The previous metric was pubkey1^pubkey2, as specified in the Kademlia paper. We missed that EC public keys are not uniformly distributed. Using the hash of the public keys addresses that. It also makes it a bit harder to generate node IDs that are close to a particular node.
		
			
				
	
	
		
			305 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			305 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
package discover
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto/ecdsa"
 | 
						|
	"crypto/elliptic"
 | 
						|
	"encoding/hex"
 | 
						|
	"errors"
 | 
						|
	"fmt"
 | 
						|
	"math/big"
 | 
						|
	"math/rand"
 | 
						|
	"net"
 | 
						|
	"net/url"
 | 
						|
	"strconv"
 | 
						|
	"strings"
 | 
						|
 | 
						|
	"github.com/ethereum/go-ethereum/common"
 | 
						|
	"github.com/ethereum/go-ethereum/crypto"
 | 
						|
	"github.com/ethereum/go-ethereum/crypto/secp256k1"
 | 
						|
)
 | 
						|
 | 
						|
const nodeIDBits = 512
 | 
						|
 | 
						|
// Node represents a host on the network.
 | 
						|
type Node struct {
 | 
						|
	IP       net.IP // len 4 for IPv4 or 16 for IPv6
 | 
						|
	UDP, TCP uint16 // port numbers
 | 
						|
	ID       NodeID // the node's public key
 | 
						|
 | 
						|
	// This is a cached copy of sha3(ID) which is used for node
 | 
						|
	// distance calculations. This is part of Node in order to make it
 | 
						|
	// possible to write tests that need a node at a certain distance.
 | 
						|
	// In those tests, the content of sha will not actually correspond
 | 
						|
	// with ID.
 | 
						|
	sha common.Hash
 | 
						|
}
 | 
						|
 | 
						|
func newNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
 | 
						|
	if ipv4 := ip.To4(); ipv4 != nil {
 | 
						|
		ip = ipv4
 | 
						|
	}
 | 
						|
	return &Node{
 | 
						|
		IP:  ip,
 | 
						|
		UDP: udpPort,
 | 
						|
		TCP: tcpPort,
 | 
						|
		ID:  id,
 | 
						|
		sha: crypto.Sha3Hash(id[:]),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) addr() *net.UDPAddr {
 | 
						|
	return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
 | 
						|
}
 | 
						|
 | 
						|
// The string representation of a Node is a URL.
 | 
						|
// Please see ParseNode for a description of the format.
 | 
						|
func (n *Node) String() string {
 | 
						|
	addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
 | 
						|
	u := url.URL{
 | 
						|
		Scheme: "enode",
 | 
						|
		User:   url.User(fmt.Sprintf("%x", n.ID[:])),
 | 
						|
		Host:   addr.String(),
 | 
						|
	}
 | 
						|
	if n.UDP != n.TCP {
 | 
						|
		u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
 | 
						|
	}
 | 
						|
	return u.String()
 | 
						|
}
 | 
						|
 | 
						|
// ParseNode parses a node URL.
 | 
						|
//
 | 
						|
// A node URL has scheme "enode".
 | 
						|
//
 | 
						|
// The hexadecimal node ID is encoded in the username portion of the
 | 
						|
// URL, separated from the host by an @ sign. The hostname can only be
 | 
						|
// given as an IP address, DNS domain names are not allowed. The port
 | 
						|
// in the host name section is the TCP listening port. If the TCP and
 | 
						|
// UDP (discovery) ports differ, the UDP port is specified as query
 | 
						|
// parameter "discport".
 | 
						|
//
 | 
						|
// In the following example, the node URL describes
 | 
						|
// a node with IP address 10.3.58.6, TCP listening port 30303
 | 
						|
// and UDP discovery port 30301.
 | 
						|
//
 | 
						|
//    enode://<hex node id>@10.3.58.6:30303?discport=30301
 | 
						|
func ParseNode(rawurl string) (*Node, error) {
 | 
						|
	var (
 | 
						|
		id               NodeID
 | 
						|
		ip               net.IP
 | 
						|
		tcpPort, udpPort uint64
 | 
						|
	)
 | 
						|
	u, err := url.Parse(rawurl)
 | 
						|
	if u.Scheme != "enode" {
 | 
						|
		return nil, errors.New("invalid URL scheme, want \"enode\"")
 | 
						|
	}
 | 
						|
	// Parse the Node ID from the user portion.
