* core/state/snapshot: reuse memory data instead of hitting disk when generating * trie: minor nitpicks wrt the resolver optimization * core/state/snapshot, trie: use key/value store for resolver * trie: fix linter Co-authored-by: Péter Szilágyi <peterke@gmail.com>
		
			
				
	
	
		
			715 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			715 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2014 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package trie
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"container/heap"
 | |
| 	"errors"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/ethdb"
 | |
| 	"github.com/ethereum/go-ethereum/rlp"
 | |
| )
 | |
| 
 | |
| // Iterator is a key-value trie iterator that traverses a Trie.
 | |
| type Iterator struct {
 | |
| 	nodeIt NodeIterator
 | |
| 
 | |
| 	Key   []byte // Current data key on which the iterator is positioned on
 | |
| 	Value []byte // Current data value on which the iterator is positioned on
 | |
| 	Err   error
 | |
| }
 | |
| 
 | |
| // NewIterator creates a new key-value iterator from a node iterator.
 | |
| // Note that the value returned by the iterator is raw. If the content is encoded
 | |
| // (e.g. storage value is RLP-encoded), it's caller's duty to decode it.
 | |
| func NewIterator(it NodeIterator) *Iterator {
 | |
| 	return &Iterator{
 | |
| 		nodeIt: it,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Next moves the iterator forward one key-value entry.
 | |
| func (it *Iterator) Next() bool {
 | |
| 	for it.nodeIt.Next(true) {
 | |
| 		if it.nodeIt.Leaf() {
 | |
| 			it.Key = it.nodeIt.LeafKey()
 | |
| 			it.Value = it.nodeIt.LeafBlob()
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 	it.Key = nil
 | |
| 	it.Value = nil
 | |
| 	it.Err = it.nodeIt.Error()
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // Prove generates the Merkle proof for the leaf node the iterator is currently
 | |
| // positioned on.
 | |
| func (it *Iterator) Prove() [][]byte {
 | |
| 	return it.nodeIt.LeafProof()
 | |
| }
 | |
| 
 | |
| // NodeIterator is an iterator to traverse the trie pre-order.
 | |
| type NodeIterator interface {
 | |
| 	// Next moves the iterator to the next node. If the parameter is false, any child
 | |
| 	// nodes will be skipped.
 | |
| 	Next(bool) bool
 | |
| 
 | |
| 	// Error returns the error status of the iterator.
 | |
| 	Error() error
 | |
| 
 | |
| 	// Hash returns the hash of the current node.
 | |
| 	Hash() common.Hash
 | |
| 
 | |
| 	// Parent returns the hash of the parent of the current node. The hash may be the one
 | |
| 	// grandparent if the immediate parent is an internal node with no hash.
 | |
| 	Parent() common.Hash
 | |
| 
 | |
| 	// Path returns the hex-encoded path to the current node.
 | |
| 	// Callers must not retain references to the return value after calling Next.
 | |
| 	// For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
 | |
| 	Path() []byte
 | |
| 
 | |
| 	// Leaf returns true iff the current node is a leaf node.
 | |
| 	Leaf() bool
 | |
| 
 | |
| 	// LeafKey returns the key of the leaf. The method panics if the iterator is not
 | |
| 	// positioned at a leaf. Callers must not retain references to the value after
 | |
| 	// calling Next.
 | |
| 	LeafKey() []byte
 | |
| 
 | |
| 	// LeafBlob returns the content of the leaf. The method panics if the iterator
 | |
| 	// is not positioned at a leaf. Callers must not retain references to the value
 | |
| 	// after calling Next.
 | |
| 	LeafBlob() []byte
 | |
| 
 | |
| 	// LeafProof returns the Merkle proof of the leaf. The method panics if the
 | |
| 	// iterator is not positioned at a leaf. Callers must not retain references
 | |
| 	// to the value after calling Next.
 | |
| 	LeafProof() [][]byte
 | |
| 
 | |
| 	// AddResolver sets an intermediate database to use for looking up trie nodes
 | |
| 	// before reaching into the real persistent layer.
