 0; i < TESTS; i++ {
|
||||
pubkey1, seckey := GenerateKeyPair()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
sig, _ := Sign(msg, seckey)
|
||||
CompactSigTest(sig)
|
||||
func TestRecoveryOfRandomSignature(t *testing.T) {
|
||||
pubkey1, seckey := GenerateKeyPair()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
sig, err := Sign(msg, seckey)
|
||||
if err != nil {
|
||||
t.Errorf("signature error: %s", err)
|
||||
}
|
||||
|
||||
if sig[len(sig)-1] >= 4 {
|
||||
t.Fail()
|
||||
}
|
||||
for i := 0; i < TestCount; i++ {
|
||||
sig = randSig()
|
||||
pubkey2, _ := RecoverPubkey(msg, sig)
|
||||
if pubkey2 == nil {
|
||||
t.Fail()
|
||||
}
|
||||
if bytes.Equal(pubkey1, pubkey2) == false {
|
||||
t.Fail()
|
||||
// recovery can sometimes work, but if so should always give wrong pubkey
|
||||
if bytes.Equal(pubkey1, pubkey2) {
|
||||
t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//test random signatures against fixed messages; should fail
|
||||
|
||||
//crashes:
|
||||
// -SIPA look at this
|
||||
|
||||
func randSig() []byte {
|
||||
sig := randentropy.GetEntropyCSPRNG(65)
|
||||
sig[32] &= 0x70
|
||||
@ -188,67 +149,83 @@ func randSig() []byte {
|
||||
return sig
|
||||
}
|
||||
|
||||
func Test_Secp256_06a_alt0(t *testing.T) {
|
||||
func TestRandomMessagesAgainstValidSig(t *testing.T) {
|
||||
pubkey1, seckey := GenerateKeyPair()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
sig, _ := Sign(msg, seckey)
|
||||
|
||||
if sig == nil {
|
||||
t.Fail()
|
||||
}
|
||||
if len(sig) != 65 {
|
||||
t.Fail()
|
||||
}
|
||||
for i := 0; i < TESTS; i++ {
|
||||
sig = randSig()
|
||||
pubkey2, _ := RecoverPubkey(msg, sig)
|
||||
|
||||
if bytes.Equal(pubkey1, pubkey2) == true {
|
||||
t.Fail()
|
||||
}
|
||||
|
||||
if pubkey2 != nil && VerifySignature(msg, sig, pubkey2) != nil {
|
||||
t.Fail()
|
||||
}
|
||||
|
||||
if VerifySignature(msg, sig, pubkey1) == nil {
|
||||
t.Fail()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//test random messages against valid signature: should fail
|
||||
|
||||
func Test_Secp256_06b(t *testing.T) {
|
||||
pubkey1, seckey := GenerateKeyPair()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
sig, _ := Sign(msg, seckey)
|
||||
|
||||
fail_count := 0
|
||||
for i := 0; i < TESTS; i++ {
|
||||
for i := 0; i < TestCount; i++ {
|
||||
msg = randentropy.GetEntropyCSPRNG(32)
|
||||
pubkey2, _ := RecoverPubkey(msg, sig)
|
||||
if bytes.Equal(pubkey1, pubkey2) == true {
|
||||
t.Fail()
|
||||
// recovery can sometimes work, but if so should always give wrong pubkey
|
||||
if bytes.Equal(pubkey1, pubkey2) {
|
||||
t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2)
|
||||
}
|
||||
|
||||
if pubkey2 != nil && VerifySignature(msg, sig, pubkey2) != nil {
|
||||
t.Fail()
|
||||
}
|
||||
|
||||
if VerifySignature(msg, sig, pubkey1) == nil {
|
||||
t.Fail()
|
||||
}
|
||||
}
|
||||
if fail_count != 0 {
|
||||
fmt.Printf("ERROR: Accepted signature for %v of %v random messages\n", fail_count, TESTS)
|
||||
}
|
||||
}
|
||||
|
||||
func TestInvalidKey(t *testing.T) {
|
||||
p1 := make([]byte, 32)
|
||||
err := VerifySeckeyValidity(p1)
|
||||
func TestZeroPrivkey(t *testing.T) {
|
||||
zeroedBytes := make([]byte, 32)
|
||||
err := VerifySeckeyValidity(zeroedBytes)
|
||||
if err == nil {
|
||||
t.Errorf("pvk %x varify sec key should have returned error", p1)
|
||||
t.Errorf("zeroed bytes should have returned error")
|
||||
}
|
||||
}
|
||||
|
||||
// Useful when the underlying libsecp256k1 API changes to quickly
|
||||
// check only recover function without use of signature function
|
||||
func TestRecoverSanity(t *testing.T) {
|
||||
msg, _ := hex.DecodeString("ce0677bb30baa8cf067c88db9811f4333d131bf8bcf12fe7065d211dce971008")
|
||||
sig, _ := hex.DecodeString("90f27b8b488db00b00606796d2987f6a5f59ae62ea05effe84fef5b8b0e549984a691139ad57a3f0b906637673aa2f63d1f55cb1a69199d4009eea23ceaddc9301")
|
||||
pubkey1, _ := hex.DecodeString("04e32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a0a2b2667f7e725ceea70c673093bf67663e0312623c8e091b13cf2c0f11ef652")
|
||||
pubkey2, err := RecoverPubkey(msg, sig)
|
||||
if err != nil {
|
||||
t.Fatalf("recover error: %s", err)
|
||||
}
|
||||
if !bytes.Equal(pubkey1, pubkey2) {
|
||||
t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
|
||||
}
|
||||
}
|
||||
|
||||
// tests for malleability
|
||||
// highest bit of signature ECDSA s value must be 0, in the 33th byte
|
||||
func compactSigCheck(t *testing.T, sig []byte) {
|
||||
var b int = int(sig[32])
|
||||
if b < 0 {
|
||||
t.Errorf("highest bit is negative: %d", b)
|
||||
}
|
||||
if ((b >> 7) == 1) != ((b & 0x80) == 0x80) {
|
||||
t.Errorf("highest bit: %d bit >> 7: %d", b, b>>7)
|
||||
}
|
||||
if (b & 0x80) == 0x80 {
|
||||
t.Errorf("highest bit: %d bit & 0x80: %d", b, b&0x80)
|
||||
}
|
||||
}
|
||||
|
||||
// godep go test -v -run=XXX -bench=BenchmarkSignRandomInputEachRound
|
||||
// add -benchtime=10s to benchmark longer for more accurate average
|
||||
func BenchmarkSignRandomInputEachRound(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
b.StopTimer()
|
||||
_, seckey := GenerateKeyPair()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
b.StartTimer()
|
||||
if _, err := Sign(msg, seckey); err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//godep go test -v -run=XXX -bench=BenchmarkRecoverRandomInputEachRound
|
||||
func BenchmarkRecoverRandomInputEachRound(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
b.StopTimer()
|
||||
_, seckey := GenerateKeyPair()
|
||||
msg := randentropy.GetEntropyCSPRNG(32)
|
||||
sig, _ := Sign(msg, seckey)
|
||||
b.StartTimer()
|
||||
if _, err := RecoverPubkey(msg, sig); err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user