336 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			336 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2010 The Go Authors. All rights reserved.
 | 
						|
// Copyright 2011 ThePiachu. All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
// * Redistributions of source code must retain the above copyright
 | 
						|
//   notice, this list of conditions and the following disclaimer.
 | 
						|
// * Redistributions in binary form must reproduce the above
 | 
						|
//   copyright notice, this list of conditions and the following disclaimer
 | 
						|
//   in the documentation and/or other materials provided with the
 | 
						|
//   distribution.
 | 
						|
// * Neither the name of Google Inc. nor the names of its
 | 
						|
//   contributors may be used to endorse or promote products derived from
 | 
						|
//   this software without specific prior written permission.
 | 
						|
// * The name of ThePiachu may not be used to endorse or promote products
 | 
						|
//   derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
package secp256k1
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto/elliptic"
 | 
						|
	"io"
 | 
						|
	"math/big"
 | 
						|
	"sync"
 | 
						|
	"unsafe"
 | 
						|
)
 | 
						|
 | 
						|
/*
 | 
						|
#include "libsecp256k1/include/secp256k1.h"
 | 
						|
extern int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
 | 
						|
*/
 | 
						|
import "C"
 | 
						|
 | 
						|
// This code is from https://github.com/ThePiachu/GoBit and implements
 | 
						|
// several Koblitz elliptic curves over prime fields.
 | 
						|
//
 | 
						|
// The curve methods, internally, on Jacobian coordinates. For a given
 | 
						|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
 | 
						|
// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
 | 
						|
// when the whole calculation can be performed within the transform
 | 
						|
// (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
 | 
						|
// it's faster to apply and reverse the transform than to operate in
 | 
						|
// affine coordinates.
 | 
						|
 | 
						|
// A BitCurve represents a Koblitz Curve with a=0.
 | 
						|
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
 | 
						|
type BitCurve struct {
 | 
						|
	P       *big.Int // the order of the underlying field
 | 
						|
	N       *big.Int // the order of the base point
 | 
						|
	B       *big.Int // the constant of the BitCurve equation
 | 
						|
	Gx, Gy  *big.Int // (x,y) of the base point
 | 
						|
	BitSize int      // the size of the underlying field
 | 
						|
}
 | 
						|
 | 
						|
func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
 | 
						|
	return &elliptic.CurveParams{
 | 
						|
		P:       BitCurve.P,
 | 
						|
		N:       BitCurve.N,
 | 
						|
		B:       BitCurve.B,
 | 
						|
		Gx:      BitCurve.Gx,
 | 
						|
		Gy:      BitCurve.Gy,
 | 
						|
		BitSize: BitCurve.BitSize,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
 | 
						|
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
 | 
						|
	// y² = x³ + b
 | 
						|
	y2 := new(big.Int).Mul(y, y) //y²
 | 
						|
	y2.Mod(y2, BitCurve.P)       //y²%P
 | 
						|
 | 
						|
	x3 := new(big.Int).Mul(x, x) //x²
 | 
						|
	x3.Mul(x3, x)                //x³
 | 
						|
 | 
						|
	x3.Add(x3, BitCurve.B) //x³+B
 | 
						|
	x3.Mod(x3, BitCurve.P) //(x³+B)%P
 | 
						|
 | 
						|
	return x3.Cmp(y2) == 0
 | 
						|
}
 | 
						|
 | 
						|
//TODO: double check if the function is okay
 | 
						|
// affineFromJacobian reverses the Jacobian transform. See the comment at the
 | 
						|
// top of the file.
 | 
						|
func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
 | 
						|
	zinv := new(big.Int).ModInverse(z, BitCurve.P)
 | 
						|
	zinvsq := new(big.Int).Mul(zinv, zinv)
 | 
						|
 | 
						|
	xOut = new(big.Int).Mul(x, zinvsq)
 | 
						|
	xOut.Mod(xOut, BitCurve.P)
 | 
						|
	zinvsq.Mul(zinvsq, zinv)
 | 
						|
	yOut = new(big.Int).Mul(y, zinvsq)
 | 
						|
	yOut.Mod(yOut, BitCurve.P)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Add returns the sum of (x1,y1) and (x2,y2)
 | 
						|
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
 | 
						|
	z := new(big.Int).SetInt64(1)
 | 
						|
	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
 | 
						|
}
 | 
						|
 | 
						|
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
 | 
						|
// (x2, y2, z2) and returns their sum, also in Jacobian form.
