/* * The MIT License * Copyright © 2014-2021 Ilkka Seppälä * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.iluwatar.halfsynchalfasync; import java.util.concurrent.LinkedBlockingQueue; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * This application demonstrates Half-Sync/Half-Async pattern. Key parts of the pattern are {@link * AsyncTask} and {@link AsynchronousService}. * *
PROBLEM
* A concurrent system have a mixture of short duration, mid duration and long duration tasks. Mid
* or long duration tasks should be performed asynchronously to meet quality of service
* requirements.
*
*
INTENT
* The intent of this pattern is to separate the the synchronous and asynchronous processing in the
* concurrent application by introducing two intercommunicating layers - one for sync and one for
* async. This simplifies the programming without unduly affecting the performance.
*
*
APPLICABILITY
* UNIX network subsystems - In operating systems network operations are carried out asynchronously
* with help of hardware level interrupts.
CORBA - At the asynchronous layer one thread is
* associated with each socket that is connected to the client. Thread blocks waiting for CORBA
* requests from the client. On receiving request it is inserted in the queuing layer which is then
* picked up by synchronous layer which processes the request and sends response back to the
* client.
Android AsyncTask framework - Framework provides a way to execute long running
* blocking calls, such as downloading a file, in background threads so that the UI thread remains
* free to respond to user inputs.
*
*
IMPLEMENTATION
* The main method creates an asynchronous service which does not block the main thread while the
* task is being performed. The main thread continues its work which is similar to Async Method
* Invocation pattern. The difference between them is that there is a queuing layer between
* Asynchronous layer and synchronous layer, which allows for different communication patterns
* between both layers. Such as Priority Queue can be used as queuing layer to prioritize the way
* tasks are executed. Our implementation is just one simple way of implementing this pattern, there
* are many variants possible as described in its applications.
*/
public class App {
private static final Logger LOGGER = LoggerFactory.getLogger(App.class);
/**
* Program entry point.
*
* @param args command line args
*/
public static void main(String[] args) {
var service = new AsynchronousService(new LinkedBlockingQueue<>());
/*
* A new task to calculate sum is received but as this is main thread, it should not block. So
* it passes it to the asynchronous task layer to compute and proceeds with handling other
* incoming requests. This is particularly useful when main thread is waiting on Socket to
* receive new incoming requests and does not wait for particular request to be completed before
* responding to new request.
*/
service.execute(new ArithmeticSumTask(1000));
/*
* New task received, lets pass that to async layer for computation. So both requests will be
* executed in parallel.
*/
service.execute(new ArithmeticSumTask(500));
service.execute(new ArithmeticSumTask(2000));
service.execute(new ArithmeticSumTask(1));
service.close();
}
/**
* ArithmeticSumTask.
*/
static class ArithmeticSumTask implements AsyncTask