 | |
| 	//
 | |
| 	// This is not required for normal operation, rather is an optimization for
 | |
| 	// cases where trie nodes can be recovered from some external mechanism without
 | |
| 	// reading from disk. In those cases, this resolver allows short circuiting
 | |
| 	// accesses and returning them from memory.
 | |
| 	//
 | |
| 	// Before adding a similar mechanism to any other place in Geth, consider
 | |
| 	// making trie.Database an interface and wrapping at that level. It's a huge
 | |
| 	// refactor, but it could be worth it if another occurrence arises.
 | |
| 	AddResolver(ethdb.KeyValueStore)
 | |
| }
 | |
| 
 | |
| // nodeIteratorState represents the iteration state at one particular node of the
 | |
| // trie, which can be resumed at a later invocation.
 | |
| type nodeIteratorState struct {
 | |
| 	hash    common.Hash // Hash of the node being iterated (nil if not standalone)
 | |
| 	node    node        // Trie node being iterated
 | |
| 	parent  common.Hash // Hash of the first full ancestor node (nil if current is the root)
 | |
| 	index   int         // Child to be processed next
 | |
| 	pathlen int         // Length of the path to this node
 | |
| }
 | |
| 
 | |
| type nodeIterator struct {
 | |
| 	trie  *Trie                // Trie being iterated
 | |
| 	stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
 | |
| 	path  []byte               // Path to the current node
 | |
| 	err   error                // Failure set in case of an internal error in the iterator
 | |
| 
 | |
| 	resolver ethdb.KeyValueStore // Optional intermediate resolver above the disk layer
 | |
| }
 | |
| 
 | |
| // errIteratorEnd is stored in nodeIterator.err when iteration is done.
 | |
| var errIteratorEnd = errors.New("end of iteration")
 | |
| 
 | |
| // seekError is stored in nodeIterator.err if the initial seek has failed.
 | |
| type seekError struct {
 | |
| 	key []byte
 | |
| 	err error
 | |
| }
 | |
| 
 | |
| func (e seekError) Error() string {
 | |
| 	return "seek error: " + e.err.Error()
 | |
| }
 | |
| 
 | |
| func newNodeIterator(trie *Trie, start []byte) NodeIterator {
 | |
| 	if trie.Hash() == emptyState {
 | |
| 		return new(nodeIterator)
 | |
| 	}
 | |
| 	it := &nodeIterator{trie: trie}
 | |
| 	it.err = it.seek(start)
 | |
| 	return it
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) AddResolver(resolver ethdb.KeyValueStore) {
 | |
| 	it.resolver = resolver
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) Hash() common.Hash {
 | |
| 	if len(it.stack) == 0 {
 | |
| 		return common.Hash{}
 | |
| 	}
 | |
| 	return it.stack[len(it.stack)-1].hash
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) Parent() common.Hash {
 | |
| 	if len(it.stack) == 0 {
 | |
| 		return common.Hash{}
 | |
| 	}
 | |
| 	return it.stack[len(it.stack)-1].parent
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) Leaf() bool {
 | |
| 	return hasTerm(it.path)
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) LeafKey() []byte {
 | |
| 	if len(it.stack) > 0 {
 | |
| 		if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
 | |
| 			return hexToKeybytes(it.path)
 | |
| 		}
 | |
| 	}
 | |
| 	panic("not at leaf")
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) LeafBlob() []byte {
 | |
| 	if len(it.stack) > 0 {
 | |
| 		if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
 | |
| 			return node
 | |
| 		}
 | |
| 	}
 | |
| 	panic("not at leaf")
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) LeafProof() [][]byte {
 | |
| 	if len(it.stack) > 0 {
 | |
| 		if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
 | |
| 			hasher := newHasher(false)
 | |
| 			defer returnHasherToPool(hasher)
 | |
| 			proofs := make([][]byte, 0, len(it.stack))
 | |
| 
 | |
| 			for i, item := range it.stack[:len(it.stack)-1] {
 | |
| 				// Gather nodes that end up as hash nodes (or the root)
 | |
| 				node, hashed := hasher.proofHash(item.node)
 | |
| 				if _, ok := hashed.(hashNode); ok || i == 0 {
 | |
| 					enc, _ := rlp.EncodeToBytes(node)
 | |
| 					proofs = append(proofs, enc)
 | |
| 				}
 | |
| 			}
 | |
| 			return proofs
 | |
| 		}
 | |
| 	}
 | |
| 	panic("not at leaf")
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) Path() []byte {
 | |
| 	return it.path
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) Error() error {
 | |
| 	if it.err == errIteratorEnd {
 | |
| 		return nil
 | |
| 	}
 | |
| 	if seek, ok := it.err.(seekError); ok {
 | |
| 		return seek.err
 | |
| 	}
 | |
| 	return it.err
 | |
| }
 | |
| 
 | |
| // Next moves the iterator to the next node, returning whether there are any
 | |
| // further nodes. In case of an internal error this method returns false and
 | |
| // sets the Error field to the encountered failure. If `descend` is false,
 | |
| // skips iterating over any subnodes of the current node.
