* accounts/abi, cmd/abigen: support tuple accounts/abi/bind, cmd/abigen: add objc back accounts/abi/bind: use byte[24] as function indicator accounts/abi/bind: resolve struct slice or array accounts/abi/bind: remove sort logic accounts: fix issues in abi * accounts/abi: address comment
		
			
				
	
	
		
			349 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2015 The go-ethereum Authors
 | 
						|
// This file is part of the go-ethereum library.
 | 
						|
//
 | 
						|
// The go-ethereum library is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU Lesser General Public License as published by
 | 
						|
// the Free Software Foundation, either version 3 of the License, or
 | 
						|
// (at your option) any later version.
 | 
						|
//
 | 
						|
// The go-ethereum library is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | 
						|
// GNU Lesser General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Lesser General Public License
 | 
						|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
package abi
 | 
						|
 | 
						|
import (
 | 
						|
	"errors"
 | 
						|
	"fmt"
 | 
						|
	"reflect"
 | 
						|
	"regexp"
 | 
						|
	"strconv"
 | 
						|
	"strings"
 | 
						|
)
 | 
						|
 | 
						|
// Type enumerator
 | 
						|
const (
 | 
						|
	IntTy byte = iota
 | 
						|
	UintTy
 | 
						|
	BoolTy
 | 
						|
	StringTy
 | 
						|
	SliceTy
 | 
						|
	ArrayTy
 | 
						|
	TupleTy
 | 
						|
	AddressTy
 | 
						|
	FixedBytesTy
 | 
						|
	BytesTy
 | 
						|
	HashTy
 | 
						|
	FixedPointTy
 | 
						|
	FunctionTy
 | 
						|
)
 | 
						|
 | 
						|
// Type is the reflection of the supported argument type
 | 
						|
type Type struct {
 | 
						|
	Elem *Type
 | 
						|
	Kind reflect.Kind
 | 
						|
	Type reflect.Type
 | 
						|
	Size int
 | 
						|
	T    byte // Our own type checking
 | 
						|
 | 
						|
	stringKind string // holds the unparsed string for deriving signatures
 | 
						|
 | 
						|
	// Tuple relative fields
 | 
						|
	TupleElems    []*Type  // Type information of all tuple fields
 | 
						|
	TupleRawNames []string // Raw field name of all tuple fields
 | 
						|
}
 | 
						|
 | 
						|
var (
 | 
						|
	// typeRegex parses the abi sub types
 | 
						|
	typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
 | 
						|
)
 | 
						|
 | 
						|
// NewType creates a new reflection type of abi type given in t.
 | 
						|
func NewType(t string, components []ArgumentMarshaling) (typ Type, err error) {
 | 
						|
	// check that array brackets are equal if they exist
 | 
						|
	if strings.Count(t, "[") != strings.Count(t, "]") {
 | 
						|
		return Type{}, fmt.Errorf("invalid arg type in abi")
 | 
						|
	}
 | 
						|
	typ.stringKind = t
 | 
						|
 | 
						|
	// if there are brackets, get ready to go into slice/array mode and
 | 
						|
	// recursively create the type
 | 
						|
	if strings.Count(t, "[") != 0 {
 | 
						|
		i := strings.LastIndex(t, "[")
 | 
						|
		// recursively embed the type
 | 
						|
		embeddedType, err := NewType(t[:i], components)
 | 
						|
		if err != nil {
 | 
						|
			return Type{}, err
 | 
						|
		}
 | 
						|
		// grab the last cell and create a type from there
 | 
						|
		sliced := t[i:]
 | 
						|
		// grab the slice size with regexp
 | 
						|
		re := regexp.MustCompile("[0-9]+")
 | 
						|
		intz := re.FindAllString(sliced, -1)
 | 
						|
 | 
						|
		if len(intz) == 0 {
 | 
						|
			// is a slice
 | 
						|
			typ.T = SliceTy
 | 
						|
			typ.Kind = reflect.Slice
 | 
						|
			typ.Elem = &embeddedType
 | 
						|
			typ.Type = reflect.SliceOf(embeddedType.Type)
 | 
						|
			typ.stringKind = embeddedType.stringKind + sliced
 | 
						|
		} else if len(intz) == 1 {
 | 
						|
			// is a array
 | 
						|
			typ.T = ArrayTy
 | 
						|
			typ.Kind = reflect.Array
 | 
						|
			typ.Elem = &embeddedType
 | 
						|
			typ.Size, err = strconv.Atoi(intz[0])
 | 
						|
			if err != nil {
 | 
						|
				return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
 | 
						|
			}
 | 
						|
			typ.Type = reflect.ArrayOf(typ.Size, embeddedType.Type)
 | 
						|
			typ.stringKind = embeddedType.stringKind + sliced
 | 
						|
		} else {
 | 
						|
			return Type{}, fmt.Errorf("invalid formatting of array type")
 | 
						|
		}
 | 
						|
		return typ, err
 | 
						|
	}
 | 
						|
	// parse the type and size of the abi-type.
