* trie: add hasRightElement indicator * trie: ensure the range is monotonic increasing * trie: address comment and fix lint * trie: address comment * trie: make linter happy Co-authored-by: Péter Szilágyi <peterke@gmail.com>
		
			
				
	
	
		
			511 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			511 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2015 The go-ethereum Authors
 | 
						|
// This file is part of the go-ethereum library.
 | 
						|
//
 | 
						|
// The go-ethereum library is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU Lesser General Public License as published by
 | 
						|
// the Free Software Foundation, either version 3 of the License, or
 | 
						|
// (at your option) any later version.
 | 
						|
//
 | 
						|
// The go-ethereum library is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | 
						|
// GNU Lesser General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Lesser General Public License
 | 
						|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
package trie
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"errors"
 | 
						|
	"fmt"
 | 
						|
 | 
						|
	"github.com/ethereum/go-ethereum/common"
 | 
						|
	"github.com/ethereum/go-ethereum/ethdb"
 | 
						|
	"github.com/ethereum/go-ethereum/ethdb/memorydb"
 | 
						|
	"github.com/ethereum/go-ethereum/log"
 | 
						|
	"github.com/ethereum/go-ethereum/rlp"
 | 
						|
)
 | 
						|
 | 
						|
// Prove constructs a merkle proof for key. The result contains all encoded nodes
 | 
						|
// on the path to the value at key. The value itself is also included in the last
 | 
						|
// node and can be retrieved by verifying the proof.
 | 
						|
//
 | 
						|
// If the trie does not contain a value for key, the returned proof contains all
 | 
						|
// nodes of the longest existing prefix of the key (at least the root node), ending
 | 
						|
// with the node that proves the absence of the key.
 | 
						|
func (t *Trie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
 | 
						|
	// Collect all nodes on the path to key.
 | 
						|
	key = keybytesToHex(key)
 | 
						|
	var nodes []node
 | 
						|
	tn := t.root
 | 
						|
	for len(key) > 0 && tn != nil {
 | 
						|
		switch n := tn.(type) {
 | 
						|
		case *shortNode:
 | 
						|
			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
 | 
						|
				// The trie doesn't contain the key.
 | 
						|
				tn = nil
 | 
						|
			} else {
 | 
						|
				tn = n.Val
 | 
						|
				key = key[len(n.Key):]
 | 
						|
			}
 | 
						|
			nodes = append(nodes, n)
 | 
						|
		case *fullNode:
 | 
						|
			tn = n.Children[key[0]]
 | 
						|
			key = key[1:]
 | 
						|
			nodes = append(nodes, n)
 | 
						|
		case hashNode:
 | 
						|
			var err error
 | 
						|
			tn, err = t.resolveHash(n, nil)
 | 
						|
			if err != nil {
 | 
						|
				log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
 | 
						|
				return err
 | 
						|
			}
 | 
						|
		default:
 | 
						|
			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
 | 
						|
		}
 | 
						|
	}
 | 
						|
	hasher := newHasher(false)
 | 
						|
	defer returnHasherToPool(hasher)
 | 
						|
 | 
						|
	for i, n := range nodes {
 | 
						|
		if fromLevel > 0 {
 | 
						|
			fromLevel--
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		var hn node
 | 
						|
		n, hn = hasher.proofHash(n)
 | 
						|
		if hash, ok := hn.(hashNode); ok || i == 0 {
 | 
						|
			// If the node's database encoding is a hash (or is the
 | 
						|
			// root node), it becomes a proof element.
 | 
						|
			enc, _ := rlp.EncodeToBytes(n)
 | 
						|
			if !ok {
 | 
						|
				hash = hasher.hashData(enc)
 | 
						|
			}
 | 
						|
			proofDb.Put(hash, enc)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// Prove constructs a merkle proof for key. The result contains all encoded nodes
 | 
						|
// on the path to the value at key. The value itself is also included in the last
 | 
						|
// node and can be retrieved by verifying the proof.
 | 
						|
//
 | 
						|
// If the trie does not contain a value for key, the returned proof contains all
 | 
						|
// nodes of the longest existing prefix of the key (at least the root node), ending
 | 
						|
// with the node that proves the absence of the key.
 | 
						|
func (t *SecureTrie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
 | 
						|
	return t.trie.Prove(key, fromLevel, proofDb)
 | 
						|
}
 | 
						|
 | 
						|
// VerifyProof checks merkle proofs. The given proof must contain the value for
 | 
						|
// key in a trie with the given root hash. VerifyProof returns an error if the
 | 
						|
// proof contains invalid trie nodes or the wrong value.