 | |
| func (it *nodeIterator) Next(descend bool) bool {
 | |
| 	if it.err == errIteratorEnd {
 | |
| 		return false
 | |
| 	}
 | |
| 	if seek, ok := it.err.(seekError); ok {
 | |
| 		if it.err = it.seek(seek.key); it.err != nil {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	// Otherwise step forward with the iterator and report any errors.
 | |
| 	state, parentIndex, path, err := it.peek(descend)
 | |
| 	it.err = err
 | |
| 	if it.err != nil {
 | |
| 		return false
 | |
| 	}
 | |
| 	it.push(state, parentIndex, path)
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) seek(prefix []byte) error {
 | |
| 	// The path we're looking for is the hex encoded key without terminator.
 | |
| 	key := keybytesToHex(prefix)
 | |
| 	key = key[:len(key)-1]
 | |
| 	// Move forward until we're just before the closest match to key.
 | |
| 	for {
 | |
| 		state, parentIndex, path, err := it.peekSeek(key)
 | |
| 		if err == errIteratorEnd {
 | |
| 			return errIteratorEnd
 | |
| 		} else if err != nil {
 | |
| 			return seekError{prefix, err}
 | |
| 		} else if bytes.Compare(path, key) >= 0 {
 | |
| 			return nil
 | |
| 		}
 | |
| 		it.push(state, parentIndex, path)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // init initializes the the iterator.
 | |
| func (it *nodeIterator) init() (*nodeIteratorState, error) {
 | |
| 	root := it.trie.Hash()
 | |
| 	state := &nodeIteratorState{node: it.trie.root, index: -1}
 | |
| 	if root != emptyRoot {
 | |
| 		state.hash = root
 | |
| 	}
 | |
| 	return state, state.resolve(it, nil)
 | |
| }
 | |
| 
 | |
| // peek creates the next state of the iterator.
 | |
| func (it *nodeIterator) peek(descend bool) (*nodeIteratorState, *int, []byte, error) {
 | |
| 	// Initialize the iterator if we've just started.
 | |
| 	if len(it.stack) == 0 {
 | |
| 		state, err := it.init()
 | |
| 		return state, nil, nil, err
 | |
| 	}
 | |
| 	if !descend {
 | |
| 		// If we're skipping children, pop the current node first
 | |
| 		it.pop()
 | |
| 	}
 | |
| 
 | |
| 	// Continue iteration to the next child
 | |
| 	for len(it.stack) > 0 {
 | |
| 		parent := it.stack[len(it.stack)-1]
 | |
| 		ancestor := parent.hash
 | |
| 		if (ancestor == common.Hash{}) {
 | |
| 			ancestor = parent.parent
 | |
| 		}
 | |
| 		state, path, ok := it.nextChild(parent, ancestor)
 | |
| 		if ok {
 | |
| 			if err := state.resolve(it, path); err != nil {
 | |
| 				return parent, &parent.index, path, err
 | |
| 			}
 | |
| 			return state, &parent.index, path, nil
 | |
| 		}
 | |
| 		// No more child nodes, move back up.