 | 
						|
	if u.User == nil {
 | 
						|
		return nil, errors.New("does not contain node ID")
 | 
						|
	}
 | 
						|
	if id, err = HexID(u.User.String()); err != nil {
 | 
						|
		return nil, fmt.Errorf("invalid node ID (%v)", err)
 | 
						|
	}
 | 
						|
	// Parse the IP address.
 | 
						|
	host, port, err := net.SplitHostPort(u.Host)
 | 
						|
	if err != nil {
 | 
						|
		return nil, fmt.Errorf("invalid host: %v", err)
 | 
						|
	}
 | 
						|
	if ip = net.ParseIP(host); ip == nil {
 | 
						|
		return nil, errors.New("invalid IP address")
 | 
						|
	}
 | 
						|
	// Ensure the IP is 4 bytes long for IPv4 addresses.
 | 
						|
	if ipv4 := ip.To4(); ipv4 != nil {
 | 
						|
		ip = ipv4
 | 
						|
	}
 | 
						|
	// Parse the port numbers.
 | 
						|
	if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
 | 
						|
		return nil, errors.New("invalid port")
 | 
						|
	}
 | 
						|
	udpPort = tcpPort
 | 
						|
	qv := u.Query()
 | 
						|
	if qv.Get("discport") != "" {
 | 
						|
		udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
 | 
						|
		if err != nil {
 | 
						|
			return nil, errors.New("invalid discport in query")
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return newNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
 | 
						|
}
 | 
						|
 | 
						|
// MustParseNode parses a node URL. It panics if the URL is not valid.
 | 
						|
func MustParseNode(rawurl string) *Node {
 | 
						|
	n, err := ParseNode(rawurl)
 | 
						|
	if err != nil {
 | 
						|
		panic("invalid node URL: " + err.Error())
 | 
						|
	}
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
// NodeID is a unique identifier for each node.
 | 
						|
// The node identifier is a marshaled elliptic curve public key.
 | 
						|
type NodeID [nodeIDBits / 8]byte
 | 
						|
 | 
						|
// NodeID prints as a long hexadecimal number.
 | 
						|
func (n NodeID) String() string {
 | 
						|
	return fmt.Sprintf("%x", n[:])
 | 
						|
}
 | 
						|
 | 
						|
// The Go syntax representation of a NodeID is a call to HexID.
 | 
						|
func (n NodeID) GoString() string {
 | 
						|
	return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
 | 
						|
}
 | 
						|
 | 
						|
// HexID converts a hex string to a NodeID.
 | 
						|
// The string may be prefixed with 0x.
 | 
						|
func HexID(in string) (NodeID, error) {
 | 
						|
	if strings.HasPrefix(in, "0x") {
 | 
						|
		in = in[2:]
 | 
						|
	}
 | 
						|
	var id NodeID
 | 
						|
	b, err := hex.DecodeString(in)
 | 
						|
	if err != nil {
 | 
						|
		return id, err
 | 
						|
	} else if len(b) != len(id) {
 | 
						|
		return id, fmt.Errorf("wrong length, need %d hex bytes", len(id))
 | 
						|
	}
 | 
						|
	copy(id[:], b)
 | 
						|
	return id, nil
 | 
						|
}
 | 
						|
 | 
						|
// MustHexID converts a hex string to a NodeID.
 | 
						|
// It panics if the string is not a valid NodeID.
 | 
						|
func MustHexID(in string) NodeID {
 | 
						|
	id, err := HexID(in)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
	return id
 | 
						|
}
 | 
						|
 | 
						|
// PubkeyID returns a marshaled representation of the given public key.
 | 
						|
func PubkeyID(pub *ecdsa.PublicKey) NodeID {
 | 
						|
	var id NodeID
 | 
						|
	pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
 | 
						|
	if len(pbytes)-1 != len(id) {
 | 
						|
		panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
 | 
						|
	}
 | 
						|
	copy(id[:], pbytes[1:])
 | 
						|
	return id
 | 
						|
}
 | 
						|
 | 
						|
// Pubkey returns the public key represented by the node ID.