 | 
						|
	matches := typeRegex.FindAllStringSubmatch(t, -1)
 | 
						|
	if len(matches) == 0 {
 | 
						|
		return Type{}, fmt.Errorf("invalid type '%v'", t)
 | 
						|
	}
 | 
						|
	parsedType := matches[0]
 | 
						|
 | 
						|
	// varSize is the size of the variable
 | 
						|
	var varSize int
 | 
						|
	if len(parsedType[3]) > 0 {
 | 
						|
		var err error
 | 
						|
		varSize, err = strconv.Atoi(parsedType[2])
 | 
						|
		if err != nil {
 | 
						|
			return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if parsedType[0] == "uint" || parsedType[0] == "int" {
 | 
						|
			// this should fail because it means that there's something wrong with
 | 
						|
			// the abi type (the compiler should always format it to the size...always)
 | 
						|
			return Type{}, fmt.Errorf("unsupported arg type: %s", t)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// varType is the parsed abi type
 | 
						|
	switch varType := parsedType[1]; varType {
 | 
						|
	case "int":
 | 
						|
		typ.Kind, typ.Type = reflectIntKindAndType(false, varSize)
 | 
						|
		typ.Size = varSize
 | 
						|
		typ.T = IntTy
 | 
						|
	case "uint":
 | 
						|
		typ.Kind, typ.Type = reflectIntKindAndType(true, varSize)
 | 
						|
		typ.Size = varSize
 | 
						|
		typ.T = UintTy
 | 
						|
	case "bool":
 | 
						|
		typ.Kind = reflect.Bool
 | 
						|
		typ.T = BoolTy
 | 
						|
		typ.Type = reflect.TypeOf(bool(false))
 | 
						|
	case "address":
 | 
						|
		typ.Kind = reflect.Array
 | 
						|
		typ.Type = addressT
 | 
						|
		typ.Size = 20
 | 
						|
		typ.T = AddressTy
 | 
						|
	case "string":
 | 
						|
		typ.Kind = reflect.String
 | 
						|
		typ.Type = reflect.TypeOf("")
 | 
						|
		typ.T = StringTy
 | 
						|
	case "bytes":
 | 
						|
		if varSize == 0 {
 | 
						|
			typ.T = BytesTy
 | 
						|
			typ.Kind = reflect.Slice
 | 
						|
			typ.Type = reflect.SliceOf(reflect.TypeOf(byte(0)))
 | 
						|
		} else {
 | 
						|
			typ.T = FixedBytesTy
 | 
						|
			typ.Kind = reflect.Array
 | 
						|
			typ.Size = varSize
 | 
						|
			typ.Type = reflect.ArrayOf(varSize, reflect.TypeOf(byte(0)))
 | 
						|
		}
 | 
						|
	case "tuple":
 | 
						|
		var (
 | 
						|
			fields     []reflect.StructField
 | 
						|
			elems      []*Type
 | 
						|
			names      []string
 | 
						|
			expression string // canonical parameter expression
 | 
						|
		)
 | 
						|
		expression += "("
 | 
						|
		for idx, c := range components {
 | 
						|
			cType, err := NewType(c.Type, c.Components)
 | 
						|
			if err != nil {
 | 
						|
				return Type{}, err
 | 
						|
			}
 | 
						|
			if ToCamelCase(c.Name) == "" {
 | 
						|
				return Type{}, errors.New("abi: purely anonymous or underscored field is not supported")
 | 
						|
			}
 | 
						|
			fields = append(fields, reflect.StructField{
 | 
						|
				Name: ToCamelCase(c.Name), // reflect.StructOf will panic for any exported field.
 | 
						|
				Type: cType.Type,
 | 
						|
				Tag:  reflect.StructTag("json:\"" + c.Name + "\""),
 | 
						|
			})
 | 
						|
			elems = append(elems, &cType)
 | 
						|
			names = append(names, c.Name)
 | 
						|
			expression += cType.stringKind
 | 
						|
			if idx != len(components)-1 {
 | 
						|
				expression += ","
 | 
						|
			}
 | 
						|
		}
 | 
						|
		expression += ")"
 | 
						|
		typ.Kind = reflect.Struct
 | 
						|
		typ.Type = reflect.StructOf(fields)
 | 
						|
		typ.TupleElems = elems
 | 
						|
		typ.TupleRawNames = names
 | 
						|
		typ.T = TupleTy
 | 
						|
		typ.stringKind = expression
 | 
						|
	case "function":
 | 
						|
		typ.Kind = reflect.Array
 | 
						|
		typ.T = FunctionTy
 | 
						|
		typ.Size = 24
 | 
						|
		typ.Type = reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
 | 
						|
	default:
 | 
						|
		return Type{}, fmt.Errorf("unsupported arg type: %s", t)
 | 
						|
	}
 | 
						|
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// String implements Stringer
 | 
						|
func (t Type) String() (out string) {
 | 
						|
	return t.stringKind
 | 
						|
}
 | 
						|
 | 
						|
func (t Type) pack(v reflect.Value) ([]byte, error) {
 | 
						|
	// dereference pointer first if it's a pointer
 | 
						|
	v = indirect(v)
 | 
						|
	if err := typeCheck(t, v); err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
 | 
						|
	switch t.T {
 | 
						|
	case SliceTy, ArrayTy:
 | 
						|
		var ret []byte
 | 
						|
 | 
						|
		if t.requiresLengthPrefix() {
 | 
						|
			// append length
 | 
						|
			ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
 | 
						|
		}
 | 
						|
 | 
						|
		// calculate offset if any
 | 
						|
		offset := 0
 | 
						|
		offsetReq := isDynamicType(*t.Elem)
 | 
						|
		if offsetReq {
 | 
						|
			offset = getTypeSize(*t.Elem) * v.Len()
 | 
						|
		}
 | 
						|
		var tail []byte
 | 
						|
		for i := 0; i < v.Len(); i++ {
 | 
						|
			val, err := t.Elem.pack(v.Index(i))
 | 
						|
			if err != nil {
 | 
						|
				return nil, err
 | 
						|
			}
 | 
						|
			if !offsetReq {
 | 
						|
				ret = append(ret, val...)
