885 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			885 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2015 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package core
 | |
| 
 | |
| import (
 | |
| 	"crypto/ecdsa"
 | |
| 	"math/big"
 | |
| 	"math/rand"
 | |
| 	"testing"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/core/state"
 | |
| 	"github.com/ethereum/go-ethereum/core/types"
 | |
| 	"github.com/ethereum/go-ethereum/crypto"
 | |
| 	"github.com/ethereum/go-ethereum/ethdb"
 | |
| 	"github.com/ethereum/go-ethereum/event"
 | |
| )
 | |
| 
 | |
| func transaction(nonce uint64, gaslimit *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
 | |
| 	tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, big.NewInt(1), nil), types.HomesteadSigner{}, key)
 | |
| 	return tx
 | |
| }
 | |
| 
 | |
| func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, db)
 | |
| 
 | |
| 	key, _ := crypto.GenerateKey()
 | |
| 	newPool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
 | |
| 	newPool.resetState()
 | |
| 
 | |
| 	return newPool, key
 | |
| }
 | |
| 
 | |
| func deriveSender(tx *types.Transaction) (common.Address, error) {
 | |
| 	return types.Sender(types.HomesteadSigner{}, tx)
 | |
| }
 | |
| 
 | |
| // This test simulates a scenario where a new block is imported during a
 | |
| // state reset and tests whether the pending state is in sync with the
 | |
| // block head event that initiated the resetState().
 | |
| func TestStateChangeDuringPoolReset(t *testing.T) {
 | |
| 	var (
 | |
| 		db, _      = ethdb.NewMemDatabase()
 | |
| 		key, _     = crypto.GenerateKey()
 | |
| 		address    = crypto.PubkeyToAddress(key.PublicKey)
 | |
| 		mux        = new(event.TypeMux)
 | |
| 		statedb, _ = state.New(common.Hash{}, db)
 | |
| 		trigger    = false
 | |
| 	)
 | |
| 
 | |
| 	// setup pool with 2 transaction in it
 | |
| 	statedb.SetBalance(address, new(big.Int).Mul(common.Big1, common.Ether))
 | |
| 
 | |
| 	tx0 := transaction(0, big.NewInt(100000), key)
 | |
| 	tx1 := transaction(1, big.NewInt(100000), key)
 | |
| 
 | |
| 	// stateFunc is used multiple times to reset the pending state.
 | |
| 	// when simulate is true it will create a state that indicates
 | |
| 	// that tx0 and tx1 are included in the chain.
 | |
| 	stateFunc := func() (*state.StateDB, error) {
 | |
| 		// delay "state change" by one. The tx pool fetches the
 | |
| 		// state multiple times and by delaying it a bit we simulate
 | |
| 		// a state change between those fetches.
 | |
| 		stdb := statedb
 | |
| 		if trigger {
 | |
| 			statedb, _ = state.New(common.Hash{}, db)
 | |
| 			// simulate that the new head block included tx0 and tx1
 | |
| 			statedb.SetNonce(address, 2)
 | |
| 			statedb.SetBalance(address, new(big.Int).Mul(common.Big1, common.Ether))
 | |
| 			trigger = false
 | |
| 		}
 | |
| 		return stdb, nil
 | |
| 	}
 | |
| 
 | |
| 	gasLimitFunc := func() *big.Int { return big.NewInt(1000000000) }
 | |
| 
 | |
| 	txpool := NewTxPool(testChainConfig(), mux, stateFunc, gasLimitFunc)
 | |
| 	txpool.resetState()
 | |
| 
 | |
| 	nonce := txpool.State().GetNonce(address)
 | |
| 	if nonce != 0 {
 | |
| 		t.Fatalf("Invalid nonce, want 0, got %d", nonce)
 | |
| 	}
 | |
| 
 | |
| 	txpool.AddBatch(types.Transactions{tx0, tx1})
 | |
| 
 | |
| 	nonce = txpool.State().GetNonce(address)
 | |
| 	if nonce != 2 {
 | |
| 		t.Fatalf("Invalid nonce, want 2, got %d", nonce)
 | |
| 	}
 | |
| 
 | |
| 	// trigger state change in the background
 | |
| 	trigger = true
 | |
| 
 | |
| 	txpool.resetState()
 | |
| 
 | |
| 	pendingTx, err := txpool.Pending()
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Could not fetch pending transactions: %v", err)
 | |
| 	}
 | |
| 
 | |
| 	for addr, txs := range pendingTx {
 | |
| 		t.Logf("%0x: %d\n", addr, len(txs))
 | |
| 	}
 | |
| 
 | |
| 	nonce = txpool.State().GetNonce(address)
 | |
| 	if nonce != 2 {
 | |
| 		t.Fatalf("Invalid nonce, want 2, got %d", nonce)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestInvalidTransactions(t *testing.T) {
 | |
| 	pool, key := setupTxPool()
 | |
| 
 | |
| 	tx := transaction(0, big.NewInt(100), key)
