This change moves the RLPx protocol implementation into a separate package, p2p/rlpx. The new package can be used to establish RLPx connections for protocol testing purposes. Co-authored-by: Felix Lange <fjl@twurst.com>
		
			
				
	
	
		
			670 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			670 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2015 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| // Package rlpx implements the RLPx transport protocol.
 | |
| package rlpx
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"crypto/aes"
 | |
| 	"crypto/cipher"
 | |
| 	"crypto/ecdsa"
 | |
| 	"crypto/elliptic"
 | |
| 	"crypto/hmac"
 | |
| 	"crypto/rand"
 | |
| 	"encoding/binary"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"hash"
 | |
| 	"io"
 | |
| 	mrand "math/rand"
 | |
| 	"net"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/crypto"
 | |
| 	"github.com/ethereum/go-ethereum/crypto/ecies"
 | |
| 	"github.com/ethereum/go-ethereum/rlp"
 | |
| 	"github.com/golang/snappy"
 | |
| 	"golang.org/x/crypto/sha3"
 | |
| )
 | |
| 
 | |
| // Conn is an RLPx network connection. It wraps a low-level network connection. The
 | |
| // underlying connection should not be used for other activity when it is wrapped by Conn.
 | |
| //
 | |
| // Before sending messages, a handshake must be performed by calling the Handshake method.
 | |
| // This type is not generally safe for concurrent use, but reading and writing of messages
 | |
| // may happen concurrently after the handshake.
 | |
| type Conn struct {
 | |
| 	dialDest  *ecdsa.PublicKey
 | |
| 	conn      net.Conn
 | |
| 	handshake *handshakeState
 | |
| 	snappy    bool
 | |
| }
 | |
| 
 | |
| type handshakeState struct {
 | |
| 	enc cipher.Stream
 | |
| 	dec cipher.Stream
 | |
| 
 | |
| 	macCipher  cipher.Block
 | |
| 	egressMAC  hash.Hash
 | |
| 	ingressMAC hash.Hash
 | |
| }
 | |
| 
 | |
| // NewConn wraps the given network connection. If dialDest is non-nil, the connection
 | |
| // behaves as the initiator during the handshake.
 | |
| func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn {
 | |
| 	return &Conn{
 | |
| 		dialDest: dialDest,
 | |
| 		conn:     conn,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // SetSnappy enables or disables snappy compression of messages. This is usually called
 | |
| // after the devp2p Hello message exchange when the negotiated version indicates that
 | |
| // compression is available on both ends of the connection.
 | |
| func (c *Conn) SetSnappy(snappy bool) {
 | |
| 	c.snappy = snappy
 | |
| }
 | |
| 
 | |
| // SetReadDeadline sets the deadline for all future read operations.
 | |
| func (c *Conn) SetReadDeadline(time time.Time) error {
 | |
| 	return c.conn.SetReadDeadline(time)
 | |
| }
 | |
| 
 | |
| // SetWriteDeadline sets the deadline for all future write operations.
 | |
| func (c *Conn) SetWriteDeadline(time time.Time) error {
 | |
| 	return c.conn.SetWriteDeadline(time)
 | |
| }
 | |
| 
 | |
| // SetDeadline sets the deadline for all future read and write operations.
 | |
| func (c *Conn) SetDeadline(time time.Time) error {
 | |
| 	return c.conn.SetDeadline(time)
 | |
| }
 | |
| 
 | |
| // Read reads a message from the connection.
 | |
| func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) {
 | |
| 	if c.handshake == nil {
 | |
| 		panic("can't ReadMsg before handshake")
 | |
| 	}
 | |
| 
 | |
| 	frame, err := c.handshake.readFrame(c.conn)
 | |
| 	if err != nil {
 | |
| 		return 0, nil, 0, err
 | |
| 	}
 | |
| 	code, data, err = rlp.SplitUint64(frame)
 | |
| 	if err != nil {
 | |
| 		return 0, nil, 0, fmt.Errorf("invalid message code: %v", err)
 | |
| 	}
 | |
| 	wireSize = len(data)
 | |
| 
 | |
| 	// If snappy is enabled, verify and decompress message.
