323 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2016 The go-ethereum Authors
 | 
						|
// This file is part of the go-ethereum library.
 | 
						|
//
 | 
						|
// The go-ethereum library is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU Lesser General Public License as published by
 | 
						|
// the Free Software Foundation, either version 3 of the License, or
 | 
						|
// (at your option) any later version.
 | 
						|
//
 | 
						|
// The go-ethereum library is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | 
						|
// GNU Lesser General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Lesser General Public License
 | 
						|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
// Package discv5 implements the RLPx v5 Topic Discovery Protocol.
 | 
						|
//
 | 
						|
// The Topic Discovery protocol provides a way to find RLPx nodes that
 | 
						|
// can be connected to. It uses a Kademlia-like protocol to maintain a
 | 
						|
// distributed database of the IDs and endpoints of all listening
 | 
						|
// nodes.
 | 
						|
package discv5
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto/rand"
 | 
						|
	"encoding/binary"
 | 
						|
	"fmt"
 | 
						|
	"net"
 | 
						|
	"sort"
 | 
						|
 | 
						|
	"github.com/ethereum/go-ethereum/common"
 | 
						|
)
 | 
						|
 | 
						|
const (
 | 
						|
	alpha      = 3  // Kademlia concurrency factor
 | 
						|
	bucketSize = 16 // Kademlia bucket size
 | 
						|
	hashBits   = len(common.Hash{}) * 8
 | 
						|
	nBuckets   = hashBits + 1 // Number of buckets
 | 
						|
 | 
						|
	maxFindnodeFailures = 5
 | 
						|
)
 | 
						|
 | 
						|
type Table struct {
 | 
						|
	count         int               // number of nodes
 | 
						|
	buckets       [nBuckets]*bucket // index of known nodes by distance
 | 
						|
	nodeAddedHook func(*Node)       // for testing
 | 
						|
	self          *Node             // metadata of the local node
 | 
						|
}
 | 
						|
 | 
						|
// bucket contains nodes, ordered by their last activity. the entry
 | 
						|
// that was most recently active is the first element in entries.
 | 
						|
type bucket struct {
 | 
						|
	entries      []*Node
 | 
						|
	replacements []*Node
 | 
						|
}
 | 
						|
 | 
						|
func newTable(ourID NodeID, ourAddr *net.UDPAddr) *Table {
 | 
						|
	self := NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port))
 | 
						|
	tab := &Table{self: self}
 | 
						|
	for i := range tab.buckets {
 | 
						|
		tab.buckets[i] = new(bucket)
 | 
						|
	}
 | 
						|
	return tab
 | 
						|
}
 | 
						|
 | 
						|
const printTable = false
 | 
						|
 | 
						|
// chooseBucketRefreshTarget selects random refresh targets to keep all Kademlia
 | 
						|
// buckets filled with live connections and keep the network topology healthy.
 | 
						|
// This requires selecting addresses closer to our own with a higher probability
 | 
						|
// in order to refresh closer buckets too.
 | 
						|
//
 | 
						|
// This algorithm approximates the distance distribution of existing nodes in the
 | 
						|
// table by selecting a random node from the table and selecting a target address
 | 
						|
// with a distance less than twice of that of the selected node.
 | 
						|
// This algorithm will be improved later to specifically target the least recently
 | 
						|
// used buckets.
 | 
						|
func (tab *Table) chooseBucketRefreshTarget() common.Hash {
 | 
						|
	entries := 0
 | 
						|
	if printTable {
 | 
						|
		fmt.Println()
 | 
						|
	}
 | 
						|
	for i, b := range tab.buckets {
 | 
						|
		entries += len(b.entries)
 | 
						|
		if printTable {
 | 
						|
			for _, e := range b.entries {
 | 
						|
				fmt.Println(i, e.state, e.addr().String(), e.ID.String(), e.sha.Hex())
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	prefix := binary.BigEndian.Uint64(tab.self.sha[0:8])
 | 
						|
	dist := ^uint64(0)
 | 
						|
	entry := int(randUint(uint32(entries + 1)))
 | 
						|
	for _, b := range tab.buckets {
 | 
						|
		if entry < len(b.entries) {
 | 
						|
			n := b.entries[entry]
 | 
						|
			dist = binary.BigEndian.Uint64(n.sha[0:8]) ^ prefix
 | 
						|
			break
 | 
						|
		}
 | 
						|
		entry -= len(b.entries)
 | 
						|
	}
 | 
						|
 | 
						|
	ddist := ^uint64(0)
 | 
						|
	if dist+dist > dist {
 | 
						|
		ddist = dist
 | 
						|
	}
 | 
						|
	targetPrefix := prefix ^ randUint64n(ddist)
 | 
						|
 | 
						|
	var target common.Hash
 | 
						|
	binary.BigEndian.PutUint64(target[0:8], targetPrefix)
 | 
						|
	rand.Read(target[8:])
 | 
						|
	return target
 | 
						|
}
 | 
						|
 | 
						|
// readRandomNodes fills the given slice with random nodes from the
 | 
						|
// table. It will not write the same node more than once. The nodes in
 | 
						|
// the slice are copies and can be modified by the caller.