 | |
| 	from, _ := deriveSender(tx)
 | |
| 	currentState, _ := pool.currentState()
 | |
| 	currentState.AddBalance(from, big.NewInt(1))
 | |
| 	if err := pool.Add(tx); err != ErrInsufficientFunds {
 | |
| 		t.Error("expected", ErrInsufficientFunds)
 | |
| 	}
 | |
| 
 | |
| 	balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(tx.Gas(), tx.GasPrice()))
 | |
| 	currentState.AddBalance(from, balance)
 | |
| 	if err := pool.Add(tx); err != ErrIntrinsicGas {
 | |
| 		t.Error("expected", ErrIntrinsicGas, "got", err)
 | |
| 	}
 | |
| 
 | |
| 	currentState.SetNonce(from, 1)
 | |
| 	currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
 | |
| 	tx = transaction(0, big.NewInt(100000), key)
 | |
| 	if err := pool.Add(tx); err != ErrNonce {
 | |
| 		t.Error("expected", ErrNonce)
 | |
| 	}
 | |
| 
 | |
| 	tx = transaction(1, big.NewInt(100000), key)
 | |
| 	pool.minGasPrice = big.NewInt(1000)
 | |
| 	if err := pool.Add(tx); err != ErrCheap {
 | |
| 		t.Error("expected", ErrCheap, "got", err)
 | |
| 	}
 | |
| 
 | |
| 	pool.SetLocal(tx)
 | |
| 	if err := pool.Add(tx); err != nil {
 | |
| 		t.Error("expected", nil, "got", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestTransactionQueue(t *testing.T) {
 | |
| 	pool, key := setupTxPool()
 | |
| 	tx := transaction(0, big.NewInt(100), key)
 | |
| 	from, _ := deriveSender(tx)
 | |
| 	currentState, _ := pool.currentState()
 | |
| 	currentState.AddBalance(from, big.NewInt(1000))
 | |
| 	pool.resetState()
 | |
| 	pool.enqueueTx(tx.Hash(), tx)
 | |
| 
 | |
| 	pool.promoteExecutables(currentState)
 | |
| 	if len(pool.pending) != 1 {
 | |
| 		t.Error("expected valid txs to be 1 is", len(pool.pending))
 | |
| 	}
 | |
| 
 | |
| 	tx = transaction(1, big.NewInt(100), key)
 | |
| 	from, _ = deriveSender(tx)
 | |
| 	currentState.SetNonce(from, 2)
 | |
| 	pool.enqueueTx(tx.Hash(), tx)
 | |
| 	pool.promoteExecutables(currentState)
 | |
| 	if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
 | |
| 		t.Error("expected transaction to be in tx pool")
 | |
| 	}
 | |
| 
 | |
| 	if len(pool.queue) > 0 {
 | |
| 		t.Error("expected transaction queue to be empty. is", len(pool.queue))
 | |
| 	}
 | |
| 
 | |
| 	pool, key = setupTxPool()
 | |
| 	tx1 := transaction(0, big.NewInt(100), key)
 | |
| 	tx2 := transaction(10, big.NewInt(100), key)
 | |
| 	tx3 := transaction(11, big.NewInt(100), key)
 | |
| 	from, _ = deriveSender(tx1)
 | |
| 	currentState, _ = pool.currentState()
 | |
| 	currentState.AddBalance(from, big.NewInt(1000))
 | |
| 	pool.resetState()
 | |
| 
 | |
| 	pool.enqueueTx(tx1.Hash(), tx1)
 | |
| 	pool.enqueueTx(tx2.Hash(), tx2)
 | |
| 	pool.enqueueTx(tx3.Hash(), tx3)
 | |
| 
 | |
| 	pool.promoteExecutables(currentState)
 | |
| 
 | |
| 	if len(pool.pending) != 1 {
 | |
| 		t.Error("expected tx pool to be 1, got", len(pool.pending))
 | |
| 	}
 | |
| 	if pool.queue[from].Len() != 2 {
 | |
| 		t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestRemoveTx(t *testing.T) {
 | |
| 	pool, key := setupTxPool()
 | |
| 	tx := transaction(0, big.NewInt(100), key)
 | |
| 	from, _ := deriveSender(tx)
 | |
| 	currentState, _ := pool.currentState()
 | |
| 	currentState.AddBalance(from, big.NewInt(1))
 | |
| 
 | |
| 	pool.enqueueTx(tx.Hash(), tx)
 | |
| 	pool.promoteTx(from, tx.Hash(), tx)
 | |
| 	if len(pool.queue) != 1 {
 | |
| 		t.Error("expected queue to be 1, got", len(pool.queue))
 | |
| 	}
 | |
| 	if len(pool.pending) != 1 {
 | |
| 		t.Error("expected pending to be 1, got", len(pool.pending))
 | |
| 	}
 | |
| 	pool.Remove(tx.Hash())
 | |
| 	if len(pool.queue) > 0 {
 | |
| 		t.Error("expected queue to be 0, got", len(pool.queue))
 | |
| 	}
 | |
| 	if len(pool.pending) > 0 {
 | |
| 		t.Error("expected pending to be 0, got", len(pool.pending))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestNegativeValue(t *testing.T) {
 | |
| 	pool, key := setupTxPool()
 | |
| 
 | |
| 	tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), big.NewInt(100), big.NewInt(1), nil), types.HomesteadSigner{}, key)
 | |
| 	from, _ := deriveSender(tx)
 | |
| 	currentState, _ := pool.currentState()
 | |
| 	currentState.AddBalance(from, big.NewInt(1))