 | |
| 	if c.snappy {
 | |
| 		var actualSize int
 | |
| 		actualSize, err = snappy.DecodedLen(data)
 | |
| 		if err != nil {
 | |
| 			return code, nil, 0, err
 | |
| 		}
 | |
| 		if actualSize > maxUint24 {
 | |
| 			return code, nil, 0, errPlainMessageTooLarge
 | |
| 		}
 | |
| 		data, err = snappy.Decode(nil, data)
 | |
| 	}
 | |
| 	return code, data, wireSize, err
 | |
| }
 | |
| 
 | |
| func (h *handshakeState) readFrame(conn io.Reader) ([]byte, error) {
 | |
| 	// read the header
 | |
| 	headbuf := make([]byte, 32)
 | |
| 	if _, err := io.ReadFull(conn, headbuf); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	// verify header mac
 | |
| 	shouldMAC := updateMAC(h.ingressMAC, h.macCipher, headbuf[:16])
 | |
| 	if !hmac.Equal(shouldMAC, headbuf[16:]) {
 | |
| 		return nil, errors.New("bad header MAC")
 | |
| 	}
 | |
| 	h.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
 | |
| 	fsize := readInt24(headbuf)
 | |
| 	// ignore protocol type for now
 | |
| 
 | |
| 	// read the frame content
 | |
| 	var rsize = fsize // frame size rounded up to 16 byte boundary
 | |
| 	if padding := fsize % 16; padding > 0 {
 | |
| 		rsize += 16 - padding
 | |
| 	}
 | |
| 	framebuf := make([]byte, rsize)
 | |
| 	if _, err := io.ReadFull(conn, framebuf); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	// read and validate frame MAC. we can re-use headbuf for that.
 | |
| 	h.ingressMAC.Write(framebuf)
 | |
| 	fmacseed := h.ingressMAC.Sum(nil)
 | |
| 	if _, err := io.ReadFull(conn, headbuf[:16]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	shouldMAC = updateMAC(h.ingressMAC, h.macCipher, fmacseed)
 | |
| 	if !hmac.Equal(shouldMAC, headbuf[:16]) {
 | |
| 		return nil, errors.New("bad frame MAC")
 | |
| 	}
 | |
| 
 | |
| 	// decrypt frame content
 | |
| 	h.dec.XORKeyStream(framebuf, framebuf)
 | |
| 	return framebuf[:fsize], nil
 | |
| }
 | |
| 
 | |
| // Write writes a message to the connection.
 | |
| //
 | |
| // Write returns the written size of the message data. This may be less than or equal to
 | |
| // len(data) depending on whether snappy compression is enabled.
 | |
| func (c *Conn) Write(code uint64, data []byte) (uint32, error) {
 | |
| 	if c.handshake == nil {
 | |
| 		panic("can't WriteMsg before handshake")
 | |
| 	}
 | |
| 	if len(data) > maxUint24 {
 | |
| 		return 0, errPlainMessageTooLarge
 | |
| 	}
 | |
| 	if c.snappy {
 | |
| 		data = snappy.Encode(nil, data)
 | |
| 	}
 | |
| 
 | |
| 	wireSize := uint32(len(data))
 | |
| 	err := c.handshake.writeFrame(c.conn, code, data)
 | |
| 	return wireSize, err
 | |
| }
 | |
| 
 | |
| func (h *handshakeState) writeFrame(conn io.Writer, code uint64, data []byte) error {
 | |
| 	ptype, _ := rlp.EncodeToBytes(code)
 | |
| 
 | |
| 	// write header
 | |
| 	headbuf := make([]byte, 32)
 | |
| 	fsize := len(ptype) + len(data)
 | |
| 	if fsize > maxUint24 {
 | |
| 		return errPlainMessageTooLarge
 | |
| 	}
 | |
| 	putInt24(uint32(fsize), headbuf)
 | |
| 	copy(headbuf[3:], zeroHeader)
 | |
| 	h.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
 | |
| 
 | |
| 	// write header MAC
 | |
| 	copy(headbuf[16:], updateMAC(h.egressMAC, h.macCipher, headbuf[:16]))
 | |
| 	if _, err := conn.Write(headbuf); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	// write encrypted frame, updating the egress MAC hash with
 | |
| 	// the data written to conn.