 | 
						|
func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) {
 | 
						|
	key = keybytesToHex(key)
 | 
						|
	wantHash := rootHash
 | 
						|
	for i := 0; ; i++ {
 | 
						|
		buf, _ := proofDb.Get(wantHash[:])
 | 
						|
		if buf == nil {
 | 
						|
			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash)
 | 
						|
		}
 | 
						|
		n, err := decodeNode(wantHash[:], buf)
 | 
						|
		if err != nil {
 | 
						|
			return nil, fmt.Errorf("bad proof node %d: %v", i, err)
 | 
						|
		}
 | 
						|
		keyrest, cld := get(n, key, true)
 | 
						|
		switch cld := cld.(type) {
 | 
						|
		case nil:
 | 
						|
			// The trie doesn't contain the key.
 | 
						|
			return nil, nil
 | 
						|
		case hashNode:
 | 
						|
			key = keyrest
 | 
						|
			copy(wantHash[:], cld)
 | 
						|
		case valueNode:
 | 
						|
			return cld, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// proofToPath converts a merkle proof to trie node path.
 | 
						|
// The main purpose of this function is recovering a node
 | 
						|
// path from the merkle proof stream. All necessary nodes
 | 
						|
// will be resolved and leave the remaining as hashnode.
 | 
						|
func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
 | 
						|
	// resolveNode retrieves and resolves trie node from merkle proof stream
 | 
						|
	resolveNode := func(hash common.Hash) (node, error) {
 | 
						|
		buf, _ := proofDb.Get(hash[:])
 | 
						|
		if buf == nil {
 | 
						|
			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
 | 
						|
		}
 | 
						|
		n, err := decodeNode(hash[:], buf)
 | 
						|
		if err != nil {
 | 
						|
			return nil, fmt.Errorf("bad proof node %v", err)
 | 
						|
		}
 | 
						|
		return n, err
 | 
						|
	}
 | 
						|
	// If the root node is empty, resolve it first.
 | 
						|
	// Root node must be included in the proof.
 | 
						|
	if root == nil {
 | 
						|
		n, err := resolveNode(rootHash)
 | 
						|
		if err != nil {
 | 
						|
			return nil, nil, err
 | 
						|
		}
 | 
						|
		root = n
 | 
						|
	}
 | 
						|
	var (
 | 
						|
		err           error
 | 
						|
		child, parent node
 | 
						|
		keyrest       []byte
 | 
						|
		valnode       []byte
 | 
						|
	)
 | 
						|
	key, parent = keybytesToHex(key), root
 | 
						|
	for {
 | 
						|
		keyrest, child = get(parent, key, false)
 | 
						|
		switch cld := child.(type) {
 | 
						|
		case nil:
 | 
						|
			// The trie doesn't contain the key. It's possible
 | 
						|
			// the proof is a non-existing proof, but at least
 | 
						|
			// we can prove all resolved nodes are correct, it's
 | 
						|
			// enough for us to prove range.
 | 
						|
			if allowNonExistent {
 | 
						|
				return root, nil, nil
 | 
						|
			}
 | 
						|
			return nil, nil, errors.New("the node is not contained in trie")
 | 
						|
		case *shortNode:
 | 
						|
			key, parent = keyrest, child // Already resolved
 | 
						|
			continue
 | 
						|
		case *fullNode:
 | 
						|
			key, parent = keyrest, child // Already resolved
 | 
						|
			continue
 | 
						|
		case hashNode:
 | 
						|
			child, err = resolveNode(common.BytesToHash(cld))
 | 
						|
			if err != nil {
 | 
						|
				return nil, nil, err
 | 
						|
			}
 | 
						|
		case valueNode:
 | 
						|
			valnode = cld
 | 
						|
		}
 | 
						|
		// Link the parent and child.
 | 
						|
		switch pnode := parent.(type) {
 | 
						|
		case *shortNode:
 | 
						|
			pnode.Val = child
 | 
						|
		case *fullNode:
 | 
						|
			pnode.Children[key[0]] = child
 | 
						|
		default:
 | 
						|
			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
 | 
						|
		}
 | 
						|
		if len(valnode) > 0 {
 | 
						|
			return root, valnode, nil // The whole path is resolved
 | 
						|
		}
 | 
						|
		key, parent = keyrest, child
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// unsetInternal removes all internal node references(hashnode, embedded node).
 | 
						|
// It should be called after a trie is constructed with two edge proofs. Also
 | 
						|
// the given boundary keys must be the one used to construct the edge proofs.