 | |
| 	if err := pool.Add(tx); err != ErrNegativeValue {
 | |
| 		t.Error("expected", ErrNegativeValue, "got", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestTransactionChainFork(t *testing.T) {
 | |
| 	pool, key := setupTxPool()
 | |
| 	addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 	resetState := func() {
 | |
| 		db, _ := ethdb.NewMemDatabase()
 | |
| 		statedb, _ := state.New(common.Hash{}, db)
 | |
| 		pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
 | |
| 		currentState, _ := pool.currentState()
 | |
| 		currentState.AddBalance(addr, big.NewInt(100000000000000))
 | |
| 		pool.resetState()
 | |
| 	}
 | |
| 	resetState()
 | |
| 
 | |
| 	tx := transaction(0, big.NewInt(100000), key)
 | |
| 	if err := pool.add(tx); err != nil {
 | |
| 		t.Error("didn't expect error", err)
 | |
| 	}
 | |
| 	pool.RemoveBatch([]*types.Transaction{tx})
 | |
| 
 | |
| 	// reset the pool's internal state
 | |
| 	resetState()
 | |
| 	if err := pool.add(tx); err != nil {
 | |
| 		t.Error("didn't expect error", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestTransactionDoubleNonce(t *testing.T) {
 | |
| 	pool, key := setupTxPool()
 | |
| 	addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 	resetState := func() {
 | |
| 		db, _ := ethdb.NewMemDatabase()
 | |
| 		statedb, _ := state.New(common.Hash{}, db)
 | |
| 		pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
 | |
| 		currentState, _ := pool.currentState()
 | |
| 		currentState.AddBalance(addr, big.NewInt(100000000000000))
 | |
| 		pool.resetState()
 | |
| 	}
 | |
| 	resetState()
 | |
| 
 | |
| 	signer := types.HomesteadSigner{}
 | |
| 	tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(100000), big.NewInt(1), nil), signer, key)
 | |
| 	tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(2), nil), signer, key)
 | |
| 	tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(1), nil), signer, key)
 | |
| 
 | |
| 	// Add the first two transaction, ensure higher priced stays only
 | |
| 	if err := pool.add(tx1); err != nil {
 | |
| 		t.Error("didn't expect error", err)
 | |
| 	}
 | |
| 	if err := pool.add(tx2); err != nil {
 | |
| 		t.Error("didn't expect error", err)
 | |
| 	}
 | |
| 	state, _ := pool.currentState()
 | |
| 	pool.promoteExecutables(state)
 | |
| 	if pool.pending[addr].Len() != 1 {
 | |
| 		t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
 | |
| 	}
 | |
| 	if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
 | |
| 		t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
 | |
| 	}
 | |
| 	// Add the thid transaction and ensure it's not saved (smaller price)
 | |
| 	if err := pool.add(tx3); err != nil {
 | |
| 		t.Error("didn't expect error", err)
 | |
| 	}
 | |
| 	pool.promoteExecutables(state)
 | |
| 	if pool.pending[addr].Len() != 1 {
 | |
| 		t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
 | |
| 	}
 | |
| 	if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
 | |
| 		t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
 | |
| 	}
 | |
| 	// Ensure the total transaction count is correct
 | |
| 	if len(pool.all) != 1 {
 | |
| 		t.Error("expected 1 total transactions, got", len(pool.all))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestMissingNonce(t *testing.T) {
 | |
| 	pool, key := setupTxPool()
 | |
| 	addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 	currentState, _ := pool.currentState()
 | |
| 	currentState.AddBalance(addr, big.NewInt(100000000000000))
 | |
| 	tx := transaction(1, big.NewInt(100000), key)
 | |
| 	if err := pool.add(tx); err != nil {
 | |
| 		t.Error("didn't expect error", err)
 | |
| 	}
 | |
| 	if len(pool.pending) != 0 {
 | |
| 		t.Error("expected 0 pending transactions, got", len(pool.pending))
 | |
| 	}
 | |
| 	if pool.queue[addr].Len() != 1 {
 | |
| 		t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
 | |
| 	}
 | |
| 	if len(pool.all) != 1 {
 | |
| 		t.Error("expected 1 total transactions, got", len(pool.all))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestNonceRecovery(t *testing.T) {
 | |
| 	const n = 10
 | |
| 	pool, key := setupTxPool()
 | |