 | |
| 	tee := cipher.StreamWriter{S: h.enc, W: io.MultiWriter(conn, h.egressMAC)}
 | |
| 	if _, err := tee.Write(ptype); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	if _, err := tee.Write(data); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	if padding := fsize % 16; padding > 0 {
 | |
| 		if _, err := tee.Write(zero16[:16-padding]); err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// write frame MAC. egress MAC hash is up to date because
 | |
| 	// frame content was written to it as well.
 | |
| 	fmacseed := h.egressMAC.Sum(nil)
 | |
| 	mac := updateMAC(h.egressMAC, h.macCipher, fmacseed)
 | |
| 	_, err := conn.Write(mac)
 | |
| 	return err
 | |
| }
 | |
| 
 | |
| func readInt24(b []byte) uint32 {
 | |
| 	return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
 | |
| }
 | |
| 
 | |
| func putInt24(v uint32, b []byte) {
 | |
| 	b[0] = byte(v >> 16)
 | |
| 	b[1] = byte(v >> 8)
 | |
| 	b[2] = byte(v)
 | |
| }
 | |
| 
 | |
| // updateMAC reseeds the given hash with encrypted seed.
 | |
| // it returns the first 16 bytes of the hash sum after seeding.
 | |
| func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
 | |
| 	aesbuf := make([]byte, aes.BlockSize)
 | |
| 	block.Encrypt(aesbuf, mac.Sum(nil))
 | |
| 	for i := range aesbuf {
 | |
| 		aesbuf[i] ^= seed[i]
 | |
| 	}
 | |
| 	mac.Write(aesbuf)
 | |
| 	return mac.Sum(nil)[:16]
 | |
| }
 | |
| 
 | |
| // Handshake performs the handshake. This must be called before any data is written
 | |
| // or read from the connection.
 | |
| func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) {
 | |
| 	var (
 | |
| 		sec Secrets
 | |
| 		err error
 | |
| 	)
 | |
| 	if c.dialDest != nil {
 | |
| 		sec, err = initiatorEncHandshake(c.conn, prv, c.dialDest)
 | |
| 	} else {
 | |
| 		sec, err = receiverEncHandshake(c.conn, prv)
 | |
| 	}
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	c.InitWithSecrets(sec)
 | |
| 	return sec.remote, err
 | |
| }
 | |
| 
 | |
| // InitWithSecrets injects connection secrets as if a handshake had
 | |
| // been performed. This cannot be called after the handshake.
 | |
| func (c *Conn) InitWithSecrets(sec Secrets) {
 | |
| 	if c.handshake != nil {
 | |
| 		panic("can't handshake twice")
 | |
| 	}
 | |
| 	macc, err := aes.NewCipher(sec.MAC)
 | |
| 	if err != nil {
 | |
| 		panic("invalid MAC secret: " + err.Error())
 | |
| 	}
 | |
| 	encc, err := aes.NewCipher(sec.AES)
 | |
| 	if err != nil {
 | |
| 		panic("invalid AES secret: " + err.Error())
 | |
| 	}
 | |
| 	// we use an all-zeroes IV for AES because the key used
 | |
| 	// for encryption is ephemeral.
 | |
| 	iv := make([]byte, encc.BlockSize())
 | |
| 	c.handshake = &handshakeState{
 | |
| 		enc:        cipher.NewCTR(encc, iv),
 | |
| 		dec:        cipher.NewCTR(encc, iv),
 | |
| 		macCipher:  macc,
 | |
| 		egressMAC:  sec.EgressMAC,
 | |
| 		ingressMAC: sec.IngressMAC,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Close closes the underlying network connection.
 | |
| func (c *Conn) Close() error {
 | |
| 	return c.conn.Close()
 | |
| }
 | |
| 
 | |
| // Constants for the handshake.
 | |
| const (
 | |
| 	maxUint24 = int(^uint32(0) >> 8)
 | |
| 
 | |
| 	sskLen = 16                     // ecies.MaxSharedKeyLength(pubKey) / 2
 | |
| 	sigLen = crypto.SignatureLength // elliptic S256
 | |
| 	pubLen = 64                     // 512 bit pubkey in uncompressed representation without format byte
 | |
| 	shaLen = 32                     // hash length (for nonce etc)
 | |
| 
 | |
| 	authMsgLen  = sigLen + shaLen + pubLen + shaLen + 1
 | |
| 	authRespLen = pubLen + shaLen + 1
 | |
| 
 | |
| 	eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
 | |
| 
 | |
| 	encAuthMsgLen  = authMsgLen + eciesOverhead  // size of encrypted pre-EIP-8 initiator handshake
 | |
| 	encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	// this is used in place of actual frame header data.