 | 
						|
func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
 | 
						|
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
 | 
						|
	z1z1 := new(big.Int).Mul(z1, z1)
 | 
						|
	z1z1.Mod(z1z1, BitCurve.P)
 | 
						|
	z2z2 := new(big.Int).Mul(z2, z2)
 | 
						|
	z2z2.Mod(z2z2, BitCurve.P)
 | 
						|
 | 
						|
	u1 := new(big.Int).Mul(x1, z2z2)
 | 
						|
	u1.Mod(u1, BitCurve.P)
 | 
						|
	u2 := new(big.Int).Mul(x2, z1z1)
 | 
						|
	u2.Mod(u2, BitCurve.P)
 | 
						|
	h := new(big.Int).Sub(u2, u1)
 | 
						|
	if h.Sign() == -1 {
 | 
						|
		h.Add(h, BitCurve.P)
 | 
						|
	}
 | 
						|
	i := new(big.Int).Lsh(h, 1)
 | 
						|
	i.Mul(i, i)
 | 
						|
	j := new(big.Int).Mul(h, i)
 | 
						|
 | 
						|
	s1 := new(big.Int).Mul(y1, z2)
 | 
						|
	s1.Mul(s1, z2z2)
 | 
						|
	s1.Mod(s1, BitCurve.P)
 | 
						|
	s2 := new(big.Int).Mul(y2, z1)
 | 
						|
	s2.Mul(s2, z1z1)
 | 
						|
	s2.Mod(s2, BitCurve.P)
 | 
						|
	r := new(big.Int).Sub(s2, s1)
 | 
						|
	if r.Sign() == -1 {
 | 
						|
		r.Add(r, BitCurve.P)
 | 
						|
	}
 | 
						|
	r.Lsh(r, 1)
 | 
						|
	v := new(big.Int).Mul(u1, i)
 | 
						|
 | 
						|
	x3 := new(big.Int).Set(r)
 | 
						|
	x3.Mul(x3, x3)
 | 
						|
	x3.Sub(x3, j)
 | 
						|
	x3.Sub(x3, v)
 | 
						|
	x3.Sub(x3, v)
 | 
						|
	x3.Mod(x3, BitCurve.P)
 | 
						|
 | 
						|
	y3 := new(big.Int).Set(r)
 | 
						|
	v.Sub(v, x3)
 | 
						|
	y3.Mul(y3, v)
 | 
						|
	s1.Mul(s1, j)
 | 
						|
	s1.Lsh(s1, 1)
 | 
						|
	y3.Sub(y3, s1)
 | 
						|
	y3.Mod(y3, BitCurve.P)
 | 
						|
 | 
						|
	z3 := new(big.Int).Add(z1, z2)
 | 
						|
	z3.Mul(z3, z3)
 | 
						|
	z3.Sub(z3, z1z1)
 | 
						|
	if z3.Sign() == -1 {
 | 
						|
		z3.Add(z3, BitCurve.P)
 | 
						|
	}
 | 
						|
	z3.Sub(z3, z2z2)
 | 
						|
	if z3.Sign() == -1 {
 | 
						|
		z3.Add(z3, BitCurve.P)
 | 
						|
	}
 | 
						|
	z3.Mul(z3, h)
 | 
						|
	z3.Mod(z3, BitCurve.P)
 | 
						|
 | 
						|
	return x3, y3, z3
 | 
						|
}
 | 
						|
 | 
						|
// Double returns 2*(x,y)
 | 
						|
func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
 | 
						|
	z1 := new(big.Int).SetInt64(1)
 | 
						|
	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
 | 
						|
}
 | 
						|
 | 
						|
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
 | 
						|
// returns its double, also in Jacobian form.
 | 
						|
func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
 | 
						|
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
 | 
						|
 | 
						|
	a := new(big.Int).Mul(x, x) //X1²
 | 
						|
	b := new(big.Int).Mul(y, y) //Y1²
 | 
						|
	c := new(big.Int).Mul(b, b) //B²
 | 
						|
 | 
						|
	d := new(big.Int).Add(x, b) //X1+B
 | 
						|
	d.Mul(d, d)                 //(X1+B)²
 | 
						|
	d.Sub(d, a)                 //(X1+B)²-A
 | 
						|
	d.Sub(d, c)                 //(X1+B)²-A-C
 | 
						|
	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)
 | 
						|
 | 
						|
	e := new(big.Int).Mul(big.NewInt(3), a) //3*A
 | 
						|
	f := new(big.Int).Mul(e, e)             //E²
 | 
						|
 | 
						|
	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
 | 
						|
	x3.Sub(f, x3)                            //F-2*D
 | 
						|
	x3.Mod(x3, BitCurve.P)
 | 
						|
 | 
						|
	y3 := new(big.Int).Sub(d, x3)                  //D-X3
 | 
						|
	y3.Mul(e, y3)                                  //E*(D-X3)
 | 
						|
	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
 | 
						|
	y3.Mod(y3, BitCurve.P)
 | 
						|
 | 
						|
	z3 := new(big.Int).Mul(y, z) //Y1*Z1
 | 
						|
	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
 | 
						|
	z3.Mod(z3, BitCurve.P)
 | 
						|
 | 
						|
	return x3, y3, z3
 | 
						|
}
 | 
						|
 | 
						|
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
 | 
						|
	// Ensure scalar is exactly 32 bytes. We pad always, even if
 | 
						|
	// scalar is 32 bytes long, to avoid a timing side channel.