| 	addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 	currentState, _ := pool.currentState()
 | |
| 	currentState.SetNonce(addr, n)
 | |
| 	currentState.AddBalance(addr, big.NewInt(100000000000000))
 | |
| 	pool.resetState()
 | |
| 	tx := transaction(n, big.NewInt(100000), key)
 | |
| 	if err := pool.Add(tx); err != nil {
 | |
| 		t.Error(err)
 | |
| 	}
 | |
| 	// simulate some weird re-order of transactions and missing nonce(s)
 | |
| 	currentState.SetNonce(addr, n-1)
 | |
| 	pool.resetState()
 | |
| 	if fn := pool.pendingState.GetNonce(addr); fn != n+1 {
 | |
| 		t.Errorf("expected nonce to be %d, got %d", n+1, fn)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestRemovedTxEvent(t *testing.T) {
 | |
| 	pool, key := setupTxPool()
 | |
| 	tx := transaction(0, big.NewInt(1000000), key)
 | |
| 	from, _ := deriveSender(tx)
 | |
| 	currentState, _ := pool.currentState()
 | |
| 	currentState.AddBalance(from, big.NewInt(1000000000000))
 | |
| 	pool.resetState()
 | |
| 	pool.eventMux.Post(RemovedTransactionEvent{types.Transactions{tx}})
 | |
| 	pool.eventMux.Post(ChainHeadEvent{nil})
 | |
| 	if pool.pending[from].Len() != 1 {
 | |
| 		t.Error("expected 1 pending tx, got", pool.pending[from].Len())
 | |
| 	}
 | |
| 	if len(pool.all) != 1 {
 | |
| 		t.Error("expected 1 total transactions, got", len(pool.all))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if an account runs out of funds, any pending and queued transactions
 | |
| // are dropped.
 | |
| func TestTransactionDropping(t *testing.T) {
 | |
| 	// Create a test account and fund it
 | |
| 	pool, key := setupTxPool()
 | |
| 	account, _ := deriveSender(transaction(0, big.NewInt(0), key))
 | |
| 
 | |
| 	state, _ := pool.currentState()
 | |
| 	state.AddBalance(account, big.NewInt(1000))
 | |
| 
 | |
| 	// Add some pending and some queued transactions
 | |
| 	var (
 | |
| 		tx0  = transaction(0, big.NewInt(100), key)
 | |
| 		tx1  = transaction(1, big.NewInt(200), key)
 | |
| 		tx10 = transaction(10, big.NewInt(100), key)
 | |
| 		tx11 = transaction(11, big.NewInt(200), key)
 | |
| 	)
 | |
| 	pool.promoteTx(account, tx0.Hash(), tx0)
 | |
| 	pool.promoteTx(account, tx1.Hash(), tx1)
 | |
| 	pool.enqueueTx(tx10.Hash(), tx10)
 | |
| 	pool.enqueueTx(tx11.Hash(), tx11)
 | |
| 
 | |
| 	// Check that pre and post validations leave the pool as is
 | |
| 	if pool.pending[account].Len() != 2 {
 | |
| 		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
 | |
| 	}
 | |
| 	if pool.queue[account].Len() != 2 {
 | |
| 		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
 | |
| 	}
 | |
| 	if len(pool.all) != 4 {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
 | |
| 	}
 | |
| 	pool.resetState()
 | |
| 	if pool.pending[account].Len() != 2 {
 | |
| 		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
 | |
| 	}
 | |
| 	if pool.queue[account].Len() != 2 {
 | |
| 		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
 | |
| 	}
 | |
| 	if len(pool.all) != 4 {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
 | |
| 	}
 | |
| 	// Reduce the balance of the account, and check that invalidated transactions are dropped
 | |
| 	state.AddBalance(account, big.NewInt(-750))
 | |
| 	pool.resetState()
 | |
| 
 | |
| 	if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
 | |
| 		t.Errorf("funded pending transaction missing: %v", tx0)
 | |
| 	}
 | |
| 	if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
 | |
| 		t.Errorf("out-of-fund pending transaction present: %v", tx1)
 | |
| 	}
 | |
| 	if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
 | |
| 		t.Errorf("funded queued transaction missing: %v", tx10)
 | |
| 	}
 | |
| 	if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
 | |
| 		t.Errorf("out-of-fund queued transaction present: %v", tx11)
 | |
| 	}
 | |
| 	if len(pool.all) != 2 {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 2)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if a transaction is dropped from the current pending pool (e.g. out
 | |
| // of fund), all consecutive (still valid, but not executable) transactions are
 | |
| // postponed back into the future queue to prevent broadcasting them.