 | |
| 	// TODO: replace this when Msg contains the protocol type code.
 | |
| 	zeroHeader = []byte{0xC2, 0x80, 0x80}
 | |
| 	// sixteen zero bytes
 | |
| 	zero16 = make([]byte, 16)
 | |
| 
 | |
| 	// errPlainMessageTooLarge is returned if a decompressed message length exceeds
 | |
| 	// the allowed 24 bits (i.e. length >= 16MB).
 | |
| 	errPlainMessageTooLarge = errors.New("message length >= 16MB")
 | |
| )
 | |
| 
 | |
| // Secrets represents the connection secrets which are negotiated during the handshake.
 | |
| type Secrets struct {
 | |
| 	AES, MAC              []byte
 | |
| 	EgressMAC, IngressMAC hash.Hash
 | |
| 	remote                *ecdsa.PublicKey
 | |
| }
 | |
| 
 | |
| // encHandshake contains the state of the encryption handshake.
 | |
| type encHandshake struct {
 | |
| 	initiator            bool
 | |
| 	remote               *ecies.PublicKey  // remote-pubk
 | |
| 	initNonce, respNonce []byte            // nonce
 | |
| 	randomPrivKey        *ecies.PrivateKey // ecdhe-random
 | |
| 	remoteRandomPub      *ecies.PublicKey  // ecdhe-random-pubk
 | |
| }
 | |
| 
 | |
| // RLPx v4 handshake auth (defined in EIP-8).
 | |
| type authMsgV4 struct {
 | |
| 	gotPlain bool // whether read packet had plain format.
 | |
| 
 | |
| 	Signature       [sigLen]byte
 | |
| 	InitiatorPubkey [pubLen]byte
 | |
| 	Nonce           [shaLen]byte
 | |
| 	Version         uint
 | |
| 
 | |
| 	// Ignore additional fields (forward-compatibility)
 | |
| 	Rest []rlp.RawValue `rlp:"tail"`
 | |
| }
 | |
| 
 | |
| // RLPx v4 handshake response (defined in EIP-8).
 | |
| type authRespV4 struct {
 | |
| 	RandomPubkey [pubLen]byte
 | |
| 	Nonce        [shaLen]byte
 | |
| 	Version      uint
 | |
| 
 | |
| 	// Ignore additional fields (forward-compatibility)
 | |
| 	Rest []rlp.RawValue `rlp:"tail"`
 | |
| }
 | |
| 
 | |
| // receiverEncHandshake negotiates a session token on conn.
 | |
| // it should be called on the listening side of the connection.
 | |
| //
 | |
| // prv is the local client's private key.
 | |
| func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) {
 | |
| 	authMsg := new(authMsgV4)
 | |
| 	authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn)
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	h := new(encHandshake)
 | |
| 	if err := h.handleAuthMsg(authMsg, prv); err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 
 | |
| 	authRespMsg, err := h.makeAuthResp()
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	var authRespPacket []byte
 | |
| 	if authMsg.gotPlain {
 | |
| 		authRespPacket, err = authRespMsg.sealPlain(h)
 | |
| 	} else {
 | |
| 		authRespPacket, err = sealEIP8(authRespMsg, h)
 | |
| 	}
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	if _, err = conn.Write(authRespPacket); err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	return h.secrets(authPacket, authRespPacket)
 | |
| }
 | |
| 
 | |
| func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
 | |
| 	// Import the remote identity.
 | |
| 	rpub, err := importPublicKey(msg.InitiatorPubkey[:])
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	h.initNonce = msg.Nonce[:]
 | |
| 	h.remote = rpub
 | |
| 
 | |
| 	// Generate random keypair for ECDH.
 | |
| 	// If a private key is already set, use it instead of generating one (for testing).
 | |
| 	if h.randomPrivKey == nil {
 | |
| 		h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
 | |
| 		if err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Check the signature.
 | |
| 	token, err := h.staticSharedSecret(prv)
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	signedMsg := xor(token, h.initNonce)
 | |
| 	remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:])
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // secrets is called after the handshake is completed.
 | |
| // It extracts the connection secrets from the handshake values.