 | 
						|
func (tab *Table) readRandomNodes(buf []*Node) (n int) {
 | 
						|
	// TODO: tree-based buckets would help here
 | 
						|
	// Find all non-empty buckets and get a fresh slice of their entries.
 | 
						|
	var buckets [][]*Node
 | 
						|
	for _, b := range tab.buckets {
 | 
						|
		if len(b.entries) > 0 {
 | 
						|
			buckets = append(buckets, b.entries[:])
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if len(buckets) == 0 {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	// Shuffle the buckets.
 | 
						|
	for i := uint32(len(buckets)) - 1; i > 0; i-- {
 | 
						|
		j := randUint(i)
 | 
						|
		buckets[i], buckets[j] = buckets[j], buckets[i]
 | 
						|
	}
 | 
						|
	// Move head of each bucket into buf, removing buckets that become empty.
 | 
						|
	var i, j int
 | 
						|
	for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
 | 
						|
		b := buckets[j]
 | 
						|
		buf[i] = &(*b[0])
 | 
						|
		buckets[j] = b[1:]
 | 
						|
		if len(b) == 1 {
 | 
						|
			buckets = append(buckets[:j], buckets[j+1:]...)
 | 
						|
		}
 | 
						|
		if len(buckets) == 0 {
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return i + 1
 | 
						|
}
 | 
						|
 | 
						|
func randUint(max uint32) uint32 {
 | 
						|
	if max < 2 {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	var b [4]byte
 | 
						|
	rand.Read(b[:])
 | 
						|
	return binary.BigEndian.Uint32(b[:]) % max
 | 
						|
}
 | 
						|
 | 
						|
func randUint64n(max uint64) uint64 {
 | 
						|
	if max < 2 {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	var b [8]byte
 | 
						|
	rand.Read(b[:])
 | 
						|
	return binary.BigEndian.Uint64(b[:]) % max
 | 
						|
}
 | 
						|
 | 
						|
// closest returns the n nodes in the table that are closest to the
 | 
						|
// given id. The caller must hold tab.mutex.
 | 
						|
func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
 | 
						|
	// This is a very wasteful way to find the closest nodes but
 | 
						|
	// obviously correct. I believe that tree-based buckets would make
 | 
						|
	// this easier to implement efficiently.
 | 
						|
	close := &nodesByDistance{target: target}
 | 
						|
	for _, b := range tab.buckets {
 | 
						|
		for _, n := range b.entries {
 | 
						|
			close.push(n, nresults)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return close
 | 
						|
}
 | 
						|
 | 
						|
// add attempts to add the given node its corresponding bucket. If the
 | 
						|
// bucket has space available, adding the node succeeds immediately.
 | 
						|
// Otherwise, the node is added to the replacement cache for the bucket.
 | 
						|
func (tab *Table) add(n *Node) (contested *Node) {
 | 
						|
	//fmt.Println("add", n.addr().String(), n.ID.String(), n.sha.Hex())
 | 
						|
	if n.ID == tab.self.ID {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	b := tab.buckets[logdist(tab.self.sha, n.sha)]
 | 
						|
	switch {
 | 
						|
	case b.bump(n):
 | 
						|
		// n exists in b.
 | 
						|
		return nil
 | 
						|
	case len(b.entries) < bucketSize:
 | 
						|
		// b has space available.
 | 
						|
		b.addFront(n)
 | 
						|
		tab.count++
 | 
						|
		if tab.nodeAddedHook != nil {
 | 
						|
			tab.nodeAddedHook(n)
 | 
						|
		}
 | 
						|
		return nil
 | 
						|
	default:
 | 
						|
		// b has no space left, add to replacement cache
 | 
						|
		// and revalidate the last entry.