 | |
| func TestTransactionPostponing(t *testing.T) {
 | |
| 	// Create a test account and fund it
 | |
| 	pool, key := setupTxPool()
 | |
| 	account, _ := deriveSender(transaction(0, big.NewInt(0), key))
 | |
| 
 | |
| 	state, _ := pool.currentState()
 | |
| 	state.AddBalance(account, big.NewInt(1000))
 | |
| 
 | |
| 	// Add a batch consecutive pending transactions for validation
 | |
| 	txns := []*types.Transaction{}
 | |
| 	for i := 0; i < 100; i++ {
 | |
| 		var tx *types.Transaction
 | |
| 		if i%2 == 0 {
 | |
| 			tx = transaction(uint64(i), big.NewInt(100), key)
 | |
| 		} else {
 | |
| 			tx = transaction(uint64(i), big.NewInt(500), key)
 | |
| 		}
 | |
| 		pool.promoteTx(account, tx.Hash(), tx)
 | |
| 		txns = append(txns, tx)
 | |
| 	}
 | |
| 	// Check that pre and post validations leave the pool as is
 | |
| 	if pool.pending[account].Len() != len(txns) {
 | |
| 		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
 | |
| 	}
 | |
| 	if len(pool.queue) != 0 {
 | |
| 		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
 | |
| 	}
 | |
| 	if len(pool.all) != len(txns) {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
 | |
| 	}
 | |
| 	pool.resetState()
 | |
| 	if pool.pending[account].Len() != len(txns) {
 | |
| 		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
 | |
| 	}
 | |
| 	if len(pool.queue) != 0 {
 | |
| 		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
 | |
| 	}
 | |
| 	if len(pool.all) != len(txns) {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
 | |
| 	}
 | |
| 	// Reduce the balance of the account, and check that transactions are reorganised
 | |
| 	state.AddBalance(account, big.NewInt(-750))
 | |
| 	pool.resetState()
 | |
| 
 | |
| 	if _, ok := pool.pending[account].txs.items[txns[0].Nonce()]; !ok {
 | |
| 		t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
 | |
| 	}
 | |
| 	if _, ok := pool.queue[account].txs.items[txns[0].Nonce()]; ok {
 | |
| 		t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
 | |
| 	}
 | |
| 	for i, tx := range txns[1:] {
 | |
| 		if i%2 == 1 {
 | |
| 			if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
 | |
| 				t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
 | |
| 			}
 | |
| 			if _, ok := pool.queue[account].txs.items[tx.Nonce()]; !ok {
 | |
| 				t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
 | |
| 			}
 | |
| 		} else {
 | |
| 			if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
 | |
| 				t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
 | |
| 			}
 | |
| 			if _, ok := pool.queue[account].txs.items[tx.Nonce()]; ok {
 | |
| 				t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if len(pool.all) != len(txns)/2 {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)/2)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if the transaction count belonging to a single account goes above
 | |
| // some threshold, the higher transactions are dropped to prevent DOS attacks.
 | |
| func TestTransactionQueueAccountLimiting(t *testing.T) {
 | |
| 	// Create a test account and fund it
 | |
| 	pool, key := setupTxPool()
 | |
| 	account, _ := deriveSender(transaction(0, big.NewInt(0), key))
 | |
| 
 | |
| 	state, _ := pool.currentState()
 | |
| 	state.AddBalance(account, big.NewInt(1000000))
 | |
| 	pool.resetState()
 | |
| 
 | |
| 	// Keep queuing up transactions and make sure all above a limit are dropped
 | |
| 	for i := uint64(1); i <= maxQueuedPerAccount+5; i++ {
 | |
| 		if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
 | |
| 			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
 | |
| 		}
 | |
| 		if len(pool.pending) != 0 {
 | |
| 			t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
 | |
| 		}
 | |
| 		if i <= maxQueuedPerAccount {
 | |
| 			if pool.queue[account].Len() != int(i) {
 | |
| 				t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
 | |
| 			}
 | |
| 		} else {
 | |
| 			if pool.queue[account].Len() != int(maxQueuedPerAccount) {
 | |
| 				t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), maxQueuedPerAccount)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if len(pool.all) != int(maxQueuedPerAccount) {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if the transaction count belonging to multiple accounts go above
 | |
| // some threshold, the higher transactions are dropped to prevent DOS attacks.