 | |
| 		it.pop()
 | |
| 	}
 | |
| 	return nil, nil, nil, errIteratorEnd
 | |
| }
 | |
| 
 | |
| // peekSeek is like peek, but it also tries to skip resolving hashes by skipping
 | |
| // over the siblings that do not lead towards the desired seek position.
 | |
| func (it *nodeIterator) peekSeek(seekKey []byte) (*nodeIteratorState, *int, []byte, error) {
 | |
| 	// Initialize the iterator if we've just started.
 | |
| 	if len(it.stack) == 0 {
 | |
| 		state, err := it.init()
 | |
| 		return state, nil, nil, err
 | |
| 	}
 | |
| 	if !bytes.HasPrefix(seekKey, it.path) {
 | |
| 		// If we're skipping children, pop the current node first
 | |
| 		it.pop()
 | |
| 	}
 | |
| 
 | |
| 	// Continue iteration to the next child
 | |
| 	for len(it.stack) > 0 {
 | |
| 		parent := it.stack[len(it.stack)-1]
 | |
| 		ancestor := parent.hash
 | |
| 		if (ancestor == common.Hash{}) {
 | |
| 			ancestor = parent.parent
 | |
| 		}
 | |
| 		state, path, ok := it.nextChildAt(parent, ancestor, seekKey)
 | |
| 		if ok {
 | |
| 			if err := state.resolve(it, path); err != nil {
 | |
| 				return parent, &parent.index, path, err
 | |
| 			}
 | |
| 			return state, &parent.index, path, nil
 | |
| 		}
 | |
| 		// No more child nodes, move back up.
 | |
| 		it.pop()
 | |
| 	}
 | |
| 	return nil, nil, nil, errIteratorEnd
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) resolveHash(hash hashNode, path []byte) (node, error) {
 | |
| 	if it.resolver != nil {
 | |
| 		if blob, err := it.resolver.Get(hash); err == nil && len(blob) > 0 {
 | |
| 			if resolved, err := decodeNode(hash, blob); err == nil {
 | |
| 				return resolved, nil
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	resolved, err := it.trie.resolveHash(hash, path)
 | |
| 	return resolved, err
 | |
| }
 | |
| 
 | |
| func (st *nodeIteratorState) resolve(it *nodeIterator, path []byte) error {
 | |
| 	if hash, ok := st.node.(hashNode); ok {
 | |
| 		resolved, err := it.resolveHash(hash, path)
 | |
| 		if err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 		st.node = resolved
 | |
| 		st.hash = common.BytesToHash(hash)
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func findChild(n *fullNode, index int, path []byte, ancestor common.Hash) (node, *nodeIteratorState, []byte, int) {
 | |
| 	var (
 | |
| 		child     node
 | |
| 		state     *nodeIteratorState
 | |
| 		childPath []byte
 | |
| 	)
 | |
| 	for ; index < len(n.Children); index++ {
 | |
| 		if n.Children[index] != nil {
 | |
| 			child = n.Children[index]
 | |
| 			hash, _ := child.cache()
 | |
| 			state = &nodeIteratorState{
 | |
| 				hash:    common.BytesToHash(hash),
 | |
| 				node:    child,
 | |
| 				parent:  ancestor,
 | |
| 				index:   -1,
 | |
| 				pathlen: len(path),
 | |
| 			}
 | |
| 			childPath = append(childPath, path...)
 | |
| 			childPath = append(childPath, byte(index))
 | |
| 			return child, state, childPath, index
 | |
| 		}
 | |
| 	}
 | |
| 	return nil, nil, nil, 0
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) nextChild(parent *nodeIteratorState, ancestor common.Hash) (*nodeIteratorState, []byte, bool) {
 | |
| 	switch node := parent.node.(type) {
 | |
| 	case *fullNode:
 | |
| 		//Full node, move to the first non-nil child.