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			ret = append(ret, packNum(reflect.ValueOf(offset))...)
 | 
						|
			offset += len(val)
 | 
						|
			tail = append(tail, val...)
 | 
						|
		}
 | 
						|
		return append(ret, tail...), nil
 | 
						|
	case TupleTy:
 | 
						|
		// (T1,...,Tk) for k >= 0 and any types T1, …, Tk
 | 
						|
		// enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
 | 
						|
		// where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
 | 
						|
		// type as
 | 
						|
		//     head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
 | 
						|
		// and as
 | 
						|
		//     head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
 | 
						|
		//     tail(X(i)) = enc(X(i))
 | 
						|
		// otherwise, i.e. if Ti is a dynamic type.
 | 
						|
		fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
 | 
						|
		if err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
		// Calculate prefix occupied size.
 | 
						|
		offset := 0
 | 
						|
		for _, elem := range t.TupleElems {
 | 
						|
			offset += getTypeSize(*elem)
 | 
						|
		}
 | 
						|
		var ret, tail []byte
 | 
						|
		for i, elem := range t.TupleElems {
 | 
						|
			field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
 | 
						|
			if !field.IsValid() {
 | 
						|
				return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
 | 
						|
			}
 | 
						|
			val, err := elem.pack(field)
 | 
						|
			if err != nil {
 | 
						|
				return nil, err
 | 
						|
			}
 | 
						|
			if isDynamicType(*elem) {
 | 
						|
				ret = append(ret, packNum(reflect.ValueOf(offset))...)
 | 
						|
				tail = append(tail, val...)
 | 
						|
				offset += len(val)
 | 
						|
			} else {
 | 
						|
				ret = append(ret, val...)
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return append(ret, tail...), nil
 | 
						|
 | 
						|
	default:
 | 
						|
		return packElement(t, v), nil
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// requireLengthPrefix returns whether the type requires any sort of length
 | 
						|
// prefixing.
 | 
						|
func (t Type) requiresLengthPrefix() bool {
 | 
						|
	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
 | 
						|
}
 | 
						|
 | 
						|
// isDynamicType returns true if the type is dynamic.
 | 
						|
// The following types are called “dynamic”:
 | 
						|
// * bytes
 | 
						|
// * string
 | 
						|
// * T[] for any T
 | 
						|
// * T[k] for any dynamic T and any k >= 0
 | 
						|
// * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
 | 
						|
func isDynamicType(t Type) bool {
 | 
						|
	if t.T == TupleTy {
 | 
						|
		for _, elem := range t.TupleElems {
 | 
						|
			if isDynamicType(*elem) {
 | 
						|
				return true
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
 | 
						|
}
 | 
						|
 | 
						|
// getTypeSize returns the size that this type needs to occupy.
 | 
						|
// We distinguish static and dynamic types. Static types are encoded in-place
 | 
						|
// and dynamic types are encoded at a separately allocated location after the
 | 
						|
// current block.
 | 
						|
// So for a static variable, the size returned represents the size that the
 | 
						|
// variable actually occupies.
 | 
						|
// For a dynamic variable, the returned size is fixed 32 bytes, which is used
 | 
						|
// to store the location reference for actual value storage.
 | 
						|
func getTypeSize(t Type) int {
 | 
						|
	if t.T == ArrayTy && !isDynamicType(*t.Elem) {
 | 
						|
		// Recursively calculate type size if it is a nested array
 | 
						|
		if t.Elem.T == ArrayTy {
 | 
						|
			return t.Size * getTypeSize(*t.Elem)
 | 
						|
		}
 | 
						|
		return t.Size * 32
 | 
						|
	} else if t.T == TupleTy && !isDynamicType(t) {
 | 
						|
		total := 0
 | 
						|
		for _, elem := range t.TupleElems {
 | 
						|
			total += getTypeSize(*elem)
 | 
						|
		}
 | 
						|
		return total
 | 
						|
	}
 | 
						|
	return 32
 | 
						|
}
 |