 | |
| func TestTransactionQueueGlobalLimiting(t *testing.T) {
 | |
| 	// Reduce the queue limits to shorten test time
 | |
| 	defer func(old uint64) { maxQueuedInTotal = old }(maxQueuedInTotal)
 | |
| 	maxQueuedInTotal = maxQueuedPerAccount * 3
 | |
| 
 | |
| 	// Create the pool to test the limit enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, db)
 | |
| 
 | |
| 	pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
 | |
| 	pool.resetState()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	state, _ := pool.currentState()
 | |
| 
 | |
| 	keys := make([]*ecdsa.PrivateKey, 5)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	// Generate and queue a batch of transactions
 | |
| 	nonces := make(map[common.Address]uint64)
 | |
| 
 | |
| 	txs := make(types.Transactions, 0, 3*maxQueuedInTotal)
 | |
| 	for len(txs) < cap(txs) {
 | |
| 		key := keys[rand.Intn(len(keys))]
 | |
| 		addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 
 | |
| 		txs = append(txs, transaction(nonces[addr]+1, big.NewInt(100000), key))
 | |
| 		nonces[addr]++
 | |
| 	}
 | |
| 	// Import the batch and verify that limits have been enforced
 | |
| 	pool.AddBatch(txs)
 | |
| 
 | |
| 	queued := 0
 | |
| 	for addr, list := range pool.queue {
 | |
| 		if list.Len() > int(maxQueuedPerAccount) {
 | |
| 			t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), maxQueuedPerAccount)
 | |
| 		}
 | |
| 		queued += list.Len()
 | |
| 	}
 | |
| 	if queued > int(maxQueuedInTotal) {
 | |
| 		t.Fatalf("total transactions overflow allowance: %d > %d", queued, maxQueuedInTotal)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if an account remains idle for a prolonged amount of time, any
 | |
| // non-executable transactions queued up are dropped to prevent wasting resources
 | |
| // on shuffling them around.
 | |
| func TestTransactionQueueTimeLimiting(t *testing.T) {
 | |
| 	// Reduce the queue limits to shorten test time
 | |
| 	defer func(old time.Duration) { maxQueuedLifetime = old }(maxQueuedLifetime)
 | |
| 	defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
 | |
| 	maxQueuedLifetime = time.Second
 | |
| 	evictionInterval = time.Second
 | |
| 
 | |
| 	// Create a test account and fund it
 | |
| 	pool, key := setupTxPool()
 | |
| 	account, _ := deriveSender(transaction(0, big.NewInt(0), key))
 | |
| 
 | |
| 	state, _ := pool.currentState()
 | |
| 	state.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	// Queue up a batch of transactions
 | |
| 	for i := uint64(1); i <= maxQueuedPerAccount; i++ {
 | |
| 		if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
 | |
| 			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
 | |
| 		}
 | |
| 	}
 | |
| 	// Wait until at least two expiration cycles hit and make sure the transactions are gone
 | |
| 	time.Sleep(2 * evictionInterval)
 | |
| 	if len(pool.queue) > 0 {
 | |
| 		t.Fatalf("old transactions remained after eviction")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that even if the transaction count belonging to a single account goes
 | |
| // above some threshold, as long as the transactions are executable, they are
 | |
| // accepted.
 | |
| func TestTransactionPendingLimiting(t *testing.T) {
 | |
| 	// Create a test account and fund it
 | |
| 	pool, key := setupTxPool()
 | |
| 	account, _ := deriveSender(transaction(0, big.NewInt(0), key))
 | |
| 
 | |
| 	state, _ := pool.currentState()
 | |
| 	state.AddBalance(account, big.NewInt(1000000))
 | |
| 	pool.resetState()
 | |
| 
 | |
| 	// Keep queuing up transactions and make sure all above a limit are dropped
 | |
| 	for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
 | |
| 		if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
 | |
| 			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
 | |
| 		}
 | |
| 		if pool.pending[account].Len() != int(i)+1 {
 | |
| 			t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
 | |
| 		}
 | |
| 		if len(pool.queue) != 0 {
 | |
| 			t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
 | |
| 		}
 | |
| 	}
 | |
| 	if len(pool.all) != int(maxQueuedPerAccount+5) {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount+5)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that the transaction limits are enforced the same way irrelevant whether
 | |
| // the transactions are added one by one or in batches.