 | 
						|
// It returns an error if the ID is not a point on the curve.
 | 
						|
func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) {
 | 
						|
	p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
 | 
						|
	half := len(id) / 2
 | 
						|
	p.X.SetBytes(id[:half])
 | 
						|
	p.Y.SetBytes(id[half:])
 | 
						|
	if !p.Curve.IsOnCurve(p.X, p.Y) {
 | 
						|
		return nil, errors.New("not a point on the S256 curve")
 | 
						|
	}
 | 
						|
	return p, nil
 | 
						|
}
 | 
						|
 | 
						|
// recoverNodeID computes the public key used to sign the
 | 
						|
// given hash from the signature.
 | 
						|
func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
 | 
						|
	pubkey, err := secp256k1.RecoverPubkey(hash, sig)
 | 
						|
	if err != nil {
 | 
						|
		return id, err
 | 
						|
	}
 | 
						|
	if len(pubkey)-1 != len(id) {
 | 
						|
		return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
 | 
						|
	}
 | 
						|
	for i := range id {
 | 
						|
		id[i] = pubkey[i+1]
 | 
						|
	}
 | 
						|
	return id, nil
 | 
						|
}
 | 
						|
 | 
						|
// distcmp compares the distances a->target and b->target.
 | 
						|
// Returns -1 if a is closer to target, 1 if b is closer to target
 | 
						|
// and 0 if they are equal.
 | 
						|
func distcmp(target, a, b common.Hash) int {
 | 
						|
	for i := range target {
 | 
						|
		da := a[i] ^ target[i]
 | 
						|
		db := b[i] ^ target[i]
 | 
						|
		if da > db {
 | 
						|
			return 1
 | 
						|
		} else if da < db {
 | 
						|
			return -1
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
// table of leading zero counts for bytes [0..255]
 | 
						|
var lzcount = [256]int{
 | 
						|
	8, 7, 6, 6, 5, 5, 5, 5,
 | 
						|
	4, 4, 4, 4, 4, 4, 4, 4,
 | 
						|
	3, 3, 3, 3, 3, 3, 3, 3,
 | 
						|
	3, 3, 3, 3, 3, 3, 3, 3,
 | 
						|
	2, 2, 2, 2, 2, 2, 2, 2,
 | 
						|
	2, 2, 2, 2, 2, 2, 2, 2,
 | 
						|
	2, 2, 2, 2, 2, 2, 2, 2,
 | 
						|
	2, 2, 2, 2, 2, 2, 2, 2,
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1,
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1,
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1,
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1,
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1,
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1,
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1,
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
}
 | 
						|
 | 
						|
// logdist returns the logarithmic distance between a and b, log2(a ^ b).
 | 
						|
func logdist(a, b common.Hash) int {
 | 
						|
	lz := 0
 | 
						|
	for i := range a {
 | 
						|
		x := a[i] ^ b[i]
 | 
						|
		if x == 0 {
 | 
						|
			lz += 8
 | 
						|
		} else {
 | 
						|
			lz += lzcount[x]
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return len(a)*8 - lz
 | 
						|
}
 | 
						|
 | 
						|
// hashAtDistance returns a random hash such that logdist(a, b) == n
 | 
						|
func hashAtDistance(a common.Hash, n int) (b common.Hash) {
 | 
						|
	if n == 0 {
 | 
						|
		return a
 | 
						|
	}
 | 
						|
	// flip bit at position n, fill the rest with random bits
 | 
						|
	b = a
 | 
						|
	pos := len(a) - n/8 - 1
 | 
						|
	bit := byte(0x01) << (byte(n%8) - 1)
 | 
						|
	if bit == 0 {
 | 
						|
		pos++
 | 
						|
		bit = 0x80
 | 
						|
	}
 | 
						|
	b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
 | 
						|
	for i := pos + 1; i < len(a); i++ {
 | 
						|
		b[i] = byte(rand.Intn(255))
 | 
						|
	}
 | 
						|
	return b
 | 
						|
}
 |