 | |
| func (h *encHandshake) secrets(auth, authResp []byte) (Secrets, error) {
 | |
| 	ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
 | |
| 	if err != nil {
 | |
| 		return Secrets{}, err
 | |
| 	}
 | |
| 
 | |
| 	// derive base secrets from ephemeral key agreement
 | |
| 	sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
 | |
| 	aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
 | |
| 	s := Secrets{
 | |
| 		remote: h.remote.ExportECDSA(),
 | |
| 		AES:    aesSecret,
 | |
| 		MAC:    crypto.Keccak256(ecdheSecret, aesSecret),
 | |
| 	}
 | |
| 
 | |
| 	// setup sha3 instances for the MACs
 | |
| 	mac1 := sha3.NewLegacyKeccak256()
 | |
| 	mac1.Write(xor(s.MAC, h.respNonce))
 | |
| 	mac1.Write(auth)
 | |
| 	mac2 := sha3.NewLegacyKeccak256()
 | |
| 	mac2.Write(xor(s.MAC, h.initNonce))
 | |
| 	mac2.Write(authResp)
 | |
| 	if h.initiator {
 | |
| 		s.EgressMAC, s.IngressMAC = mac1, mac2
 | |
| 	} else {
 | |
| 		s.EgressMAC, s.IngressMAC = mac2, mac1
 | |
| 	}
 | |
| 
 | |
| 	return s, nil
 | |
| }
 | |
| 
 | |
| // staticSharedSecret returns the static shared secret, the result
 | |
| // of key agreement between the local and remote static node key.
 | |
| func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
 | |
| 	return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen)
 | |
| }
 | |
| 
 | |
| // initiatorEncHandshake negotiates a session token on conn.
 | |
| // it should be called on the dialing side of the connection.
 | |
| //
 | |
| // prv is the local client's private key.
 | |
| func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) {
 | |
| 	h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)}
 | |
| 	authMsg, err := h.makeAuthMsg(prv)
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	authPacket, err := sealEIP8(authMsg, h)
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 
 | |
| 	if _, err = conn.Write(authPacket); err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 
 | |
| 	authRespMsg := new(authRespV4)
 | |
| 	authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	if err := h.handleAuthResp(authRespMsg); err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	return h.secrets(authPacket, authRespPacket)
 | |
| }
 | |
| 
 | |
| // makeAuthMsg creates the initiator handshake message.
 | |
| func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
 | |
| 	// Generate random initiator nonce.
 | |
| 	h.initNonce = make([]byte, shaLen)
 | |
| 	_, err := rand.Read(h.initNonce)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	// Generate random keypair to for ECDH.
 | |
| 	h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	// Sign known message: static-shared-secret ^ nonce
 | |
| 	token, err := h.staticSharedSecret(prv)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	signed := xor(token, h.initNonce)
 | |
| 	signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	msg := new(authMsgV4)
 | |
| 	copy(msg.Signature[:], signature)
 | |
| 	copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
 | |
| 	copy(msg.Nonce[:], h.initNonce)
 | |
| 	msg.Version = 4
 | |
| 	return msg, nil
 | |
| }
 | |
| 
 | |
| func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
 | |
| 	h.respNonce = msg.Nonce[:]
 | |
| 	h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
 | |
| 	return err
 | |
| }
 | |
| 
 | |
| func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
 | |
| 	// Generate random nonce.
 | |
| 	h.respNonce = make([]byte, shaLen)
 | |
| 	if _, err = rand.Read(h.respNonce); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	msg = new(authRespV4)
 | |
| 	copy(msg.Nonce[:], h.respNonce)
 | |
| 	copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
 | |
| 	msg.Version = 4
 | |
| 	return msg, nil
 | |
| }
 | |
| 
 | |
| func (msg *authMsgV4) decodePlain(input []byte) {
 | |
| 	n := copy(msg.Signature[:], input)
 | |
| 	n += shaLen // skip sha3(initiator-ephemeral-pubk)
 | |
| 	n += copy(msg.InitiatorPubkey[:], input[n:])
 | |
| 	copy(msg.Nonce[:], input[n:])
 | |
| 	msg.Version = 4
 | |
| 	msg.gotPlain = true
 | |
| }
 | |
| 
 | |
| func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) {
 | |
| 	buf := make([]byte, authRespLen)
 | |
| 	n := copy(buf, msg.RandomPubkey[:])
 | |
| 	copy(buf[n:], msg.Nonce[:])
 | |
| 	return ecies.Encrypt(rand.Reader, hs.remote, buf, nil, nil)
 | |
| }
 | |
| 
 | |
| func (msg *authRespV4) decodePlain(input []byte) {
 | |
| 	n := copy(msg.RandomPubkey[:], input)
 | |
| 	copy(msg.Nonce[:], input[n:])
 | |
| 	msg.Version = 4
 | |
| }
 | |
| 
 | |
| var padSpace = make([]byte, 300)
 | |
| 
 | |
| func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) {
 | |
| 	buf := new(bytes.Buffer)
 | |
| 	if err := rlp.Encode(buf, msg); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	// pad with random amount of data. the amount needs to be at least 100 bytes to make
 | |
| 	// the message distinguishable from pre-EIP-8 handshakes.
 | |
| 	pad := padSpace[:mrand.Intn(len(padSpace)-100)+100]
 | |
| 	buf.Write(pad)
 | |
| 	prefix := make([]byte, 2)
 | |
| 	binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead))
 | |
| 
 | |
| 	enc, err := ecies.Encrypt(rand.Reader, h.remote, buf.Bytes(), nil, prefix)
 | |
| 	return append(prefix, enc...), err
 | |
| }
 | |
| 
 | |
| type plainDecoder interface {
 | |
| 	decodePlain([]byte)
 | |
| }
 | |
| 
 | |
| func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
 | |
| 	buf := make([]byte, plainSize)
 | |
| 	if _, err := io.ReadFull(r, buf); err != nil {
 | |
| 		return buf, err
 | |
| 	}
 | |
| 	// Attempt decoding pre-EIP-8 "plain" format.
 | |
| 	key := ecies.ImportECDSA(prv)
 | |
| 	if dec, err := key.Decrypt(buf, nil, nil); err == nil {
 | |
| 		msg.decodePlain(dec)
 | |
| 		return buf, nil
 | |
| 	}
 | |
| 	// Could be EIP-8 format, try that.
 | |
| 	prefix := buf[:2]
 | |
| 	size := binary.BigEndian.Uint16(prefix)
 | |
| 	if size < uint16(plainSize) {
 | |
| 		return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize)
 | |
| 	}
 | |
| 	buf = append(buf, make([]byte, size-uint16(plainSize)+2)...)
 | |
| 	if _, err := io.ReadFull(r, buf[plainSize:]); err != nil {
 | |
| 		return buf, err
 | |
| 	}
 | |
| 	dec, err := key.Decrypt(buf[2:], nil, prefix)
 | |
| 	if err != nil {
 | |
| 		return buf, err
 | |
| 	}
 | |
| 	// Can't use rlp.DecodeBytes here because it rejects
 | |
| 	// trailing data (forward-compatibility).
 | |
| 	s := rlp.NewStream(bytes.NewReader(dec), 0)
 | |
| 	return buf, s.Decode(msg)
 | |
| }
 | |
| 
 | |
| // importPublicKey unmarshals 512 bit public keys.
 | |
| func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
 | |
| 	var pubKey65 []byte
 | |
| 	switch len(pubKey) {
 | |
| 	case 64:
 | |
| 		// add 'uncompressed key' flag
 | |
| 		pubKey65 = append([]byte{0x04}, pubKey...)
 | |
| 	case 65:
 | |
| 		pubKey65 = pubKey
 | |
| 	default:
 | |
| 		return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
 | |
| 	}
 | |
| 	// TODO: fewer pointless conversions
 | |
| 	pub, err := crypto.UnmarshalPubkey(pubKey65)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return ecies.ImportECDSAPublic(pub), nil
 | |
| }
 | |
| 
 | |
| func exportPubkey(pub *ecies.PublicKey) []byte {
 | |
| 	if pub == nil {
 | |
| 		panic("nil pubkey")
 | |
| 	}
 | |
| 	return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
 | |
| }
 | |
| 
 | |
| func xor(one, other []byte) (xor []byte) {
 | |
| 	xor = make([]byte, len(one))
 | |
| 	for i := 0; i < len(one); i++ {
 | |
| 		xor[i] = one[i] ^ other[i]
 | |
| 	}
 | |
| 	return xor
 | |
| }
 |