 | |
| func TestTransactionQueueLimitingEquivalency(t *testing.T)   { testTransactionLimitingEquivalency(t, 1) }
 | |
| func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) }
 | |
| 
 | |
| func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
 | |
| 	// Add a batch of transactions to a pool one by one
 | |
| 	pool1, key1 := setupTxPool()
 | |
| 	account1, _ := deriveSender(transaction(0, big.NewInt(0), key1))
 | |
| 	state1, _ := pool1.currentState()
 | |
| 	state1.AddBalance(account1, big.NewInt(1000000))
 | |
| 
 | |
| 	for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
 | |
| 		if err := pool1.Add(transaction(origin+i, big.NewInt(100000), key1)); err != nil {
 | |
| 			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
 | |
| 		}
 | |
| 	}
 | |
| 	// Add a batch of transactions to a pool in one big batch
 | |
| 	pool2, key2 := setupTxPool()
 | |
| 	account2, _ := deriveSender(transaction(0, big.NewInt(0), key2))
 | |
| 	state2, _ := pool2.currentState()
 | |
| 	state2.AddBalance(account2, big.NewInt(1000000))
 | |
| 
 | |
| 	txns := []*types.Transaction{}
 | |
| 	for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
 | |
| 		txns = append(txns, transaction(origin+i, big.NewInt(100000), key2))
 | |
| 	}
 | |
| 	pool2.AddBatch(txns)
 | |
| 
 | |
| 	// Ensure the batch optimization honors the same pool mechanics
 | |
| 	if len(pool1.pending) != len(pool2.pending) {
 | |
| 		t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
 | |
| 	}
 | |
| 	if len(pool1.queue) != len(pool2.queue) {
 | |
| 		t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue))
 | |
| 	}
 | |
| 	if len(pool1.all) != len(pool2.all) {
 | |
| 		t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", len(pool1.all), len(pool2.all))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if the transaction count belonging to multiple accounts go above
 | |
| // some hard threshold, the higher transactions are dropped to prevent DOS
 | |
| // attacks.
 | |
| func TestTransactionPendingGlobalLimiting(t *testing.T) {
 | |
| 	// Reduce the queue limits to shorten test time
 | |
| 	defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
 | |
| 	maxPendingTotal = minPendingPerAccount * 10
 | |
| 
 | |
| 	// Create the pool to test the limit enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, db)
 | |
| 
 | |
| 	pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
 | |
| 	pool.resetState()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	state, _ := pool.currentState()
 | |
| 
 | |
| 	keys := make([]*ecdsa.PrivateKey, 5)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	// Generate and queue a batch of transactions
 | |
| 	nonces := make(map[common.Address]uint64)
 | |
| 
 | |
| 	txs := types.Transactions{}
 | |
| 	for _, key := range keys {
 | |
| 		addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 		for j := 0; j < int(maxPendingTotal)/len(keys)*2; j++ {
 | |
| 			txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
 | |
| 			nonces[addr]++
 | |
| 		}
 | |
| 	}
 | |
| 	// Import the batch and verify that limits have been enforced
 | |
| 	pool.AddBatch(txs)
 | |
| 
 | |
| 	pending := 0
 | |
| 	for _, list := range pool.pending {
 | |
| 		pending += list.Len()
 | |
| 	}
 | |
| 	if pending > int(maxPendingTotal) {
 | |
| 		t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, maxPendingTotal)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if the transaction count belonging to multiple accounts go above
 | |
| // some hard threshold, if they are under the minimum guaranteed slot count then
 | |
| // the transactions are still kept.
 | |
| func TestTransactionPendingMinimumAllowance(t *testing.T) {
 | |
| 	// Reduce the queue limits to shorten test time
 | |
| 	defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
 | |
| 	maxPendingTotal = 0
 | |
| 
 | |
| 	// Create the pool to test the limit enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, db)
 | |
| 
 | |
| 	pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
 | |
| 	pool.resetState()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	state, _ := pool.currentState()
 | |
| 
 | |
| 	keys := make([]*ecdsa.PrivateKey, 5)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	// Generate and queue a batch of transactions
 | |
| 	nonces := make(map[common.Address]uint64)
 | |
| 
 | |
| 	txs := types.Transactions{}
 | |
| 	for _, key := range keys {
 | |
| 		addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 		for j := 0; j < int(minPendingPerAccount)*2; j++ {
 | |
| 			txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
 | |
| 			nonces[addr]++
 | |
| 		}
 | |
| 	}
 | |
| 	// Import the batch and verify that limits have been enforced
 | |
| 	pool.AddBatch(txs)
 | |
| 
 | |
| 	for addr, list := range pool.pending {
 | |
| 		if list.Len() != int(minPendingPerAccount) {
 | |
| 			t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), minPendingPerAccount)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmarks the speed of validating the contents of the pending queue of the
 | |
| // transaction pool.
