# gpt-2 Code and samples from the paper ["Language Models are Unsupervised Multitask Learners"](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf). For now, we have only released a smaller (117M parameter) version of GPT-2. See more details in our [blog post](https://blog.openai.com/better-language-models/). ## Usage This repository is meant to be a starting point for researchers and engineers to experiment with GPT-2-117M. While GPT-2-117M is less proficient than GPT-2-1.5B, it is useful for a wide range of research and applications which could also apply to larger models. ### Some caveats - GPT-2-117M robustness and worst case behaviors are not well-understood. As with any machine-learned model, carefully evaluate GPT-2-117M for your use case, especially if used without fine-tuning or in safety-critical applications where reliability is important. - The dataset our GPT-2-117M was trained on contains many texts with [biases](https://twitter.com/TomerUllman/status/1101485289720242177) and factual inaccuracies, and thus GPT-2-117M is likely to be biased and inaccurate as well. - To avoid having samples mistaken as human-written, we recommend clearly labeling samples as synthetic before wide dissemination. Our models are often incoherent or inaccurate in subtle ways, which takes more than a quick read for a human to notice. ### Work with us Please [let us know](mailto:languagequestions@openai.com) if you’re doing interesting research with or working on applications of GPT-2-117M! We’re especially interested in hearing from and potentially working with those who are studying - Potential malicious use cases and defenses against them (e.g. the detectability of synthetic text) - The extent of problematic content (e.g. bias) being baked into the models and effective mitigations ## Development See [DEVELOPERS.md](./DEVELOPERS.md) ## Contributors See [CONTRIBUTORS.md](./CONTRIBUTORS.md) ## GPT-2 samples | WARNING: Samples are unfiltered and may contain offensive content. | | --- | While we have not yet released GPT-2 itself, you can see some samples from it in the `gpt-2-samples` folder. We show unconditional samples with default settings (temperature 1 and no truncation), with temperature 0.7, and with truncation with top_k 40. We show conditional samples, with contexts drawn from `WebText`'s test set, with default settings (temperature 1 and no truncation), with temperature 0.7, and with truncation with top_k 40. ## Citation Please use the following bibtex entry: ``` @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` ## Future work We may release code for evaluating the models on various benchmarks. We are still considering release of the larger models. ## License [MIT](./LICENSE)