279 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2019 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package trie
 | |
| 
 | |
| import (
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"sync"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/crypto"
 | |
| 	"github.com/ethereum/go-ethereum/rlp"
 | |
| 	"golang.org/x/crypto/sha3"
 | |
| )
 | |
| 
 | |
| // leafChanSize is the size of the leafCh. It's a pretty arbitrary number, to allow
 | |
| // some parallelism but not incur too much memory overhead.
 | |
| const leafChanSize = 200
 | |
| 
 | |
| // leaf represents a trie leaf value
 | |
| type leaf struct {
 | |
| 	size   int         // size of the rlp data (estimate)
 | |
| 	hash   common.Hash // hash of rlp data
 | |
| 	node   node        // the node to commit
 | |
| 	vnodes bool        // set to true if the node (possibly) contains a valueNode
 | |
| }
 | |
| 
 | |
| // committer is a type used for the trie Commit operation. A committer has some
 | |
| // internal preallocated temp space, and also a callback that is invoked when
 | |
| // leaves are committed. The leafs are passed through the `leafCh`,  to allow
 | |
| // some level of parallelism.
 | |
| // By 'some level' of parallelism, it's still the case that all leaves will be
 | |
| // processed sequentially - onleaf will never be called in parallel or out of order.
 | |
| type committer struct {
 | |
| 	tmp sliceBuffer
 | |
| 	sha crypto.KeccakState
 | |
| 
 | |
| 	onleaf LeafCallback
 | |
| 	leafCh chan *leaf
 | |
| }
 | |
| 
 | |
| // committers live in a global sync.Pool
 | |
| var committerPool = sync.Pool{
 | |
| 	New: func() interface{} {
 | |
| 		return &committer{
 | |
| 			tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
 | |
| 			sha: sha3.NewLegacyKeccak256().(crypto.KeccakState),
 | |
| 		}
 | |
| 	},
 | |
| }
 | |
| 
 | |
| // newCommitter creates a new committer or picks one from the pool.
 | |
| func newCommitter() *committer {
 | |
| 	return committerPool.Get().(*committer)
 | |
| }
 | |
| 
 | |
| func returnCommitterToPool(h *committer) {
 | |
| 	h.onleaf = nil
 | |
| 	h.leafCh = nil
 | |
| 	committerPool.Put(h)
 | |
| }
 | |
| 
 | |
| // commitNeeded returns 'false' if the given node is already in sync with db
 | |
| func (c *committer) commitNeeded(n node) bool {
 | |
| 	hash, dirty := n.cache()
 | |
| 	return hash == nil || dirty
 | |
| }
 | |
| 
 | |
| // commit collapses a node down into a hash node and inserts it into the database
 | |
| func (c *committer) Commit(n node, db *Database) (hashNode, error) {
 | |
| 	if db == nil {
 | |
| 		return nil, errors.New("no db provided")
 | |
| 	}
 | |
| 	h, err := c.commit(n, db, true)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return h.(hashNode), nil
 | |
| }
 | |
| 
 | |
| // commit collapses a node down into a hash node and inserts it into the database
 | |
| func (c *committer) commit(n node, db *Database, force bool) (node, error) {
 | |
| 	// if this path is clean, use available cached data
 | |
| 	hash, dirty := n.cache()
 | |
| 	if hash != nil && !dirty {
 | |
| 		return hash, nil
 | |
| 	}
 | |
| 	// Commit children, then parent, and remove remove the dirty flag.
 | |
| 	switch cn := n.(type) {
 | |
| 	case *shortNode:
 | |
| 		// Commit child
 | |
| 		collapsed := cn.copy()
 | |
| 		if _, ok := cn.Val.(valueNode); !ok {
 | |
| 			childV, err := c.commit(cn.Val, db, false)
 | |
| 			if err != nil {
 | |
| 				return nil, err
 | |
| 			}
 | |
| 			collapsed.Val = childV
 | |
| 		}
 | |
| 		// The key needs to be copied, since we're delivering it to database
 | |
| 		collapsed.Key = hexToCompact(cn.Key)
 | |
| 		hashedNode := c.store(collapsed, db, force, true)
 | |
| 		if hn, ok := hashedNode.(hashNode); ok {
 | |
| 			return hn, nil
 | |
| 		}
 | |
| 		return collapsed, nil
 | |
| 	case *fullNode:
 | |
| 		hashedKids, hasVnodes, err := c.commitChildren(cn, db, force)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		collapsed := cn.copy()
 | |
| 		collapsed.Children = hashedKids
 | |
| 
 | |
| 		hashedNode := c.store(collapsed, db, force, hasVnodes)
 | |
| 		if hn, ok := hashedNode.(hashNode); ok {
 | |
| 			return hn, nil
 | |
| 		}
 | |
| 		return collapsed, nil
 | |
| 	case valueNode:
 | |
| 		return c.store(cn, db, force, false), nil
 | |
| 	// hashnodes aren't stored
 | |
| 	case hashNode:
 | |
| 		return cn, nil
 | |
| 	}
 | |
| 	return hash, nil
 | |
| }
 | |
| 
 | |
| // commitChildren commits the children of the given fullnode
 | |
| func (c *committer) commitChildren(n *fullNode, db *Database, force bool) ([17]node, bool, error) {
 | |
| 	var children [17]node
 | |
| 	var hasValueNodeChildren = false
 | |
| 	for i, child := range n.Children {
 | |
| 		if child == nil {
 | |
| 			continue
 | |
| 		}
 | |
| 		hnode, err := c.commit(child, db, false)
 | |
| 		if err != nil {
 | |
| 			return children, false, err
 | |
| 		}
 | |
| 		children[i] = hnode
 | |
| 		if _, ok := hnode.(valueNode); ok {
 | |
| 			hasValueNodeChildren = true
 | |
| 		}
 | |
| 	}
 | |
| 	return children, hasValueNodeChildren, nil
 | |
| }
 | |
| 
 | |
| // store hashes the node n and if we have a storage layer specified, it writes
 | |
| // the key/value pair to it and tracks any node->child references as well as any
 | |
| // node->external trie references.