 | |
| 		if child, state, path, index := findChild(node, parent.index+1, it.path, ancestor); child != nil {
 | |
| 			parent.index = index - 1
 | |
| 			return state, path, true
 | |
| 		}
 | |
| 	case *shortNode:
 | |
| 		// Short node, return the pointer singleton child
 | |
| 		if parent.index < 0 {
 | |
| 			hash, _ := node.Val.cache()
 | |
| 			state := &nodeIteratorState{
 | |
| 				hash:    common.BytesToHash(hash),
 | |
| 				node:    node.Val,
 | |
| 				parent:  ancestor,
 | |
| 				index:   -1,
 | |
| 				pathlen: len(it.path),
 | |
| 			}
 | |
| 			path := append(it.path, node.Key...)
 | |
| 			return state, path, true
 | |
| 		}
 | |
| 	}
 | |
| 	return parent, it.path, false
 | |
| }
 | |
| 
 | |
| // nextChildAt is similar to nextChild, except that it targets a child as close to the
 | |
| // target key as possible, thus skipping siblings.
 | |
| func (it *nodeIterator) nextChildAt(parent *nodeIteratorState, ancestor common.Hash, key []byte) (*nodeIteratorState, []byte, bool) {
 | |
| 	switch n := parent.node.(type) {
 | |
| 	case *fullNode:
 | |
| 		// Full node, move to the first non-nil child before the desired key position
 | |
| 		child, state, path, index := findChild(n, parent.index+1, it.path, ancestor)
 | |
| 		if child == nil {
 | |
| 			// No more children in this fullnode
 | |
| 			return parent, it.path, false
 | |
| 		}
 | |
| 		// If the child we found is already past the seek position, just return it.
 | |
| 		if bytes.Compare(path, key) >= 0 {
 | |
| 			parent.index = index - 1
 | |
| 			return state, path, true
 | |
| 		}
 | |
| 		// The child is before the seek position. Try advancing
 | |
| 		for {
 | |
| 			nextChild, nextState, nextPath, nextIndex := findChild(n, index+1, it.path, ancestor)
 | |
| 			// If we run out of children, or skipped past the target, return the
 | |
| 			// previous one
 | |
| 			if nextChild == nil || bytes.Compare(nextPath, key) >= 0 {
 | |
| 				parent.index = index - 1
 | |
| 				return state, path, true
 | |
| 			}
 | |
| 			// We found a better child closer to the target
 | |
| 			state, path, index = nextState, nextPath, nextIndex
 | |
| 		}
 | |
| 	case *shortNode:
 | |
| 		// Short node, return the pointer singleton child
 | |
| 		if parent.index < 0 {
 | |
| 			hash, _ := n.Val.cache()
 | |
| 			state := &nodeIteratorState{
 | |
| 				hash:    common.BytesToHash(hash),
 | |
| 				node:    n.Val,
 | |
| 				parent:  ancestor,
 | |
| 				index:   -1,
 | |
| 				pathlen: len(it.path),
 | |
| 			}
 | |
| 			path := append(it.path, n.Key...)
 | |
| 			return state, path, true
 | |
| 		}
 | |
| 	}
 | |
| 	return parent, it.path, false
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) push(state *nodeIteratorState, parentIndex *int, path []byte) {
 | |
| 	it.path = path
 | |
| 	it.stack = append(it.stack, state)
 | |
| 	if parentIndex != nil {
 | |
| 		*parentIndex++
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (it *nodeIterator) pop() {
 | |
| 	parent := it.stack[len(it.stack)-1]
 | |
| 	it.path = it.path[:parent.pathlen]
 | |
| 	it.stack = it.stack[:len(it.stack)-1]
 | |
| }
 | |
| 
 | |
| func compareNodes(a, b NodeIterator) int {
 | |
| 	if cmp := bytes.Compare(a.Path(), b.Path()); cmp != 0 {
 | |
| 		return cmp
 | |
| 	}
 | |
| 	if a.Leaf() && !b.Leaf() {
 | |
| 		return -1
 | |
| 	} else if b.Leaf() && !a.Leaf() {
 | |
| 		return 1
 | |
| 	}
 | |
| 	if cmp := bytes.Compare(a.Hash().Bytes(), b.Hash().Bytes()); cmp != 0 {
 | |
| 		return cmp
 | |
| 	}
 | |
| 	if a.Leaf() && b.Leaf() {
 | |
| 		return bytes.Compare(a.LeafBlob(), b.LeafBlob())
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| type differenceIterator struct {
 | |
| 	a, b  NodeIterator // Nodes returned are those in b - a.
