* crypto: add bls12-381 elliptic curve wrapper * params: add bls12-381 precompile gas parameters * core/vm: add bls12-381 precompiles * core/vm: add bls12-381 precompile tests * go.mod, go.sum: use latest bls12381 lib * core/vm: move point encode/decode functions to base library * crypto/bls12381: introduce bls12-381 library init function * crypto/bls12381: import bls12381 elliptic curve implementation * go.mod, go.sum: remove bls12-381 library * remove unsued frobenious coeffs supress warning for inp that used in asm * add mappings tests for zero inputs fix swu g2 minus z inverse constant * crypto/bls12381: fix typo * crypto/bls12381: better comments for bls12381 constants * crypto/bls12381: swu, use single conditional for e2 * crypto/bls12381: utils, delete empty line * crypto/bls12381: utils, use FromHex for string to big * crypto/bls12381: g1, g2, strict length check for FromBytes * crypto/bls12381: field_element, comparision changes * crypto/bls12381: change swu, isogeny constants with hex values * core/vm: fix point multiplication comments * core/vm: fix multiexp gas calculation and lookup for g1 and g2 * core/vm: simpler imput length check for multiexp and pairing precompiles * core/vm: rm empty multiexp result declarations * crypto/bls12381: remove modulus type definition * crypto/bls12381: use proper init function * crypto/bls12381: get rid of new lines at fatal desciprtions * crypto/bls12-381: fix no-adx assembly multiplication * crypto/bls12-381: remove old config function * crypto/bls12381: update multiplication backend this commit changes mul backend to 6limb eip1962 backend mul assign operations are dropped * core/vm/contracts_tests: externalize test vectors for precompiles * core/vm/contracts_test: externalize failure-cases for precompiles * core/vm: linting * go.mod: tiny up sum file * core/vm: fix goimports linter issues * crypto/bls12381: build tags for plain ASM or ADX implementation Co-authored-by: Martin Holst Swende <martin@swende.se> Co-authored-by: Péter Szilágyi <peterke@gmail.com>
		
			
				
	
	
		
			283 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2020 The go-ethereum Authors
 | 
						|
// This file is part of the go-ethereum library.
 | 
						|
//
 | 
						|
// The go-ethereum library is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU Lesser General Public License as published by
 | 
						|
// the Free Software Foundation, either version 3 of the License, or
 | 
						|
// (at your option) any later version.
 | 
						|
//
 | 
						|
// The go-ethereum library is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | 
						|
// GNU Lesser General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Lesser General Public License
 | 
						|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
package bls12381
 | 
						|
 | 
						|
type pair struct {
 | 
						|
	g1 *PointG1
 | 
						|
	g2 *PointG2
 | 
						|
}
 | 
						|
 | 
						|
func newPair(g1 *PointG1, g2 *PointG2) pair {
 | 
						|
	return pair{g1, g2}
 | 
						|
}
 | 
						|
 | 
						|
// Engine is BLS12-381 elliptic curve pairing engine
 | 
						|
type Engine struct {
 | 
						|
	G1   *G1
 | 
						|
	G2   *G2
 | 
						|
	fp12 *fp12
 | 
						|
	fp2  *fp2
 | 
						|
	pairingEngineTemp
 | 
						|
	pairs []pair
 | 
						|
}
 | 
						|
 | 
						|
// NewPairingEngine creates new pairing engine instance.
