This commit is a preparation for the upcoming metropolis hardfork. It prepares the state, core and vm packages such that integration with metropolis becomes less of a hassle. * Difficulty calculation requires header instead of individual parameters * statedb.StartRecord renamed to statedb.Prepare and added Finalise method required by metropolis, which removes unwanted accounts from the state (i.e. selfdestruct) * State keeps record of destructed objects (in addition to dirty objects) * core/vm pre-compiles may now return errors * core/vm pre-compiles gas check now take the full byte slice as argument instead of just the size * core/vm now keeps several hard-fork instruction tables instead of a single instruction table and removes the need for hard-fork checks in the instructions * core/vm contains a empty restruction function which is added in preparation of metropolis write-only mode operations * Adds the bn256 curve * Adds and sets the metropolis chain config block parameters (2^64-1)
		
			
				
	
	
		
			45 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2012 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package bn256
 | 
						|
 | 
						|
import (
 | 
						|
	"math/big"
 | 
						|
)
 | 
						|
 | 
						|
func bigFromBase10(s string) *big.Int {
 | 
						|
	n, _ := new(big.Int).SetString(s, 10)
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
// u is the BN parameter that determines the prime: 1868033³.
 | 
						|
var u = bigFromBase10("4965661367192848881")
 | 
						|
 | 
						|
// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
 | 
						|
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
 | 
						|
 | 
						|
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
 | 
						|
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
 | 
						|
 | 
						|
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
 | 
						|
var xiToPMinus1Over6 = &gfP2{bigFromBase10("16469823323077808223889137241176536799009286646108169935659301613961712198316"), bigFromBase10("8376118865763821496583973867626364092589906065868298776909617916018768340080")}
 | 
						|
 | 
						|
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
 | 
						|
var xiToPMinus1Over3 = &gfP2{bigFromBase10("10307601595873709700152284273816112264069230130616436755625194854815875713954"), bigFromBase10("21575463638280843010398324269430826099269044274347216827212613867836435027261")}
 | 
						|
 | 
						|
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
 | 
						|
var xiToPMinus1Over2 = &gfP2{bigFromBase10("3505843767911556378687030309984248845540243509899259641013678093033130930403"), bigFromBase10("2821565182194536844548159561693502659359617185244120367078079554186484126554")}
 | 
						|
 | 
						|
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
 | 
						|
var xiToPSquaredMinus1Over3 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556616")
 | 
						|
 | 
						|
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
 | 
						|
var xiTo2PSquaredMinus2Over3 = bigFromBase10("2203960485148121921418603742825762020974279258880205651966")
 | 
						|
 | 
						|
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
 | 
						|
var xiToPSquaredMinus1Over6 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556617")
 | 
						|
 | 
						|
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
 | 
						|
var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19937756971775647987995932169929341994314640652964949448313374472400716661030"), bigFromBase10("2581911344467009335267311115468803099551665605076196740867805258568234346338")}
 |