* core/vm, crypto/bn256: switch over to cloudflare library * crypto/bn256: unmarshal constraint + start pure go impl * crypto/bn256: combo cloudflare and google lib * travis: drop 386 test job
		
			
				
	
	
		
			157 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
package bn256
 | 
						|
 | 
						|
// For details of the algorithms used, see "Multiplication and Squaring on
 | 
						|
// Pairing-Friendly Fields, Devegili et al.
 | 
						|
// http://eprint.iacr.org/2006/471.pdf.
 | 
						|
 | 
						|
// gfP2 implements a field of size p² as a quadratic extension of the base field
 | 
						|
// where i²=-1.
 | 
						|
type gfP2 struct {
 | 
						|
	x, y gfP // value is xi+y.
 | 
						|
}
 | 
						|
 | 
						|
func gfP2Decode(in *gfP2) *gfP2 {
 | 
						|
	out := &gfP2{}
 | 
						|
	montDecode(&out.x, &in.x)
 | 
						|
	montDecode(&out.y, &in.y)
 | 
						|
	return out
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) String() string {
 | 
						|
	return "(" + e.x.String() + ", " + e.y.String() + ")"
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) Set(a *gfP2) *gfP2 {
 | 
						|
	e.x.Set(&a.x)
 | 
						|
	e.y.Set(&a.y)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) SetZero() *gfP2 {
 | 
						|
	e.x = gfP{0}
 | 
						|
	e.y = gfP{0}
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) SetOne() *gfP2 {
 | 
						|
	e.x = gfP{0}
 | 
						|
	e.y = *newGFp(1)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) IsZero() bool {
 | 
						|
	zero := gfP{0}
 | 
						|
	return e.x == zero && e.y == zero
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) IsOne() bool {
 | 
						|
	zero, one := gfP{0}, *newGFp(1)
 | 
						|
	return e.x == zero && e.y == one
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
 | 
						|
	e.y.Set(&a.y)
 | 
						|
	gfpNeg(&e.x, &a.x)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) Neg(a *gfP2) *gfP2 {
 | 
						|
	gfpNeg(&e.x, &a.x)
 | 
						|
	gfpNeg(&e.y, &a.y)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
 | 
						|
	gfpAdd(&e.x, &a.x, &b.x)
 | 
						|
	gfpAdd(&e.y, &a.y, &b.y)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
 | 
						|
	gfpSub(&e.x, &a.x, &b.x)
 | 
						|
	gfpSub(&e.y, &a.y, &b.y)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
// See "Multiplication and Squaring in Pairing-Friendly Fields",
 | 
						|
// http://eprint.iacr.org/2006/471.pdf
 | 
						|
func (e *gfP2) Mul(a, b *gfP2) *gfP2 {
 | 
						|
	tx, t := &gfP{}, &gfP{}
 | 
						|
	gfpMul(tx, &a.x, &b.y)
 | 
						|
	gfpMul(t, &b.x, &a.y)
 | 
						|
	gfpAdd(tx, tx, t)
 | 
						|
 | 
						|
	ty := &gfP{}
 | 
						|
	gfpMul(ty, &a.y, &b.y)
 | 
						|
	gfpMul(t, &a.x, &b.x)
 | 
						|
	gfpSub(ty, ty, t)
 | 
						|
 | 
						|
	e.x.Set(tx)
 | 
						|
	e.y.Set(ty)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 {
 | 
						|
	gfpMul(&e.x, &a.x, b)
 | 
						|
	gfpMul(&e.y, &a.y, b)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
// MulXi sets e=ξa where ξ=i+9 and then returns e.
 | 
						|
func (e *gfP2) MulXi(a *gfP2) *gfP2 {
 | 
						|
	// (xi+y)(i+9) = (9x+y)i+(9y-x)
 | 
						|
	tx := &gfP{}
 | 
						|
	gfpAdd(tx, &a.x, &a.x)
 | 
						|
	gfpAdd(tx, tx, tx)
 | 
						|
	gfpAdd(tx, tx, tx)
 | 
						|
	gfpAdd(tx, tx, &a.x)
 | 
						|
 | 
						|
	gfpAdd(tx, tx, &a.y)
 | 
						|
 | 
						|
	ty := &gfP{}
 | 
						|
	gfpAdd(ty, &a.y, &a.y)
 | 
						|
	gfpAdd(ty, ty, ty)
 | 
						|
	gfpAdd(ty, ty, ty)
 | 
						|
	gfpAdd(ty, ty, &a.y)
 | 
						|
 | 
						|
	gfpSub(ty, ty, &a.x)
 | 
						|
 | 
						|
	e.x.Set(tx)
 | 
						|
	e.y.Set(ty)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) Square(a *gfP2) *gfP2 {
 | 
						|
	// Complex squaring algorithm:
 | 
						|
	// (xi+y)² = (x+y)(y-x) + 2*i*x*y
 | 
						|
	tx, ty := &gfP{}, &gfP{}
 | 
						|
	gfpSub(tx, &a.y, &a.x)
 | 
						|
	gfpAdd(ty, &a.x, &a.y)
 | 
						|
	gfpMul(ty, tx, ty)
 | 
						|
 | 
						|
	gfpMul(tx, &a.x, &a.y)
 | 
						|
	gfpAdd(tx, tx, tx)
 | 
						|
 | 
						|
	e.x.Set(tx)
 | 
						|
	e.y.Set(ty)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *gfP2) Invert(a *gfP2) *gfP2 {
 | 
						|
	// See "Implementing cryptographic pairings", M. Scott, section 3.2.
 | 
						|
	// ftp://136.206.11.249/pub/crypto/pairings.pdf
 | 
						|
	t1, t2 := &gfP{}, &gfP{}
 | 
						|
	gfpMul(t1, &a.x, &a.x)
 | 
						|
	gfpMul(t2, &a.y, &a.y)
 | 
						|
	gfpAdd(t1, t1, t2)
 | 
						|
 | 
						|
	inv := &gfP{}
 | 
						|
	inv.Invert(t1)
 | 
						|
 | 
						|
	gfpNeg(t1, &a.x)
 | 
						|
 | 
						|
	gfpMul(&e.x, t1, inv)
 | 
						|
	gfpMul(&e.y, &a.y, inv)
 | 
						|
	return e
 | 
						|
}
 |