interact script for conditional samples

This commit is contained in:
Jeff Wu
2019-02-14 09:55:36 -08:00
parent 89f4bc162c
commit e33295b4b5
4 changed files with 78 additions and 8 deletions

View File

@ -18,21 +18,28 @@ Install python packages:
pip3 install -r requirements.txt pip3 install -r requirements.txt
``` ```
## Sample generation ## Unconditional sample generation
| WARNING: Samples are unfiltered and may contain offensive content. | | WARNING: Samples are unfiltered and may contain offensive content. |
| --- | | --- |
To generate unconditional samples from the small model: To generate unconditional samples from the small model:
``` ```
python3 src/main.py | tee samples python3 src/generate_unconditional_samples.py | tee samples
``` ```
There are various flags for controlling the samples: There are various flags for controlling the samples:
``` ```
python3 src/main.py --top_k 40 --temperature 0.7 | tee samples python3 src/generate_unconditional_samples.py --top_k 40 --temperature 0.7 | tee samples
``` ```
While we have not yet released GPT-2 itself, you can see some unconditional samples (with default settings of temperature 1 and no truncation) in `gpt2-samples.txt`. While we have not yet released GPT-2 itself, you can see some unconditional samples from it (with default settings of temperature 1 and no truncation) in `gpt2-samples.txt`.
## Conditional sample generation
To give the model custom prompts, you can use:
```
python3 src/interactive_conditional_samples.py
```
## Future work ## Future work

View File

@ -93,16 +93,13 @@ class Encoder:
self.cache[token] = word self.cache[token] = word
return word return word
def encode_text(self, text): def encode(self, text):
bpe_tokens = [] bpe_tokens = []
for token in re.findall(self.pat, text): for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens return bpe_tokens
def encode(self, texts):
return [self.encode_text(text) for text in texts]
def decode(self, tokens): def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens]) text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)

View File

@ -0,0 +1,66 @@
#!/usr/bin/env python3
import fire
import json
import os
import numpy as np
import tensorflow as tf
from src import model, sample, encoder
def interact_model(
model_name='117M',
seed=None,
nsamples=1,
batch_size=None,
length=None,
temperature=1,
top_k=0,
):
if batch_size is None:
batch_size = 1
assert nsamples % batch_size == 0
np.random.seed(seed)
tf.set_random_seed(seed)
enc = encoder.get_encoder(model_name)
hparams = model.default_hparams()
with open(os.path.join('models', model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
if length is None:
length = hparams.n_ctx // 2
elif length > hparams.n_ctx:
raise ValueError(f"can't get samples longer than window size: {hparams.n_ctx}")
with tf.Session(graph=tf.Graph()) as sess:
context = tf.placeholder(tf.int32, [batch_size, None])
output = sample.sample_sequence(
hparams=hparams, length=length,
context=context,
batch_size=batch_size,
temperature=temperature, top_k=top_k
)[:, 1:]
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name))
saver.restore(sess, ckpt)
while True:
raw_text = input("Model prompt >>> ")
context_tokens = enc.encode(raw_text)
generated = 0
for _ in range(nsamples // batch_size):
out = sess.run(output, feed_dict={
context: [context_tokens for _ in range(batch_size)]
})
for i in range(batch_size):
generated += 1
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(f"{text}")
print("=" * 80)
if __name__ == '__main__':
fire.Fire(interact_model)