 | 
						|
//
 | 
						|
// It's the key step for range proof. All visited nodes should be marked dirty
 | 
						|
// since the node content might be modified. Besides it can happen that some
 | 
						|
// fullnodes only have one child which is disallowed. But if the proof is valid,
 | 
						|
// the missing children will be filled, otherwise it will be thrown anyway.
 | 
						|
func unsetInternal(n node, left []byte, right []byte) error {
 | 
						|
	left, right = keybytesToHex(left), keybytesToHex(right)
 | 
						|
 | 
						|
	// todo(rjl493456442) different length edge keys should be supported
 | 
						|
	if len(left) != len(right) {
 | 
						|
		return errors.New("inconsistent edge path")
 | 
						|
	}
 | 
						|
	// Step down to the fork point. There are two scenarios can happen:
 | 
						|
	// - the fork point is a shortnode: the left proof MUST point to a
 | 
						|
	//   non-existent key and the key doesn't match with the shortnode
 | 
						|
	// - the fork point is a fullnode: the left proof can point to an
 | 
						|
	//   existent key or not.
 | 
						|
	var (
 | 
						|
		pos    = 0
 | 
						|
		parent node
 | 
						|
	)
 | 
						|
findFork:
 | 
						|
	for {
 | 
						|
		switch rn := (n).(type) {
 | 
						|
		case *shortNode:
 | 
						|
			// The right proof must point to an existent key.
 | 
						|
			if len(right)-pos < len(rn.Key) || !bytes.Equal(rn.Key, right[pos:pos+len(rn.Key)]) {
 | 
						|
				return errors.New("invalid edge path")
 | 
						|
			}
 | 
						|
			rn.flags = nodeFlag{dirty: true}
 | 
						|
			// Special case, the non-existent proof points to the same path
 | 
						|
			// as the existent proof, but the path of existent proof is longer.
 | 
						|
			// In this case, the fork point is this shortnode.
 | 
						|
			if len(left)-pos < len(rn.Key) || !bytes.Equal(rn.Key, left[pos:pos+len(rn.Key)]) {
 | 
						|
				break findFork
 | 
						|
			}
 | 
						|
			parent = n
 | 
						|
			n, pos = rn.Val, pos+len(rn.Key)
 | 
						|
		case *fullNode:
 | 
						|
			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
 | 
						|
			// The right proof must point to an existent key.
 | 
						|
			if rightnode == nil {
 | 
						|
				return errors.New("invalid edge path")
 | 
						|
			}
 | 
						|
			rn.flags = nodeFlag{dirty: true}
 | 
						|
			if leftnode != rightnode {
 | 
						|
				break findFork
 | 
						|
			}
 | 
						|
			parent = n
 | 
						|
			n, pos = rn.Children[left[pos]], pos+1
 | 
						|
		default:
 | 
						|
			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
 | 
						|
		}
 | 
						|
	}
 | 
						|
	switch rn := n.(type) {
 | 
						|
	case *shortNode:
 | 
						|
		if _, ok := rn.Val.(valueNode); ok {
 | 
						|
			parent.(*fullNode).Children[right[pos-1]] = nil
 | 
						|
			return nil
 | 
						|
		}
 | 
						|
		return unset(rn, rn.Val, right[pos:], len(rn.Key), true)
 | 
						|
	case *fullNode:
 | 
						|
		for i := left[pos] + 1; i < right[pos]; i++ {
 | 
						|
			rn.Children[i] = nil
 | 
						|
		}
 | 
						|
		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
		return nil
 | 
						|
	default:
 | 
						|
		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// unset removes all internal node references either the left most or right most.
 | 
						|
// If we try to unset all right most references, it can meet these scenarios:
 | 
						|
//
 | 
						|
// - The given path is existent in the trie, unset the associated shortnode
 | 
						|
// - The given path is non-existent in the trie
 | 
						|
//   - the fork point is a fullnode, the corresponding child pointed by path
 | 
						|
//     is nil, return
 | 
						|
//   - the fork point is a shortnode, the key of shortnode is less than path,
 | 
						|
//     keep the entire branch and return.
 | 
						|
//   - the fork point is a shortnode, the key of shortnode is greater than path,
 | 
						|
//     unset the entire branch.
 | 
						|
//
 | 
						|
// If we try to unset all left most references, then the given path should
 | 
						|
// be existent.
 | 
						|
func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
 | 
						|
	switch cld := child.(type) {
 | 
						|
	case *fullNode:
 | 
						|
		if removeLeft {
 | 
						|
			for i := 0; i < int(key[pos]); i++ {
 | 
						|
				cld.Children[i] = nil
 | 
						|
			}
 | 
						|
			cld.flags = nodeFlag{dirty: true}
 | 
						|
		} else {
 | 
						|
			for i := key[pos] + 1; i < 16; i++ {
 | 
						|
				cld.Children[i] = nil
 | 
						|
			}
 | 
						|
			cld.flags = nodeFlag{dirty: true}
 | 
						|
		}
 | 
						|
		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
 | 
						|
	case *shortNode:
 | 
						|
		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
 | 
						|
			// Find the fork point, it's an non-existent branch.
