351 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			351 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2019 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package snapshot
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"fmt"
 | |
| 	"sort"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| )
 | |
| 
 | |
| // weightedIterator is a iterator with an assigned weight. It is used to prioritise
 | |
| // which account or storage slot is the correct one if multiple iterators find the
 | |
| // same one (modified in multiple consecutive blocks).
 | |
| type weightedIterator struct {
 | |
| 	it       Iterator
 | |
| 	priority int
 | |
| }
 | |
| 
 | |
| // weightedIterators is a set of iterators implementing the sort.Interface.
 | |
| type weightedIterators []*weightedIterator
 | |
| 
 | |
| // Len implements sort.Interface, returning the number of active iterators.
 | |
| func (its weightedIterators) Len() int { return len(its) }
 | |
| 
 | |
| // Less implements sort.Interface, returning which of two iterators in the stack
 | |
| // is before the other.
 | |
| func (its weightedIterators) Less(i, j int) bool {
 | |
| 	// Order the iterators primarily by the account hashes
 | |
| 	hashI := its[i].it.Hash()
 | |
| 	hashJ := its[j].it.Hash()
 | |
| 
 | |
| 	switch bytes.Compare(hashI[:], hashJ[:]) {
 | |
| 	case -1:
 | |
| 		return true
 | |
| 	case 1:
 | |
| 		return false
 | |
| 	}
 | |
| 	// Same account/storage-slot in multiple layers, split by priority
 | |
| 	return its[i].priority < its[j].priority
 | |
| }
 | |
| 
 | |
| // Swap implements sort.Interface, swapping two entries in the iterator stack.
 | |
| func (its weightedIterators) Swap(i, j int) {
 | |
| 	its[i], its[j] = its[j], its[i]
 | |
| }
 | |
| 
 | |
| // fastIterator is a more optimized multi-layer iterator which maintains a
 | |
| // direct mapping of all iterators leading down to the bottom layer.
 | |
| type fastIterator struct {
 | |
| 	tree *Tree       // Snapshot tree to reinitialize stale sub-iterators with
 | |
| 	root common.Hash // Root hash to reinitialize stale sub-iterators through
 | |
| 
 | |
| 	curAccount []byte
 | |
| 	curSlot    []byte
 | |
| 
 | |
| 	iterators weightedIterators
 | |
| 	initiated bool
 | |
| 	account   bool
 | |
| 	fail      error
 | |
| }
 | |
| 
 | |
| // newFastIterator creates a new hierarchical account or storage iterator with one
 | |
| // element per diff layer. The returned combo iterator can be used to walk over
 | |
| // the entire snapshot diff stack simultaneously.
 | |
| func newFastIterator(tree *Tree, root common.Hash, account common.Hash, seek common.Hash, accountIterator bool) (*fastIterator, error) {
 | |
| 	snap := tree.Snapshot(root)
 | |
| 	if snap == nil {
 | |
| 		return nil, fmt.Errorf("unknown snapshot: %x", root)
 | |
| 	}
 | |
| 	fi := &fastIterator{
 | |
| 		tree:    tree,
 | |
| 		root:    root,
 | |
| 		account: accountIterator,
 | |
| 	}
 | |
| 	current := snap.(snapshot)
 | |
| 	for depth := 0; current != nil; depth++ {
 | |
| 		if accountIterator {
 | |
| 			fi.iterators = append(fi.iterators, &weightedIterator{
 | |
| 				it:       current.AccountIterator(seek),
 | |
| 				priority: depth,
 | |
| 			})
 | |
| 		} else {
 | |
| 			// If the whole storage is destructed in this layer, don't
 | |
| 			// bother deeper layer anymore. But we should still keep
 | |
| 			// the iterator for this layer, since the iterator can contain
 | |
| 			// some valid slots which belongs to the re-created account.
 | |
| 			it, destructed := current.StorageIterator(account, seek)
 | |
| 			fi.iterators = append(fi.iterators, &weightedIterator{
 | |
| 				it:       it,
 | |
| 				priority: depth,
 | |
| 			})
 | |
| 			if destructed {
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 		current = current.Parent()
 | |
| 	}
 | |
| 	fi.init()
 | |
| 	return fi, nil
 | |
| }
 | |
| 
 | |
| // init walks over all the iterators and resolves any clashes between them, after
 | |
| // which it prepares the stack for step-by-step iteration.
 | |
| func (fi *fastIterator) init() {
 | |
| 	// Track which account hashes are iterators positioned on
 | |
| 	var positioned = make(map[common.Hash]int)
 | |
| 
 | |
| 	// Position all iterators and track how many remain live
 | |
| 	for i := 0; i < len(fi.iterators); i++ {
 | |
| 		// Retrieve the first element and if it clashes with a previous iterator,
 | |
| 		// advance either the current one or the old one. Repeat until nothing is
 | |
| 		// clashing any more.
 | |
| 		it := fi.iterators[i]
 | |
| 		for {
 | |
| 			// If the iterator is exhausted, drop it off the end
 | |
| 			if !it.it.Next() {
 | |
| 				it.it.Release()
 | |
| 				last := len(fi.iterators) - 1
 | |
| 
 | |
| 				fi.iterators[i] = fi.iterators[last]
 | |
| 				fi.iterators[last] = nil
 | |
| 				fi.iterators = fi.iterators[:last]
 | |
| 
 | |
| 				i--
 | |
| 				break
 | |
| 			}
 | |
| 			// The iterator is still alive, check for collisions with previous ones
 | |
| 			hash := it.it.Hash()
 | |
| 			if other, exist := positioned[hash]; !exist {
 | |
| 				positioned[hash] = i
 | |
| 				break
 | |
| 			} else {
 | |
| 				// Iterators collide, one needs to be progressed, use priority to
 | |
| 				// determine which.
 | |
| 				//
 | |
| 				// This whole else-block can be avoided, if we instead
 | |
| 				// do an initial priority-sort of the iterators. If we do that,
 | |
| 				// then we'll only wind up here if a lower-priority (preferred) iterator
 | |
| 				// has the same value, and then we will always just continue.
 | |
| 				// However, it costs an extra sort, so it's probably not better
 | |
| 				if fi.iterators[other].priority < it.priority {
 | |
| 					// The 'it' should be progressed
 | |
| 					continue
 | |
| 				} else {
 | |
| 					// The 'other' should be progressed, swap them
 | |
| 					it = fi.iterators[other]
 | |
| 					fi.iterators[other], fi.iterators[i] = fi.iterators[i], fi.iterators[other]
 | |
| 					continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	// Re-sort the entire list
 | |
| 	sort.Sort(fi.iterators)
 | |
| 	fi.initiated = false
 | |
| }
 | |
| 
 | |
| // Next steps the iterator forward one element, returning false if exhausted.
 | |
| func (fi *fastIterator) Next() bool {
 | |
| 	if len(fi.iterators) == 0 {
 | |
| 		return false
 | |
| 	}
 | |
| 	if !fi.initiated {
 | |
| 		// Don't forward first time -- we had to 'Next' once in order to
 | |
| 		// do the sorting already
 | |
| 		fi.initiated = true
 | |
| 		if fi.account {
 | |
| 			fi.curAccount = fi.iterators[0].it.(AccountIterator).Account()
 | |
| 		} else {
 | |
| 			fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot()
 | |
| 		}
 | |
| 		if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
 | |
| 			fi.fail = innerErr
 | |
| 			return false
 | |
| 		}
 | |
| 		if fi.curAccount != nil || fi.curSlot != nil {
 | |
| 			return true
 | |
| 		}
 | |
| 		// Implicit else: we've hit a nil-account or nil-slot, and need to
 | |
| 		// fall through to the loop below to land on something non-nil
 | |
| 	}
 | |
| 	// If an account or a slot is deleted in one of the layers, the key will
 | |
| 	// still be there, but the actual value will be nil. However, the iterator
 | |
| 	// should not export nil-values (but instead simply omit the key), so we
 | |
| 	// need to loop here until we either
 | |
| 	//  - get a non-nil value,
 | |
| 	//  - hit an error,
 | |
| 	//  - or exhaust the iterator
 | |
| 	for {
 | |
| 		if !fi.next(0) {
 | |
| 			return false // exhausted
 | |
| 		}
 | |
| 		if fi.account {
 | |
| 			fi.curAccount = fi.iterators[0].it.(AccountIterator).Account()
 | |
| 		} else {
 | |
| 			fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot()
 | |
| 		}
 | |
| 		if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
 | |
| 			fi.fail = innerErr
 | |
| 			return false // error
 | |
| 		}
 | |
| 		if fi.curAccount != nil || fi.curSlot != nil {
 | |
| 			break // non-nil value found
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // next handles the next operation internally and should be invoked when we know
 | |
| // that two elements in the list may have the same value.
 | |
| //
 | |
| // For example, if the iterated hashes become [2,3,5,5,8,9,10], then we should
 | |
| // invoke next(3), which will call Next on elem 3 (the second '5') and will
 | |
| // cascade along the list, applying the same operation if needed.
 | |
| func (fi *fastIterator) next(idx int) bool {
 | |
| 	// If this particular iterator got exhausted, remove it and return true (the
 | |
| 	// next one is surely not exhausted yet, otherwise it would have been removed
 | |
| 	// already).
 | |
| 	if it := fi.iterators[idx].it; !it.Next() {
 | |
| 		it.Release()
 | |
| 
 | |
| 		fi.iterators = append(fi.iterators[:idx], fi.iterators[idx+1:]...)