 | |
| func (c *committer) store(n node, db *Database, force bool, hasVnodeChildren bool) node {
 | |
| 	// Larger nodes are replaced by their hash and stored in the database.
 | |
| 	var (
 | |
| 		hash, _ = n.cache()
 | |
| 		size    int
 | |
| 	)
 | |
| 	if hash == nil {
 | |
| 		if vn, ok := n.(valueNode); ok {
 | |
| 			c.tmp.Reset()
 | |
| 			if err := rlp.Encode(&c.tmp, vn); err != nil {
 | |
| 				panic("encode error: " + err.Error())
 | |
| 			}
 | |
| 			size = len(c.tmp)
 | |
| 			if size < 32 && !force {
 | |
| 				return n // Nodes smaller than 32 bytes are stored inside their parent
 | |
| 			}
 | |
| 			hash = c.makeHashNode(c.tmp)
 | |
| 		} else {
 | |
| 			// This was not generated - must be a small node stored in the parent
 | |
| 			// No need to do anything here
 | |
| 			return n
 | |
| 		}
 | |
| 	} else {
 | |
| 		// We have the hash already, estimate the RLP encoding-size of the node.
 | |
| 		// The size is used for mem tracking, does not need to be exact
 | |
| 		size = estimateSize(n)
 | |
| 	}
 | |
| 	// If we're using channel-based leaf-reporting, send to channel.
 | |
| 	// The leaf channel will be active only when there an active leaf-callback
 | |
| 	if c.leafCh != nil {
 | |
| 		c.leafCh <- &leaf{
 | |
| 			size:   size,
 | |
| 			hash:   common.BytesToHash(hash),
 | |
| 			node:   n,
 | |
| 			vnodes: hasVnodeChildren,
 | |
| 		}
 | |
| 	} else if db != nil {
 | |
| 		// No leaf-callback used, but there's still a database. Do serial
 | |
| 		// insertion
 | |
| 		db.lock.Lock()
 | |
| 		db.insert(common.BytesToHash(hash), size, n)
 | |
| 		db.lock.Unlock()
 | |
| 	}
 | |
| 	return hash
 | |
| }
 | |
| 
 | |
| // commitLoop does the actual insert + leaf callback for nodes
 | |
| func (c *committer) commitLoop(db *Database) {
 | |
| 	for item := range c.leafCh {
 | |
| 		var (
 | |
| 			hash      = item.hash
 | |
| 			size      = item.size
 | |
| 			n         = item.node
 | |
| 			hasVnodes = item.vnodes
 | |
| 		)
 | |
| 		// We are pooling the trie nodes into an intermediate memory cache
 | |
| 		db.lock.Lock()
 | |
| 		db.insert(hash, size, n)
 | |
| 		db.lock.Unlock()
 | |
| 		if c.onleaf != nil && hasVnodes {
 | |
| 			switch n := n.(type) {
 | |
| 			case *shortNode:
 | |
| 				if child, ok := n.Val.(valueNode); ok {
 | |
| 					c.onleaf(child, hash)
 | |
| 				}
 | |
| 			case *fullNode:
 | |
| 				for i := 0; i < 16; i++ {
 | |
| 					if child, ok := n.Children[i].(valueNode); ok {
 | |
| 						c.onleaf(child, hash)
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (c *committer) makeHashNode(data []byte) hashNode {
 | |
| 	n := make(hashNode, c.sha.Size())
 | |
| 	c.sha.Reset()
 | |
| 	c.sha.Write(data)
 | |
| 	c.sha.Read(n)
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // estimateSize estimates the size of an rlp-encoded node, without actually
 | |
| // rlp-encoding it (zero allocs). This method has been experimentally tried, and with a trie
 | |
| // with 1000 leafs, the only errors above 1% are on small shortnodes, where this
 | |
| // method overestimates by 2 or 3 bytes (e.g. 37 instead of 35)
 | |
| func estimateSize(n node) int {
 | |
| 	switch n := n.(type) {
 | |
| 	case *shortNode:
 | |
| 		// A short node contains a compacted key, and a value.
 | |
| 		return 3 + len(n.Key) + estimateSize(n.Val)
 | |
| 	case *fullNode:
 | |
| 		// A full node contains up to 16 hashes (some nils), and a key
 | |
| 		s := 3
 | |
| 		for i := 0; i < 16; i++ {
 | |
| 			if child := n.Children[i]; child != nil {
 | |
| 				s += estimateSize(child)
 | |
| 			} else {
 | |
| 				s++
 | |
| 			}
 | |
| 		}
 | |
| 		return s
 | |
| 	case valueNode:
 | |
| 		return 1 + len(n)
 | |
| 	case hashNode:
 | |
| 		return 1 + len(n)
 | |
| 	default:
 | |
| 		panic(fmt.Sprintf("node type %T", n))
 | |
| 
 | |
| 	}
 | |
| }
 |