28 lines
1008 B
Python
28 lines
1008 B
Python
import os
|
|
import sys
|
|
import requests
|
|
from tqdm import tqdm
|
|
|
|
if len(sys.argv) != 2:
|
|
print('You must enter the model name as a parameter, e.g.: download_model.py 117M')
|
|
sys.exit(1)
|
|
|
|
model = sys.argv[1]
|
|
|
|
subdir = os.path.join('models', model)
|
|
if not os.path.exists(subdir):
|
|
os.makedirs(subdir)
|
|
|
|
for filename in ['checkpoint','encoder.json','hparams.json','model.ckpt.data-00000-of-00001', 'model.ckpt.index', 'model.ckpt.meta', 'vocab.bpe']:
|
|
|
|
r = requests.get("https://storage.googleapis.com/gpt-2/" + subdir + "/" + filename, stream=True)
|
|
|
|
with open(os.path.join(subdir, filename), 'wb') as f:
|
|
file_size = int(r.headers["content-length"])
|
|
chunk_size = 1000
|
|
with tqdm(ncols=100, desc="Fetching " + filename, total=file_size, unit_scale=True) as pbar:
|
|
# 1k for chunk_size, since Ethernet packet size is around 1500 bytes
|
|
for chunk in r.iter_content(chunk_size=chunk_size):
|
|
f.write(chunk)
|
|
pbar.update(chunk_size)
|