 | |
| 	eof   bool         // Indicates a has run out of elements
 | |
| 	count int          // Number of nodes scanned on either trie
 | |
| }
 | |
| 
 | |
| // NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
 | |
| // are not in a. Returns the iterator, and a pointer to an integer recording the number
 | |
| // of nodes seen.
 | |
| func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
 | |
| 	a.Next(true)
 | |
| 	it := &differenceIterator{
 | |
| 		a: a,
 | |
| 		b: b,
 | |
| 	}
 | |
| 	return it, &it.count
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) Hash() common.Hash {
 | |
| 	return it.b.Hash()
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) Parent() common.Hash {
 | |
| 	return it.b.Parent()
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) Leaf() bool {
 | |
| 	return it.b.Leaf()
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) LeafKey() []byte {
 | |
| 	return it.b.LeafKey()
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) LeafBlob() []byte {
 | |
| 	return it.b.LeafBlob()
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) LeafProof() [][]byte {
 | |
| 	return it.b.LeafProof()
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) Path() []byte {
 | |
| 	return it.b.Path()
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) AddResolver(resolver ethdb.KeyValueStore) {
 | |
| 	panic("not implemented")
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) Next(bool) bool {
 | |
| 	// Invariants:
 | |
| 	// - We always advance at least one element in b.
 | |
| 	// - At the start of this function, a's path is lexically greater than b's.
 | |
| 	if !it.b.Next(true) {
 | |
| 		return false
 | |
| 	}
 | |
| 	it.count++
 | |
| 
 | |
| 	if it.eof {
 | |
| 		// a has reached eof, so we just return all elements from b
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	for {
 | |
| 		switch compareNodes(it.a, it.b) {
 | |
| 		case -1:
 | |
| 			// b jumped past a; advance a
 | |
| 			if !it.a.Next(true) {
 | |
| 				it.eof = true
 | |
| 				return true
 | |
| 			}
 | |
| 			it.count++
 | |
| 		case 1:
 | |
| 			// b is before a
 | |
| 			return true
 | |
| 		case 0:
 | |
| 			// a and b are identical; skip this whole subtree if the nodes have hashes
 | |
| 			hasHash := it.a.Hash() == common.Hash{}
 | |
| 			if !it.b.Next(hasHash) {
 | |
| 				return false
 | |
| 			}
 | |
| 			it.count++
 | |
| 			if !it.a.Next(hasHash) {
 | |
| 				it.eof = true
 | |
| 				return true
 | |
| 			}
 | |
| 			it.count++
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (it *differenceIterator) Error() error {
 | |
| 	if err := it.a.Error(); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	return it.b.Error()
 | |
| }
 | |
| 
 | |
| type nodeIteratorHeap []NodeIterator
 | |
| 
 | |
| func (h nodeIteratorHeap) Len() int            { return len(h) }
 | |
| func (h nodeIteratorHeap) Less(i, j int) bool  { return compareNodes(h[i], h[j]) < 0 }
 | |
| func (h nodeIteratorHeap) Swap(i, j int)       { h[i], h[j] = h[j], h[i] }
 | |
| func (h *nodeIteratorHeap) Push(x interface{}) { *h = append(*h, x.(NodeIterator)) }
 | |
| func (h *nodeIteratorHeap) Pop() interface{} {
 | |
| 	n := len(*h)
 | |
| 	x := (*h)[n-1]
 | |
| 	*h = (*h)[0 : n-1]
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| type unionIterator struct {
 | |
| 	items *nodeIteratorHeap // Nodes returned are the union of the ones in these iterators
 | |
| 	count int               // Number of nodes scanned across all tries
 | |
| }
 | |
| 
 | |
| // NewUnionIterator constructs a NodeIterator that iterates over elements in the union
 | |
| // of the provided NodeIterators. Returns the iterator, and a pointer to an integer
 | |
| // recording the number of nodes visited.