 | 
						|
			if removeLeft {
 | 
						|
				return errors.New("invalid right edge proof")
 | 
						|
			}
 | 
						|
			if bytes.Compare(cld.Key, key[pos:]) > 0 {
 | 
						|
				// The key of fork shortnode is greater than the
 | 
						|
				// path(it belongs to the range), unset the entrie
 | 
						|
				// branch. The parent must be a fullnode.
 | 
						|
				fn := parent.(*fullNode)
 | 
						|
				fn.Children[key[pos-1]] = nil
 | 
						|
			} else {
 | 
						|
				// The key of fork shortnode is less than the
 | 
						|
				// path(it doesn't belong to the range), keep
 | 
						|
				// it with the cached hash available.
 | 
						|
			}
 | 
						|
			return nil
 | 
						|
		}
 | 
						|
		if _, ok := cld.Val.(valueNode); ok {
 | 
						|
			fn := parent.(*fullNode)
 | 
						|
			fn.Children[key[pos-1]] = nil
 | 
						|
			return nil
 | 
						|
		}
 | 
						|
		cld.flags = nodeFlag{dirty: true}
 | 
						|
		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
 | 
						|
	case nil:
 | 
						|
		// If the node is nil, it's a child of the fork point
 | 
						|
		// fullnode(it's an non-existent branch).
 | 
						|
		if removeLeft {
 | 
						|
			return errors.New("invalid right edge proof")
 | 
						|
		}
 | 
						|
		return nil
 | 
						|
	default:
 | 
						|
		panic("it shouldn't happen") // hashNode, valueNode
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// hasRightElement returns the indicator whether there exists more elements
 | 
						|
// in the right side of the given path. The given path can point to an existent
 | 
						|
// key or a non-existent one. This function has the assumption that the whole
 | 
						|
// path should already be resolved.
 | 
						|
func hasRightElement(node node, key []byte) bool {
 | 
						|
	pos, key := 0, keybytesToHex(key)
 | 
						|
	for node != nil {
 | 
						|
		switch rn := node.(type) {
 | 
						|
		case *fullNode:
 | 
						|
			for i := key[pos] + 1; i < 16; i++ {
 | 
						|
				if rn.Children[i] != nil {
 | 
						|
					return true
 | 
						|
				}
 | 
						|
			}
 | 
						|
			node, pos = rn.Children[key[pos]], pos+1
 | 
						|
		case *shortNode:
 | 
						|
			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
 | 
						|
				return bytes.Compare(rn.Key, key[pos:]) > 0
 | 
						|
			}
 | 
						|
			node, pos = rn.Val, pos+len(rn.Key)
 | 
						|
		case valueNode:
 | 
						|
			return false // We have resolved the whole path
 | 
						|
		default:
 | 
						|
			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return false
 | 
						|
}
 | 
						|
 | 
						|
// VerifyRangeProof checks whether the given leaf nodes and edge proofs
 | 
						|
// can prove the given trie leaves range is matched with given root hash
 | 
						|
// and the range is consecutive(no gap inside) and monotonic increasing.
 | 
						|
//
 | 
						|
// Note the given first edge proof can be non-existing proof. For example
 | 
						|
// the first proof is for an non-existent values 0x03. The given batch
 | 
						|
// leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove. But the
 | 
						|
// last edge proof should always be an existent proof.
 | 
						|
//
 | 
						|
// The firstKey is paired with firstProof, not necessarily the same as keys[0]
 | 
						|
// (unless firstProof is an existent proof).
 | 
						|
//
 | 
						|
// Expect the normal case, this function can also be used to verify the following
 | 
						|
// range proofs(note this function doesn't accept zero element proof):
 | 
						|
//
 | 
						|
// - All elements proof. In this case the left and right proof can be nil, but the
 | 
						|
//   range should be all the leaves in the trie.
 | 
						|
//
 | 
						|
// - One element proof. In this case no matter the left edge proof is a non-existent
 | 
						|
//   proof or not, we can always verify the correctness of the proof.
 | 
						|
//
 | 
						|
// Except returning the error to indicate the proof is valid or not, the function will
 | 
						|
// also return a flag to indicate whether there exists more accounts/slots in the trie.
