213 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2017 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| // Package math provides integer math utilities.
 | |
| package math
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"math/big"
 | |
| )
 | |
| 
 | |
| // Various big integer limit values.
 | |
| var (
 | |
| 	tt255     = BigPow(2, 255)
 | |
| 	tt256     = BigPow(2, 256)
 | |
| 	tt256m1   = new(big.Int).Sub(tt256, big.NewInt(1))
 | |
| 	tt63      = BigPow(2, 63)
 | |
| 	MaxBig256 = new(big.Int).Set(tt256m1)
 | |
| 	MaxBig63  = new(big.Int).Sub(tt63, big.NewInt(1))
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// number of bits in a big.Word
 | |
| 	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
 | |
| 	// number of bytes in a big.Word
 | |
| 	wordBytes = wordBits / 8
 | |
| )
 | |
| 
 | |
| // HexOrDecimal256 marshals big.Int as hex or decimal.
 | |
| type HexOrDecimal256 big.Int
 | |
| 
 | |
| // UnmarshalText implements encoding.TextUnmarshaler.
 | |
| func (i *HexOrDecimal256) UnmarshalText(input []byte) error {
 | |
| 	bigint, ok := ParseBig256(string(input))
 | |
| 	if !ok {
 | |
| 		return fmt.Errorf("invalid hex or decimal integer %q", input)
 | |
| 	}
 | |
| 	*i = HexOrDecimal256(*bigint)
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // MarshalText implements encoding.TextMarshaler.
 | |
| func (i *HexOrDecimal256) MarshalText() ([]byte, error) {
 | |
| 	if i == nil {
 | |
| 		return []byte("0x0"), nil
 | |
| 	}
 | |
| 	return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil
 | |
| }
 | |
| 
 | |
| // ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
 | |
| // Leading zeros are accepted. The empty string parses as zero.
 | |
| func ParseBig256(s string) (*big.Int, bool) {
 | |
| 	if s == "" {
 | |
| 		return new(big.Int), true
 | |
| 	}
 | |
| 	var bigint *big.Int
 | |
| 	var ok bool
 | |
| 	if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
 | |
| 		bigint, ok = new(big.Int).SetString(s[2:], 16)
 | |
| 	} else {
 | |
| 		bigint, ok = new(big.Int).SetString(s, 10)
 | |
| 	}
 | |
| 	if ok && bigint.BitLen() > 256 {
 | |
| 		bigint, ok = nil, false
 | |
| 	}
 | |
| 	return bigint, ok
 | |
| }
 | |
| 
 | |
| // MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid.
 | |
| func MustParseBig256(s string) *big.Int {
 | |
| 	v, ok := ParseBig256(s)
 | |
| 	if !ok {
 | |
| 		panic("invalid 256 bit integer: " + s)
 | |
| 	}
 | |
| 	return v
 | |
| }
 | |
| 
 | |
| // BigPow returns a ** b as a big integer.
 | |
| func BigPow(a, b int64) *big.Int {
 | |
| 	r := big.NewInt(a)
 | |
| 	return r.Exp(r, big.NewInt(b), nil)
 | |
| }
 | |
| 
 | |
| // BigMax returns the larger of x or y.
 | |
| func BigMax(x, y *big.Int) *big.Int {
 | |
| 	if x.Cmp(y) < 0 {
 | |
| 		return y
 | |
| 	}
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| // BigMin returns the smaller of x or y.
 | |
| func BigMin(x, y *big.Int) *big.Int {
 | |
| 	if x.Cmp(y) > 0 {
 | |
| 		return y
 | |
| 	}
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| // FirstBitSet returns the index of the first 1 bit in v, counting from LSB.
 | |
| func FirstBitSet(v *big.Int) int {
 | |
| 	for i := 0; i < v.BitLen(); i++ {
 | |
| 		if v.Bit(i) > 0 {
 | |
| 			return i
 | |
| 		}
 | |
| 	}
 | |
| 	return v.BitLen()
 | |
| }
 | |
| 
 | |
| // PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
 | |
| // of the slice is at least n bytes.
 | |
| func PaddedBigBytes(bigint *big.Int, n int) []byte {
 | |
| 	if bigint.BitLen()/8 >= n {
 | |
| 		return bigint.Bytes()
 | |
| 	}
 | |
| 	ret := make([]byte, n)
 | |
| 	ReadBits(bigint, ret)
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // bigEndianByteAt returns the byte at position n,
 | |
| // in Big-Endian encoding
 | |
| // So n==0 returns the least significant byte
 | |
| func bigEndianByteAt(bigint *big.Int, n int) byte {
 | |
| 	words := bigint.Bits()
 | |
| 	// Check word-bucket the byte will reside in
 | |
| 	i := n / wordBytes
 | |
| 	if i >= len(words) {
 | |
| 		return byte(0)
 | |
| 	}
 | |
| 	word := words[i]
 | |
| 	// Offset of the byte
 | |
| 	shift := 8 * uint(n%wordBytes)
 | |
| 
 | |
| 	return byte(word >> shift)
 | |
| }
 | |
| 
 | |
| // Byte returns the byte at position n,
 | |
| // with the supplied padlength in Little-Endian encoding.
 | |
| // n==0 returns the MSB
 | |
| // Example: bigint '5', padlength 32, n=31 => 5
 | |
| func Byte(bigint *big.Int, padlength, n int) byte {
 | |
| 	if n >= padlength {
 | |
| 		return byte(0)
 | |
| 	}
 | |
| 	return bigEndianByteAt(bigint, padlength-1-n)
 | |
| }
 | |
| 
 | |
| // ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
 | |
| // that buf has enough space. If buf is too short the result will be incomplete.
 | |
| func ReadBits(bigint *big.Int, buf []byte) {
 | |
| 	i := len(buf)
 | |
| 	for _, d := range bigint.Bits() {
 | |
| 		for j := 0; j < wordBytes && i > 0; j++ {
 | |
| 			i--
 | |
| 			buf[i] = byte(d)
 | |
| 			d >>= 8
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // U256 encodes as a 256 bit two's complement number. This operation is destructive.
 | |
| func U256(x *big.Int) *big.Int {
 | |
| 	return x.And(x, tt256m1)
 | |
| }
 | |
| 
 | |
| // S256 interprets x as a two's complement number.
 | |
| // x must not exceed 256 bits (the result is undefined if it does) and is not modified.
 | |
| //
 | |
| //   S256(0)        = 0
 | |
| //   S256(1)        = 1
 | |
| //   S256(2**255)   = -2**255
 | |
| //   S256(2**256-1) = -1
 | |
| func S256(x *big.Int) *big.Int {
 | |
| 	if x.Cmp(tt255) < 0 {
 | |
| 		return x
 | |
| 	}
 | |
| 	return new(big.Int).Sub(x, tt256)
 | |
| }
 | |
| 
 | |
| // Exp implements exponentiation by squaring.
 | |
| // Exp returns a newly-allocated big integer and does not change
 | |
| // base or exponent. The result is truncated to 256 bits.
 | |
| //
 | |
| // Courtesy @karalabe and @chfast
 | |
| func Exp(base, exponent *big.Int) *big.Int {
 | |
| 	result := big.NewInt(1)
 | |
| 
 | |
| 	for _, word := range exponent.Bits() {
 | |
| 		for i := 0; i < wordBits; i++ {
 | |
| 			if word&1 == 1 {
 | |
| 				U256(result.Mul(result, base))
 | |
| 			}
 | |
| 			U256(base.Mul(base, base))
 | |
| 			word >>= 1
 | |
| 		}
 | |
| 	}
 | |
| 	return result
 | |
| }
 |