 | |
| func BenchmarkPendingDemotion100(b *testing.B)   { benchmarkPendingDemotion(b, 100) }
 | |
| func BenchmarkPendingDemotion1000(b *testing.B)  { benchmarkPendingDemotion(b, 1000) }
 | |
| func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
 | |
| 
 | |
| func benchmarkPendingDemotion(b *testing.B, size int) {
 | |
| 	// Add a batch of transactions to a pool one by one
 | |
| 	pool, key := setupTxPool()
 | |
| 	account, _ := deriveSender(transaction(0, big.NewInt(0), key))
 | |
| 	state, _ := pool.currentState()
 | |
| 	state.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	for i := 0; i < size; i++ {
 | |
| 		tx := transaction(uint64(i), big.NewInt(100000), key)
 | |
| 		pool.promoteTx(account, tx.Hash(), tx)
 | |
| 	}
 | |
| 	// Benchmark the speed of pool validation
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		pool.demoteUnexecutables(state)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmarks the speed of scheduling the contents of the future queue of the
 | |
| // transaction pool.
 | |
| func BenchmarkFuturePromotion100(b *testing.B)   { benchmarkFuturePromotion(b, 100) }
 | |
| func BenchmarkFuturePromotion1000(b *testing.B)  { benchmarkFuturePromotion(b, 1000) }
 | |
| func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
 | |
| 
 | |
| func benchmarkFuturePromotion(b *testing.B, size int) {
 | |
| 	// Add a batch of transactions to a pool one by one
 | |
| 	pool, key := setupTxPool()
 | |
| 	account, _ := deriveSender(transaction(0, big.NewInt(0), key))
 | |
| 	state, _ := pool.currentState()
 | |
| 	state.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	for i := 0; i < size; i++ {
 | |
| 		tx := transaction(uint64(1+i), big.NewInt(100000), key)
 | |
| 		pool.enqueueTx(tx.Hash(), tx)
 | |
| 	}
 | |
| 	// Benchmark the speed of pool validation
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		pool.promoteExecutables(state)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmarks the speed of iterative transaction insertion.
 | |
| func BenchmarkPoolInsert(b *testing.B) {
 | |
| 	// Generate a batch of transactions to enqueue into the pool
 | |
| 	pool, key := setupTxPool()
 | |
| 	account, _ := deriveSender(transaction(0, big.NewInt(0), key))
 | |
| 	state, _ := pool.currentState()
 | |
| 	state.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	txs := make(types.Transactions, b.N)
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		txs[i] = transaction(uint64(i), big.NewInt(100000), key)
 | |
| 	}
 | |
| 	// Benchmark importing the transactions into the queue
 | |
| 	b.ResetTimer()
 | |
| 	for _, tx := range txs {
 | |
| 		pool.Add(tx)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmarks the speed of batched transaction insertion.
 | |
| func BenchmarkPoolBatchInsert100(b *testing.B)   { benchmarkPoolBatchInsert(b, 100) }
 | |
| func BenchmarkPoolBatchInsert1000(b *testing.B)  { benchmarkPoolBatchInsert(b, 1000) }
 | |
| func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) }
 | |
| 
 | |
| func benchmarkPoolBatchInsert(b *testing.B, size int) {
 | |
| 	// Generate a batch of transactions to enqueue into the pool
 | |
| 	pool, key := setupTxPool()
 | |
| 	account, _ := deriveSender(transaction(0, big.NewInt(0), key))
 | |
| 	state, _ := pool.currentState()
 | |
| 	state.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	batches := make([]types.Transactions, b.N)
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		batches[i] = make(types.Transactions, size)
 | |
| 		for j := 0; j < size; j++ {
 | |
| 			batches[i][j] = transaction(uint64(size*i+j), big.NewInt(100000), key)
 | |
| 		}
 | |
| 	}
 | |
| 	// Benchmark importing the transactions into the queue
 | |
| 	b.ResetTimer()
 | |
| 	for _, batch := range batches {
 | |
| 		pool.AddBatch(batch)
 | |
| 	}
 | |
| }
 |