 | 
						|
func NewPairingEngine() *Engine {
 | 
						|
	fp2 := newFp2()
 | 
						|
	fp6 := newFp6(fp2)
 | 
						|
	fp12 := newFp12(fp6)
 | 
						|
	g1 := NewG1()
 | 
						|
	g2 := newG2(fp2)
 | 
						|
	return &Engine{
 | 
						|
		fp2:               fp2,
 | 
						|
		fp12:              fp12,
 | 
						|
		G1:                g1,
 | 
						|
		G2:                g2,
 | 
						|
		pairingEngineTemp: newEngineTemp(),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
type pairingEngineTemp struct {
 | 
						|
	t2  [10]*fe2
 | 
						|
	t12 [9]fe12
 | 
						|
}
 | 
						|
 | 
						|
func newEngineTemp() pairingEngineTemp {
 | 
						|
	t2 := [10]*fe2{}
 | 
						|
	for i := 0; i < 10; i++ {
 | 
						|
		t2[i] = &fe2{}
 | 
						|
	}
 | 
						|
	t12 := [9]fe12{}
 | 
						|
	return pairingEngineTemp{t2, t12}
 | 
						|
}
 | 
						|
 | 
						|
// AddPair adds a g1, g2 point pair to pairing engine
 | 
						|
func (e *Engine) AddPair(g1 *PointG1, g2 *PointG2) *Engine {
 | 
						|
	p := newPair(g1, g2)
 | 
						|
	if !e.isZero(p) {
 | 
						|
		e.affine(p)
 | 
						|
		e.pairs = append(e.pairs, p)
 | 
						|
	}
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
// AddPairInv adds a G1, G2 point pair to pairing engine. G1 point is negated.
 | 
						|
func (e *Engine) AddPairInv(g1 *PointG1, g2 *PointG2) *Engine {
 | 
						|
	e.G1.Neg(g1, g1)
 | 
						|
	e.AddPair(g1, g2)
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
// Reset deletes added pairs.
 | 
						|
func (e *Engine) Reset() *Engine {
 | 
						|
	e.pairs = []pair{}
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (e *Engine) isZero(p pair) bool {
 | 
						|
	return e.G1.IsZero(p.g1) || e.G2.IsZero(p.g2)
 | 
						|
}
 | 
						|
 | 
						|
func (e *Engine) affine(p pair) {
 | 
						|
	e.G1.Affine(p.g1)
 | 
						|
	e.G2.Affine(p.g2)
 | 
						|
}
 | 
						|
 | 
						|
func (e *Engine) doublingStep(coeff *[3]fe2, r *PointG2) {
 | 
						|
	// Adaptation of Formula 3 in https://eprint.iacr.org/2010/526.pdf
 | 
						|
	fp2 := e.fp2
 | 
						|
	t := e.t2
 | 
						|
	fp2.mul(t[0], &r[0], &r[1])
 | 
						|
	fp2.mulByFq(t[0], t[0], twoInv)
 | 
						|
	fp2.square(t[1], &r[1])
 | 
						|
	fp2.square(t[2], &r[2])
 | 
						|
	fp2.double(t[7], t[2])
 | 
						|
	fp2.add(t[7], t[7], t[2])
 | 
						|
	fp2.mulByB(t[3], t[7])
 | 
						|
	fp2.double(t[4], t[3])
 | 
						|
	fp2.add(t[4], t[4], t[3])
 | 
						|
	fp2.add(t[5], t[1], t[4])
 | 
						|
	fp2.mulByFq(t[5], t[5], twoInv)
 | 
						|
	fp2.add(t[6], &r[1], &r[2])
 | 
						|
	fp2.square(t[6], t[6])
 | 
						|
	fp2.add(t[7], t[2], t[1])
 | 
						|
	fp2.sub(t[6], t[6], t[7])
 | 
						|
	fp2.sub(&coeff[0], t[3], t[1])
 | 
						|
	fp2.square(t[7], &r[0])
 | 
						|
	fp2.sub(t[4], t[1], t[4])
 | 
						|
	fp2.mul(&r[0], t[4], t[0])
 | 
						|
	fp2.square(t[2], t[3])