 | |
| func NewUnionIterator(iters []NodeIterator) (NodeIterator, *int) {
 | |
| 	h := make(nodeIteratorHeap, len(iters))
 | |
| 	copy(h, iters)
 | |
| 	heap.Init(&h)
 | |
| 
 | |
| 	ui := &unionIterator{items: &h}
 | |
| 	return ui, &ui.count
 | |
| }
 | |
| 
 | |
| func (it *unionIterator) Hash() common.Hash {
 | |
| 	return (*it.items)[0].Hash()
 | |
| }
 | |
| 
 | |
| func (it *unionIterator) Parent() common.Hash {
 | |
| 	return (*it.items)[0].Parent()
 | |
| }
 | |
| 
 | |
| func (it *unionIterator) Leaf() bool {
 | |
| 	return (*it.items)[0].Leaf()
 | |
| }
 | |
| 
 | |
| func (it *unionIterator) LeafKey() []byte {
 | |
| 	return (*it.items)[0].LeafKey()
 | |
| }
 | |
| 
 | |
| func (it *unionIterator) LeafBlob() []byte {
 | |
| 	return (*it.items)[0].LeafBlob()
 | |
| }
 | |
| 
 | |
| func (it *unionIterator) LeafProof() [][]byte {
 | |
| 	return (*it.items)[0].LeafProof()
 | |
| }
 | |
| 
 | |
| func (it *unionIterator) Path() []byte {
 | |
| 	return (*it.items)[0].Path()
 | |
| }
 | |
| 
 | |
| func (it *unionIterator) AddResolver(resolver ethdb.KeyValueStore) {
 | |
| 	panic("not implemented")
 | |
| }
 | |
| 
 | |
| // Next returns the next node in the union of tries being iterated over.
 | |
| //
 | |
| // It does this by maintaining a heap of iterators, sorted by the iteration
 | |
| // order of their next elements, with one entry for each source trie. Each
 | |
| // time Next() is called, it takes the least element from the heap to return,
 | |
| // advancing any other iterators that also point to that same element. These
 | |
| // iterators are called with descend=false, since we know that any nodes under
 | |
| // these nodes will also be duplicates, found in the currently selected iterator.
 | |
| // Whenever an iterator is advanced, it is pushed back into the heap if it still
 | |
| // has elements remaining.
 | |
| //
 | |
| // In the case that descend=false - eg, we're asked to ignore all subnodes of the
 | |
| // current node - we also advance any iterators in the heap that have the current
 | |
| // path as a prefix.
 | |
| func (it *unionIterator) Next(descend bool) bool {
 | |
| 	if len(*it.items) == 0 {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	// Get the next key from the union
 | |
| 	least := heap.Pop(it.items).(NodeIterator)
 | |
| 
 | |
| 	// Skip over other nodes as long as they're identical, or, if we're not descending, as
 | |
| 	// long as they have the same prefix as the current node.
 | |
| 	for len(*it.items) > 0 && ((!descend && bytes.HasPrefix((*it.items)[0].Path(), least.Path())) || compareNodes(least, (*it.items)[0]) == 0) {
 | |
| 		skipped := heap.Pop(it.items).(NodeIterator)
 | |
| 		// Skip the whole subtree if the nodes have hashes; otherwise just skip this node
 | |
| 		if skipped.Next(skipped.Hash() == common.Hash{}) {
 | |
| 			it.count++
 | |
| 			// If there are more elements, push the iterator back on the heap
 | |
| 			heap.Push(it.items, skipped)
 | |
| 		}
 | |
| 	}
 | |
| 	if least.Next(descend) {
 | |
| 		it.count++
 | |
| 		heap.Push(it.items, least)
 | |
| 	}
 | |
| 	return len(*it.items) > 0
 | |
| }
 | |
| 
 | |
| func (it *unionIterator) Error() error {
 | |
| 	for i := 0; i < len(*it.items); i++ {
 | |
| 		if err := (*it.items)[i].Error(); err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 |