 | 
						|
		// TODO: drop previous node
 | 
						|
		b.replacements = append(b.replacements, n)
 | 
						|
		if len(b.replacements) > bucketSize {
 | 
						|
			copy(b.replacements, b.replacements[1:])
 | 
						|
			b.replacements = b.replacements[:len(b.replacements)-1]
 | 
						|
		}
 | 
						|
		return b.entries[len(b.entries)-1]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// stuff adds nodes the table to the end of their corresponding bucket
 | 
						|
// if the bucket is not full.
 | 
						|
func (tab *Table) stuff(nodes []*Node) {
 | 
						|
outer:
 | 
						|
	for _, n := range nodes {
 | 
						|
		if n.ID == tab.self.ID {
 | 
						|
			continue // don't add self
 | 
						|
		}
 | 
						|
		bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
 | 
						|
		for i := range bucket.entries {
 | 
						|
			if bucket.entries[i].ID == n.ID {
 | 
						|
				continue outer // already in bucket
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if len(bucket.entries) < bucketSize {
 | 
						|
			bucket.entries = append(bucket.entries, n)
 | 
						|
			tab.count++
 | 
						|
			if tab.nodeAddedHook != nil {
 | 
						|
				tab.nodeAddedHook(n)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// delete removes an entry from the node table (used to evacuate
 | 
						|
// failed/non-bonded discovery peers).
 | 
						|
func (tab *Table) delete(node *Node) {
 | 
						|
	//fmt.Println("delete", node.addr().String(), node.ID.String(), node.sha.Hex())
 | 
						|
	bucket := tab.buckets[logdist(tab.self.sha, node.sha)]
 | 
						|
	for i := range bucket.entries {
 | 
						|
		if bucket.entries[i].ID == node.ID {
 | 
						|
			bucket.entries = append(bucket.entries[:i], bucket.entries[i+1:]...)
 | 
						|
			tab.count--
 | 
						|
			return
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (tab *Table) deleteReplace(node *Node) {
 | 
						|
	b := tab.buckets[logdist(tab.self.sha, node.sha)]
 | 
						|
	i := 0
 | 
						|
	for i < len(b.entries) {
 | 
						|
		if b.entries[i].ID == node.ID {
 | 
						|
			b.entries = append(b.entries[:i], b.entries[i+1:]...)
 | 
						|
			tab.count--
 | 
						|
		} else {
 | 
						|
			i++
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// refill from replacement cache
 | 
						|
	// TODO: maybe use random index
 | 
						|
	if len(b.entries) < bucketSize && len(b.replacements) > 0 {
 | 
						|
		ri := len(b.replacements) - 1
 | 
						|
		b.addFront(b.replacements[ri])
 | 
						|
		tab.count++
 | 
						|
		b.replacements[ri] = nil
 | 
						|
		b.replacements = b.replacements[:ri]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (b *bucket) addFront(n *Node) {
 | 
						|
	b.entries = append(b.entries, nil)
 | 
						|
	copy(b.entries[1:], b.entries)
 | 
						|
	b.entries[0] = n
 | 
						|
}
 | 
						|
 | 
						|
func (b *bucket) bump(n *Node) bool {
 | 
						|
	for i := range b.entries {
 | 
						|
		if b.entries[i].ID == n.ID {
 | 
						|
			// move it to the front
 | 
						|
			copy(b.entries[1:], b.entries[:i])
 | 
						|
			b.entries[0] = n
 | 
						|
			return true
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return false
 | 
						|
}
 | 
						|
 | 
						|
// nodesByDistance is a list of nodes, ordered by
 | 
						|
// distance to target.
 | 
						|
type nodesByDistance struct {
 | 
						|
	entries []*Node
 | 
						|
	target  common.Hash
 | 
						|
}
 | 
						|
 | 
						|
// push adds the given node to the list, keeping the total size below maxElems.
 | 
						|
func (h *nodesByDistance) push(n *Node, maxElems int) {
 | 
						|
	ix := sort.Search(len(h.entries), func(i int) bool {
 | 
						|
		return distcmp(h.target, h.entries[i].sha, n.sha) > 0
 | 
						|
	})
 | 
						|
	if len(h.entries) < maxElems {
 | 
						|
		h.entries = append(h.entries, n)
 | 
						|
	}
 | 
						|
	if ix == len(h.entries) {
 | 
						|
		// farther away than all nodes we already have.
 | 
						|
		// if there was room for it, the node is now the last element.
 | 
						|
	} else {
 | 
						|
		// slide existing entries down to make room
 | 
						|
		// this will overwrite the entry we just appended.
 | 
						|
		copy(h.entries[ix+1:], h.entries[ix:])
 | 
						|
		h.entries[ix] = n
 | 
						|
	}
 | 
						|
}
 |