 | 
						|
	if len(scalar) > 32 {
 | 
						|
		panic("can't handle scalars > 256 bits")
 | 
						|
	}
 | 
						|
	padded := make([]byte, 32)
 | 
						|
	copy(padded[32-len(scalar):], scalar)
 | 
						|
	scalar = padded
 | 
						|
 | 
						|
	// Do the multiplication in C, updating point.
 | 
						|
	point := make([]byte, 64)
 | 
						|
	readBits(point[:32], Bx)
 | 
						|
	readBits(point[32:], By)
 | 
						|
	pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
 | 
						|
	scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
 | 
						|
	res := C.secp256k1_pubkey_scalar_mul(context, pointPtr, scalarPtr)
 | 
						|
 | 
						|
	// Unpack the result and clear temporaries.
 | 
						|
	x := new(big.Int).SetBytes(point[:32])
 | 
						|
	y := new(big.Int).SetBytes(point[32:])
 | 
						|
	for i := range point {
 | 
						|
		point[i] = 0
 | 
						|
	}
 | 
						|
	for i := range padded {
 | 
						|
		scalar[i] = 0
 | 
						|
	}
 | 
						|
	if res != 1 {
 | 
						|
		return nil, nil
 | 
						|
	}
 | 
						|
	return x, y
 | 
						|
}
 | 
						|
 | 
						|
// ScalarBaseMult returns k*G, where G is the base point of the group and k is
 | 
						|
// an integer in big-endian form.
 | 
						|
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
 | 
						|
	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
 | 
						|
}
 | 
						|
 | 
						|
var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
 | 
						|
 | 
						|
//TODO: double check if it is okay
 | 
						|
// GenerateKey returns a public/private key pair. The private key is generated
 | 
						|
// using the given reader, which must return random data.
 | 
						|
func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) {
 | 
						|
	byteLen := (BitCurve.BitSize + 7) >> 3
 | 
						|
	priv = make([]byte, byteLen)
 | 
						|
 | 
						|
	for x == nil {
 | 
						|
		_, err = io.ReadFull(rand, priv)
 | 
						|
		if err != nil {
 | 
						|
			return
 | 
						|
		}
 | 
						|
		// We have to mask off any excess bits in the case that the size of the
 | 
						|
		// underlying field is not a whole number of bytes.
 | 
						|
		priv[0] &= mask[BitCurve.BitSize%8]
 | 
						|
		// This is because, in tests, rand will return all zeros and we don't
 | 
						|
		// want to get the point at infinity and loop forever.
 | 
						|
		priv[1] ^= 0x42
 | 
						|
		x, y = BitCurve.ScalarBaseMult(priv)
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Marshal converts a point into the form specified in section 4.3.6 of ANSI
 | 
						|
// X9.62.
 | 
						|
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
 | 
						|
	byteLen := (BitCurve.BitSize + 7) >> 3
 | 
						|
 | 
						|
	ret := make([]byte, 1+2*byteLen)
 | 
						|
	ret[0] = 4 // uncompressed point
 | 
						|
 | 
						|
	xBytes := x.Bytes()
 | 
						|
	copy(ret[1+byteLen-len(xBytes):], xBytes)
 | 
						|
	yBytes := y.Bytes()
 | 
						|
	copy(ret[1+2*byteLen-len(yBytes):], yBytes)
 | 
						|
	return ret
 | 
						|
}
 | 
						|
 | 
						|
// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
 | 
						|
// error, x = nil.
 | 
						|
func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
 | 
						|
	byteLen := (BitCurve.BitSize + 7) >> 3
 | 
						|
	if len(data) != 1+2*byteLen {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if data[0] != 4 { // uncompressed form
 | 
						|
		return
 | 
						|
	}
 | 
						|
	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
 | 
						|
	y = new(big.Int).SetBytes(data[1+byteLen:])
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
var (
 | 
						|
	initonce sync.Once
 | 
						|
	theCurve *BitCurve
 | 
						|
)
 | 
						|
 | 
						|
// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1)
 | 
						|
func S256() *BitCurve {
 | 
						|
	initonce.Do(func() {
 | 
						|
		// See SEC 2 section 2.7.1
 | 
						|
		// curve parameters taken from:
 | 
						|
		// http://www.secg.org/collateral/sec2_final.pdf
 | 
						|
		theCurve = new(BitCurve)
 | 
						|
		theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
 | 
						|
		theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
 | 
						|
		theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
 | 
						|
		theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
 | 
						|
		theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
 | 
						|
		theCurve.BitSize = 256
 | 
						|
	})
 | 
						|
	return theCurve
 | 
						|
}
 |