 | 
						|
	fp2.double(t[3], t[2])
 | 
						|
	fp2.add(t[3], t[3], t[2])
 | 
						|
	fp2.square(t[5], t[5])
 | 
						|
	fp2.sub(&r[1], t[5], t[3])
 | 
						|
	fp2.mul(&r[2], t[1], t[6])
 | 
						|
	fp2.double(t[0], t[7])
 | 
						|
	fp2.add(&coeff[1], t[0], t[7])
 | 
						|
	fp2.neg(&coeff[2], t[6])
 | 
						|
}
 | 
						|
 | 
						|
func (e *Engine) additionStep(coeff *[3]fe2, r, q *PointG2) {
 | 
						|
	// Algorithm 12 in https://eprint.iacr.org/2010/526.pdf
 | 
						|
	fp2 := e.fp2
 | 
						|
	t := e.t2
 | 
						|
	fp2.mul(t[0], &q[1], &r[2])
 | 
						|
	fp2.neg(t[0], t[0])
 | 
						|
	fp2.add(t[0], t[0], &r[1])
 | 
						|
	fp2.mul(t[1], &q[0], &r[2])
 | 
						|
	fp2.neg(t[1], t[1])
 | 
						|
	fp2.add(t[1], t[1], &r[0])
 | 
						|
	fp2.square(t[2], t[0])
 | 
						|
	fp2.square(t[3], t[1])
 | 
						|
	fp2.mul(t[4], t[1], t[3])
 | 
						|
	fp2.mul(t[2], &r[2], t[2])
 | 
						|
	fp2.mul(t[3], &r[0], t[3])
 | 
						|
	fp2.double(t[5], t[3])
 | 
						|
	fp2.sub(t[5], t[4], t[5])
 | 
						|
	fp2.add(t[5], t[5], t[2])
 | 
						|
	fp2.mul(&r[0], t[1], t[5])
 | 
						|
	fp2.sub(t[2], t[3], t[5])
 | 
						|
	fp2.mul(t[2], t[2], t[0])
 | 
						|
	fp2.mul(t[3], &r[1], t[4])
 | 
						|
	fp2.sub(&r[1], t[2], t[3])
 | 
						|
	fp2.mul(&r[2], &r[2], t[4])
 | 
						|
	fp2.mul(t[2], t[1], &q[1])
 | 
						|
	fp2.mul(t[3], t[0], &q[0])
 | 
						|
	fp2.sub(&coeff[0], t[3], t[2])
 | 
						|
	fp2.neg(&coeff[1], t[0])
 | 
						|
	coeff[2].set(t[1])
 | 
						|
}
 | 
						|
 | 
						|
func (e *Engine) preCompute(ellCoeffs *[68][3]fe2, twistPoint *PointG2) {
 | 
						|
	// Algorithm 5 in  https://eprint.iacr.org/2019/077.pdf
 | 
						|
	if e.G2.IsZero(twistPoint) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	r := new(PointG2).Set(twistPoint)
 | 
						|
	j := 0
 | 
						|
	for i := x.BitLen() - 2; i >= 0; i-- {
 | 
						|
		e.doublingStep(&ellCoeffs[j], r)
 | 
						|
		if x.Bit(i) != 0 {
 | 
						|
			j++
 | 
						|
			ellCoeffs[j] = fe6{}
 | 
						|
			e.additionStep(&ellCoeffs[j], r, twistPoint)
 | 
						|
		}
 | 
						|
		j++
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (e *Engine) millerLoop(f *fe12) {
 | 
						|
	pairs := e.pairs
 | 
						|
	ellCoeffs := make([][68][3]fe2, len(pairs))
 | 
						|
	for i := 0; i < len(pairs); i++ {
 | 
						|
		e.preCompute(&ellCoeffs[i], pairs[i].g2)
 | 
						|
	}
 | 
						|
	fp12, fp2 := e.fp12, e.fp2
 | 
						|
	t := e.t2
 | 
						|
	f.one()
 | 
						|
	j := 0
 | 
						|
	for i := 62; /* x.BitLen() - 2 */ i >= 0; i-- {
 | 
						|
		if i != 62 {
 | 
						|
			fp12.square(f, f)
 | 
						|
		}
 | 
						|
		for i := 0; i <= len(pairs)-1; i++ {
 | 
						|
			fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
 | 
						|
			fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
 | 
						|
			fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
 | 
						|
		}
 | 
						|
		if x.Bit(i) != 0 {
 | 
						|
			j++
 | 
						|
			for i := 0; i <= len(pairs)-1; i++ {
 | 
						|
				fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
 | 
						|
				fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
 | 
						|
				fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
 | 
						|
			}
 | 
						|
		}
 | 
						|
		j++
 | 
						|
	}
 | 
						|
	fp12.conjugate(f, f)
 | 
						|
}
 | 
						|
 | 
						|
func (e *Engine) exp(c, a *fe12) {
 | 
						|
	fp12 := e.fp12
 | 
						|
	fp12.cyclotomicExp(c, a, x)
 | 
						|
	fp12.conjugate(c, c)
 | 
						|
}
 | 
						|
 | 
						|
func (e *Engine) finalExp(f *fe12) {
 | 
						|
	fp12 := e.fp12
 | 
						|
	t := e.t12
 | 
						|
	// easy part
 | 
						|
	fp12.frobeniusMap(&t[0], f, 6)
 | 
						|
	fp12.inverse(&t[1], f)
 | 
						|
	fp12.mul(&t[2], &t[0], &t[1])
 | 
						|
	t[1].set(&t[2])
 | 
						|
	fp12.frobeniusMapAssign(&t[2], 2)
 | 
						|
	fp12.mulAssign(&t[2], &t[1])
 | 
						|
	fp12.cyclotomicSquare(&t[1], &t[2])
 | 
						|
	fp12.conjugate(&t[1], &t[1])
 | 
						|
	// hard part
 | 
						|
	e.exp(&t[3], &t[2])
 | 
						|
	fp12.cyclotomicSquare(&t[4], &t[3])
 | 
						|
	fp12.mul(&t[5], &t[1], &t[3])
 | 
						|
	e.exp(&t[1], &t[5])
 | 
						|
	e.exp(&t[0], &t[1])
 | 
						|
	e.exp(&t[6], &t[0])
 | 
						|
	fp12.mulAssign(&t[6], &t[4])
 | 
						|
	e.exp(&t[4], &t[6])
 | 
						|
	fp12.conjugate(&t[5], &t[5])
 | 
						|
	fp12.mulAssign(&t[4], &t[5])
 | 
						|
	fp12.mulAssign(&t[4], &t[2])
 | 
						|
	fp12.conjugate(&t[5], &t[2])
 | 
						|
	fp12.mulAssign(&t[1], &t[2])
 | 
						|
	fp12.frobeniusMapAssign(&t[1], 3)
 | 
						|
	fp12.mulAssign(&t[6], &t[5])
 | 
						|
	fp12.frobeniusMapAssign(&t[6], 1)
 | 
						|
	fp12.mulAssign(&t[3], &t[0])
 | 
						|
	fp12.frobeniusMapAssign(&t[3], 2)
 | 
						|
	fp12.mulAssign(&t[3], &t[1])
 | 
						|
	fp12.mulAssign(&t[3], &t[6])
 | 
						|
	fp12.mul(f, &t[3], &t[4])
 | 
						|
}
 | 
						|
 | 
						|
func (e *Engine) calculate() *fe12 {
 | 
						|
	f := e.fp12.one()
 | 
						|
	if len(e.pairs) == 0 {
 | 
						|
		return f
 | 
						|
	}
 | 
						|
	e.millerLoop(f)
 | 
						|
	e.finalExp(f)
 | 
						|
	return f
 | 
						|
}
 | 
						|
 | 
						|
// Check computes pairing and checks if result is equal to one
 | 
						|
func (e *Engine) Check() bool {
 | 
						|
	return e.calculate().isOne()
 | 
						|
}
 | 
						|
 | 
						|
// Result computes pairing and returns target group element as result.
 | 
						|
func (e *Engine) Result() *E {
 | 
						|
	r := e.calculate()
 | 
						|
	e.Reset()
 | 
						|
	return r
 | 
						|
}
 | 
						|
 | 
						|
// GT returns target group instance.
 | 
						|
func (e *Engine) GT() *GT {
 | 
						|
	return NewGT()
 | 
						|
}
 |