 | 
						|
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) (error, bool) {
 | 
						|
	if len(keys) != len(values) {
 | 
						|
		return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)), false
 | 
						|
	}
 | 
						|
	if len(keys) == 0 {
 | 
						|
		return errors.New("empty proof"), false
 | 
						|
	}
 | 
						|
	// Ensure the received batch is monotonic increasing.
 | 
						|
	for i := 0; i < len(keys)-1; i++ {
 | 
						|
		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
 | 
						|
			return errors.New("range is not monotonically increasing"), false
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// Special case, there is no edge proof at all. The given range is expected
 | 
						|
	// to be the whole leaf-set in the trie.
 | 
						|
	if firstProof == nil && lastProof == nil {
 | 
						|
		emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New()))
 | 
						|
		if err != nil {
 | 
						|
			return err, false
 | 
						|
		}
 | 
						|
		for index, key := range keys {
 | 
						|
			emptytrie.TryUpdate(key, values[index])
 | 
						|
		}
 | 
						|
		if emptytrie.Hash() != rootHash {
 | 
						|
			return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, emptytrie.Hash()), false
 | 
						|
		}
 | 
						|
		return nil, false // no more element.
 | 
						|
	}
 | 
						|
	// Special case, there is only one element and left edge
 | 
						|
	// proof is an existent one.
 | 
						|
	if len(keys) == 1 && bytes.Equal(keys[0], firstKey) {
 | 
						|
		root, val, err := proofToPath(rootHash, nil, firstKey, firstProof, false)
 | 
						|
		if err != nil {
 | 
						|
			return err, false
 | 
						|
		}
 | 
						|
		if !bytes.Equal(val, values[0]) {
 | 
						|
			return fmt.Errorf("correct proof but invalid data"), false
 | 
						|
		}
 | 
						|
		return nil, hasRightElement(root, keys[0])
 | 
						|
	}
 | 
						|
	// Convert the edge proofs to edge trie paths. Then we can
 | 
						|
	// have the same tree architecture with the original one.
 | 
						|
	// For the first edge proof, non-existent proof is allowed.
 | 
						|
	root, _, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
 | 
						|
	if err != nil {
 | 
						|
		return err, false
 | 
						|
	}
 | 
						|
	// Pass the root node here, the second path will be merged
 | 
						|
	// with the first one. For the last edge proof, non-existent
 | 
						|
	// proof is not allowed.
 | 
						|
	root, _, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false)
 | 
						|
	if err != nil {
 | 
						|
		return err, false
 | 
						|
	}
 | 
						|
	// Remove all internal references. All the removed parts should
 | 
						|
	// be re-filled(or re-constructed) by the given leaves range.
 | 
						|
	if err := unsetInternal(root, firstKey, keys[len(keys)-1]); err != nil {
 | 
						|
		return err, false
 | 
						|
	}
 | 
						|
	// Rebuild the trie with the leave stream, the shape of trie
 | 
						|
	// should be same with the original one.
 | 
						|
	newtrie := &Trie{root: root, db: NewDatabase(memorydb.New())}
 | 
						|
	for index, key := range keys {
 | 
						|
		newtrie.TryUpdate(key, values[index])
 | 
						|
	}
 | 
						|
	if newtrie.Hash() != rootHash {
 | 
						|
		return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, newtrie.Hash()), false
 | 
						|
	}
 | 
						|
	return nil, hasRightElement(root, keys[len(keys)-1])
 | 
						|
}
 | 
						|
 | 
						|
// get returns the child of the given node. Return nil if the
 | 
						|
// node with specified key doesn't exist at all.
 | 
						|
//
 | 
						|
// There is an additional flag `skipResolved`. If it's set then
 | 
						|
// all resolved nodes won't be returned.
 | 
						|
func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
 | 
						|
	for {
 | 
						|
		switch n := tn.(type) {
 | 
						|
		case *shortNode:
 | 
						|
			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
 | 
						|
				return nil, nil
 | 
						|
			}
 | 
						|
			tn = n.Val
 | 
						|
			key = key[len(n.Key):]
 | 
						|
			if !skipResolved {
 | 
						|
				return key, tn
 | 
						|
			}
 | 
						|
		case *fullNode:
 | 
						|
			tn = n.Children[key[0]]
 | 
						|
			key = key[1:]
 | 
						|
			if !skipResolved {
 | 
						|
				return key, tn
 | 
						|
			}
 | 
						|
		case hashNode:
 | 
						|
			return key, n
 | 
						|
		case nil:
 | 
						|
			return key, nil
 | 
						|
		case valueNode:
 | 
						|
			return nil, n
 | 
						|
		default:
 | 
						|
			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |