183 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2019 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package prque
 | |
| 
 | |
| import (
 | |
| 	"container/heap"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common/mclock"
 | |
| )
 | |
| 
 | |
| // LazyQueue is a priority queue data structure where priorities can change over
 | |
| // time and are only evaluated on demand.
 | |
| // Two callbacks are required:
 | |
| // - priority evaluates the actual priority of an item
 | |
| // - maxPriority gives an upper estimate for the priority in any moment between
 | |
| //   now and the given absolute time
 | |
| // If the upper estimate is exceeded then Update should be called for that item.
 | |
| // A global Refresh function should also be called periodically.
 | |
| type LazyQueue struct {
 | |
| 	clock mclock.Clock
 | |
| 	// Items are stored in one of two internal queues ordered by estimated max
 | |
| 	// priority until the next and the next-after-next refresh. Update and Refresh
 | |
| 	// always places items in queue[1].
 | |
| 	queue       [2]*sstack
 | |
| 	popQueue    *sstack
 | |
| 	period      time.Duration
 | |
| 	maxUntil    mclock.AbsTime
 | |
| 	indexOffset int
 | |
| 	setIndex    SetIndexCallback
 | |
| 	priority    PriorityCallback
 | |
| 	maxPriority MaxPriorityCallback
 | |
| }
 | |
| 
 | |
| type (
 | |
| 	PriorityCallback    func(data interface{}, now mclock.AbsTime) int64   // actual priority callback
 | |
| 	MaxPriorityCallback func(data interface{}, until mclock.AbsTime) int64 // estimated maximum priority callback
 | |
| )
 | |
| 
 | |
| // NewLazyQueue creates a new lazy queue
 | |
| func NewLazyQueue(setIndex SetIndexCallback, priority PriorityCallback, maxPriority MaxPriorityCallback, clock mclock.Clock, refreshPeriod time.Duration) *LazyQueue {
 | |
| 	q := &LazyQueue{
 | |
| 		popQueue:    newSstack(nil),
 | |
| 		setIndex:    setIndex,
 | |
| 		priority:    priority,
 | |
| 		maxPriority: maxPriority,
 | |
| 		clock:       clock,
 | |
| 		period:      refreshPeriod}
 | |
| 	q.Reset()
 | |
| 	q.Refresh()
 | |
| 	return q
 | |
| }
 | |
| 
 | |
| // Reset clears the contents of the queue
 | |
| func (q *LazyQueue) Reset() {
 | |
| 	q.queue[0] = newSstack(q.setIndex0)
 | |
| 	q.queue[1] = newSstack(q.setIndex1)
 | |
| }
 | |
| 
 | |
| // Refresh should be called at least with the frequency specified by the refreshPeriod parameter
 | |
| func (q *LazyQueue) Refresh() {
 | |
| 	q.maxUntil = q.clock.Now() + mclock.AbsTime(q.period)
 | |
| 	for q.queue[0].Len() != 0 {
 | |
| 		q.Push(heap.Pop(q.queue[0]).(*item).value)
 | |
| 	}
 | |
| 	q.queue[0], q.queue[1] = q.queue[1], q.queue[0]
 | |
| 	q.indexOffset = 1 - q.indexOffset
 | |
| 	q.maxUntil += mclock.AbsTime(q.period)
 | |
| }
 | |
| 
 | |
| // Push adds an item to the queue
 | |
| func (q *LazyQueue) Push(data interface{}) {
 | |
| 	heap.Push(q.queue[1], &item{data, q.maxPriority(data, q.maxUntil)})
 | |
| }
 | |
| 
 | |
| // Update updates the upper priority estimate for the item with the given queue index
 | |
| func (q *LazyQueue) Update(index int) {
 | |
| 	q.Push(q.Remove(index))
 | |
| }
 | |
| 
 | |
| // Pop removes and returns the item with the greatest actual priority
 | |
| func (q *LazyQueue) Pop() (interface{}, int64) {
 | |
| 	var (
 | |
| 		resData interface{}
 | |
| 		resPri  int64
 | |
| 	)
 | |
| 	q.MultiPop(func(data interface{}, priority int64) bool {
 | |
| 		resData = data
 | |
| 		resPri = priority
 | |
| 		return false
 | |
| 	})
 | |
| 	return resData, resPri
 | |
| }
 | |
| 
 | |
| // peekIndex returns the index of the internal queue where the item with the
 | |
| // highest estimated priority is or -1 if both are empty
 | |
| func (q *LazyQueue) peekIndex() int {
 | |
| 	if q.queue[0].Len() != 0 {
 | |
| 		if q.queue[1].Len() != 0 && q.queue[1].blocks[0][0].priority > q.queue[0].blocks[0][0].priority {
 | |
| 			return 1
 | |
| 		}
 | |
| 		return 0
 | |
| 	}
 | |
| 	if q.queue[1].Len() != 0 {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return -1
 | |
| }
 | |
| 
 | |
| // MultiPop pops multiple items from the queue and is more efficient than calling
 | |
| // Pop multiple times. Popped items are passed to the callback. MultiPop returns
 | |
| // when the callback returns false or there are no more items to pop.
 | |
| func (q *LazyQueue) MultiPop(callback func(data interface{}, priority int64) bool) {
 | |
| 	now := q.clock.Now()
 | |
| 	nextIndex := q.peekIndex()
 | |
| 	for nextIndex != -1 {
 | |
| 		data := heap.Pop(q.queue[nextIndex]).(*item).value
 | |
| 		heap.Push(q.popQueue, &item{data, q.priority(data, now)})
 | |
| 		nextIndex = q.peekIndex()
 | |
| 		for q.popQueue.Len() != 0 && (nextIndex == -1 || q.queue[nextIndex].blocks[0][0].priority < q.popQueue.blocks[0][0].priority) {
 | |
| 			i := heap.Pop(q.popQueue).(*item)
 | |
| 			if !callback(i.value, i.priority) {
 | |
| 				for q.popQueue.Len() != 0 {
 | |
| 					q.Push(heap.Pop(q.popQueue).(*item).value)
 | |
| 				}
 | |
| 				return
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // PopItem pops the item from the queue only, dropping the associated priority value.
 | |
| func (q *LazyQueue) PopItem() interface{} {
 | |
| 	i, _ := q.Pop()
 | |
| 	return i
 | |
| }
 | |
| 
 | |
| // Remove removes removes the item with the given index.
 | |
| func (q *LazyQueue) Remove(index int) interface{} {
 | |
| 	if index < 0 {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return heap.Remove(q.queue[index&1^q.indexOffset], index>>1).(*item).value
 | |
| }
 | |
| 
 | |
| // Empty checks whether the priority queue is empty.
 | |
| func (q *LazyQueue) Empty() bool {
 | |
| 	return q.queue[0].Len() == 0 && q.queue[1].Len() == 0
 | |
| }
 | |
| 
 | |
| // Size returns the number of items in the priority queue.
 | |
| func (q *LazyQueue) Size() int {
 | |
| 	return q.queue[0].Len() + q.queue[1].Len()
 | |
| }
 | |
| 
 | |
| // setIndex0 translates internal queue item index to the virtual index space of LazyQueue
 | |
| func (q *LazyQueue) setIndex0(data interface{}, index int) {
 | |
| 	if index == -1 {
 | |
| 		q.setIndex(data, -1)
 | |
| 	} else {
 | |
| 		q.setIndex(data, index+index)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // setIndex1 translates internal queue item index to the virtual index space of LazyQueue
 | |
| func (q *LazyQueue) setIndex1(data interface{}, index int) {
 | |
| 	q.setIndex(data, index+index+1)
 | |
| }
 |