#!/usr/bin/env python3 import fire import json import os import numpy as np import tensorflow as tf from src import model, sample, encoder def interact_model( model_name='117M', seed=None, nsamples=1, batch_size=None, length=None, temperature=1, top_k=0, ): if batch_size is None: batch_size = 1 assert nsamples % batch_size == 0 np.random.seed(seed) tf.set_random_seed(seed) enc = encoder.get_encoder(model_name) hparams = model.default_hparams() with open(os.path.join('models', model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) if length is None: length = hparams.n_ctx // 2 elif length > hparams.n_ctx: raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) with tf.Session(graph=tf.Graph()) as sess: context = tf.placeholder(tf.int32, [batch_size, None]) output = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k ) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name)) saver.restore(sess, ckpt) while True: raw_text = input("Model prompt >>> ") while not raw_text: print('Prompt should not be empty!') raw_text = input("Model prompt >>> ") context_tokens = enc.encode(raw_text) generated = 0 for _ in range(nsamples // batch_size): out = sess.run(output, feed_dict={ context: [context_tokens for _ in range(batch_size)] })[:, len(context_tokens):] for i in range(batch_size): generated += 1 text = enc.decode(out[i]) print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40) print(text) print("=" * 80) if __name__ == '__main__': fire.Fire(interact_model)