 | |
| 		return len(fi.iterators) > 0
 | |
| 	}
 | |
| 	// If there's no one left to cascade into, return
 | |
| 	if idx == len(fi.iterators)-1 {
 | |
| 		return true
 | |
| 	}
 | |
| 	// We next-ed the iterator at 'idx', now we may have to re-sort that element
 | |
| 	var (
 | |
| 		cur, next         = fi.iterators[idx], fi.iterators[idx+1]
 | |
| 		curHash, nextHash = cur.it.Hash(), next.it.Hash()
 | |
| 	)
 | |
| 	if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
 | |
| 		// It is still in correct place
 | |
| 		return true
 | |
| 	} else if diff == 0 && cur.priority < next.priority {
 | |
| 		// So still in correct place, but we need to iterate on the next
 | |
| 		fi.next(idx + 1)
 | |
| 		return true
 | |
| 	}
 | |
| 	// At this point, the iterator is in the wrong location, but the remaining
 | |
| 	// list is sorted. Find out where to move the item.
 | |
| 	clash := -1
 | |
| 	index := sort.Search(len(fi.iterators), func(n int) bool {
 | |
| 		// The iterator always advances forward, so anything before the old slot
 | |
| 		// is known to be behind us, so just skip them altogether. This actually
 | |
| 		// is an important clause since the sort order got invalidated.
 | |
| 		if n < idx {
 | |
| 			return false
 | |
| 		}
 | |
| 		if n == len(fi.iterators)-1 {
 | |
| 			// Can always place an elem last
 | |
| 			return true
 | |
| 		}
 | |
| 		nextHash := fi.iterators[n+1].it.Hash()
 | |
| 		if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
 | |
| 			return true
 | |
| 		} else if diff > 0 {
 | |
| 			return false
 | |
| 		}
 | |
| 		// The elem we're placing it next to has the same value,
 | |
| 		// so whichever winds up on n+1 will need further iteraton
 | |
| 		clash = n + 1
 | |
| 
 | |
| 		return cur.priority < fi.iterators[n+1].priority
 | |
| 	})
 | |
| 	fi.move(idx, index)
 | |
| 	if clash != -1 {
 | |
| 		fi.next(clash)
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // move advances an iterator to another position in the list.
 | |
| func (fi *fastIterator) move(index, newpos int) {
 | |
| 	elem := fi.iterators[index]
 | |
| 	copy(fi.iterators[index:], fi.iterators[index+1:newpos+1])
 | |
| 	fi.iterators[newpos] = elem
 | |
| }
 | |
| 
 | |
| // Error returns any failure that occurred during iteration, which might have
 | |
| // caused a premature iteration exit (e.g. snapshot stack becoming stale).
 | |
| func (fi *fastIterator) Error() error {
 | |
| 	return fi.fail
 | |
| }
 | |
| 
 | |
| // Hash returns the current key
 | |
| func (fi *fastIterator) Hash() common.Hash {
 | |
| 	return fi.iterators[0].it.Hash()
 | |
| }
 | |
| 
 | |
| // Account returns the current account blob.
 | |
| // Note the returned account is not a copy, please don't modify it.
 | |
| func (fi *fastIterator) Account() []byte {
 | |
| 	return fi.curAccount
 | |
| }
 | |
| 
 | |
| // Slot returns the current storage slot.
 | |
| // Note the returned slot is not a copy, please don't modify it.
 | |
| func (fi *fastIterator) Slot() []byte {
 | |
| 	return fi.curSlot
 | |
| }
 | |
| 
 | |
| // Release iterates over all the remaining live layer iterators and releases each
 | |
| // of thme individually.
 | |
| func (fi *fastIterator) Release() {
 | |
| 	for _, it := range fi.iterators {
 | |
| 		it.it.Release()
 | |
| 	}
 | |
| 	fi.iterators = nil
 | |
| }
 | |
| 
 | |
| // Debug is a convencience helper during testing
 | |
| func (fi *fastIterator) Debug() {
 | |
| 	for _, it := range fi.iterators {
 | |
| 		fmt.Printf("[p=%v v=%v] ", it.priority, it.it.Hash()[0])
 | |
| 	}
 | |
| 	fmt.Println()
 | |
| }
 | |
| 
 | |
| // newFastAccountIterator creates a new hierarchical account iterator with one
 | |
| // element per diff layer. The returned combo iterator can be used to walk over
 | |
| // the entire snapshot diff stack simultaneously.
 | |
| func newFastAccountIterator(tree *Tree, root common.Hash, seek common.Hash) (AccountIterator, error) {
 | |
| 	return newFastIterator(tree, root, common.Hash{}, seek, true)
 | |
| }
 | |
| 
 | |
| // newFastStorageIterator creates a new hierarchical storage iterator with one
 | |
| // element per diff layer. The returned combo iterator can be used to walk over
 | |
| // the entire snapshot diff stack simultaneously.
 | |
| func newFastStorageIterator(tree *Tree, root common.Hash, account common.Hash, seek common.Hash) (StorageIterator, error) {
 | |
| 	return newFastIterator(tree, root, account, seek, false)
 | |
| }
 |