- move cost tracker into bank, so each bank has its own cost tracker; (#20527)

- move related modules to runtime
This commit is contained in:
Tao Zhu
2021-10-12 08:51:33 -05:00
committed by GitHub
parent a723de0e25
commit 005d6863fd
20 changed files with 60 additions and 39 deletions

View File

@ -8,9 +8,6 @@ use log::*;
use rand::{thread_rng, Rng};
use rayon::prelude::*;
use solana_core::banking_stage::{BankingStage, BankingStageStats};
use solana_core::cost_model::CostModel;
use solana_core::cost_tracker::CostTracker;
use solana_core::cost_tracker_stats::CostTrackerStats;
use solana_entry::entry::{next_hash, Entry};
use solana_gossip::cluster_info::ClusterInfo;
use solana_gossip::cluster_info::Node;
@ -21,6 +18,9 @@ use solana_perf::packet::to_packets_chunked;
use solana_perf::test_tx::test_tx;
use solana_poh::poh_recorder::{create_test_recorder, WorkingBankEntry};
use solana_runtime::bank::Bank;
use solana_runtime::cost_model::CostModel;
use solana_runtime::cost_tracker::CostTracker;
use solana_runtime::cost_tracker_stats::CostTrackerStats;
use solana_sdk::genesis_config::GenesisConfig;
use solana_sdk::hash::Hash;
use solana_sdk::message::Message;

View File

@ -1,9 +1,7 @@
//! The `banking_stage` processes Transaction messages. It is intended to be used
//! to contruct a software pipeline. The stage uses all available CPU cores and
//! can do its processing in parallel with signature verification on the GPU.
use crate::{
cost_tracker::CostTracker, cost_tracker_stats::CostTrackerStats, packet_hasher::PacketHasher,
};
use crate::packet_hasher::PacketHasher;
use crossbeam_channel::{Receiver as CrossbeamReceiver, RecvTimeoutError};
use itertools::Itertools;
use lru::LruCache;
@ -27,6 +25,8 @@ use solana_runtime::{
TransactionExecutionResult,
},
bank_utils,
cost_tracker::CostTracker,
cost_tracker_stats::CostTrackerStats,
transaction_batch::TransactionBatch,
vote_sender_types::ReplayVoteSender,
};
@ -1697,7 +1697,6 @@ where
#[cfg(test)]
mod tests {
use super::*;
use crate::cost_model::CostModel;
use crossbeam_channel::unbounded;
use itertools::Itertools;
use solana_entry::entry::{next_entry, Entry, EntrySlice};
@ -1714,6 +1713,7 @@ mod tests {
poh_service::PohService,
};
use solana_rpc::transaction_status_service::TransactionStatusService;
use solana_runtime::cost_model::CostModel;
use solana_sdk::{
hash::Hash,
instruction::InstructionError,

View File

@ -1,539 +0,0 @@
//! 'cost_model` provides service to estimate a transaction's cost
//! following proposed fee schedule #16984; Relevant cluster cost
//! measuring is described by #19627
//!
//! The main function is `calculate_cost` which returns &TransactionCost.
//!
use crate::execute_cost_table::ExecuteCostTable;
use log::*;
use solana_ledger::block_cost_limits::*;
use solana_sdk::{pubkey::Pubkey, transaction::SanitizedTransaction};
use std::collections::HashMap;
const MAX_WRITABLE_ACCOUNTS: usize = 256;
#[derive(Debug, Clone)]
pub enum CostModelError {
/// transaction that would fail sanitize, cost model is not able to process
/// such transaction.
InvalidTransaction,
/// would exceed block max limit
WouldExceedBlockMaxLimit,
/// would exceed account max limit
WouldExceedAccountMaxLimit,
}
#[derive(Default, Debug)]
pub struct TransactionCost {
pub writable_accounts: Vec<Pubkey>,
pub signature_cost: u64,
pub write_lock_cost: u64,
pub data_bytes_cost: u64,
pub execution_cost: u64,
}
impl TransactionCost {
pub fn new_with_capacity(capacity: usize) -> Self {
Self {
writable_accounts: Vec::with_capacity(capacity),
..Self::default()
}
}
pub fn reset(&mut self) {
self.writable_accounts.clear();
self.signature_cost = 0;
self.write_lock_cost = 0;
self.data_bytes_cost = 0;
self.execution_cost = 0;
}
pub fn sum(&self) -> u64 {
self.signature_cost + self.write_lock_cost + self.data_bytes_cost + self.execution_cost
}
}
#[derive(Debug)]
pub struct CostModel {
account_cost_limit: u64,
block_cost_limit: u64,
instruction_execution_cost_table: ExecuteCostTable,
// reusable variables
transaction_cost: TransactionCost,
}
impl Default for CostModel {
fn default() -> Self {
CostModel::new(MAX_WRITABLE_ACCOUNT_UNITS, MAX_BLOCK_UNITS)
}
}
impl CostModel {
pub fn new(chain_max: u64, block_max: u64) -> Self {
Self {
account_cost_limit: chain_max,
block_cost_limit: block_max,
instruction_execution_cost_table: ExecuteCostTable::default(),
transaction_cost: TransactionCost::new_with_capacity(MAX_WRITABLE_ACCOUNTS),
}
}
pub fn get_account_cost_limit(&self) -> u64 {
self.account_cost_limit
}
pub fn get_block_cost_limit(&self) -> u64 {
self.block_cost_limit
}
pub fn initialize_cost_table(&mut self, cost_table: &[(Pubkey, u64)]) {
cost_table
.iter()
.map(|(key, cost)| (key, cost))
.chain(BUILT_IN_INSTRUCTION_COSTS.iter())
.for_each(|(program_id, cost)| {
match self
.instruction_execution_cost_table
.upsert(program_id, *cost)
{
Some(c) => {
debug!(
"initiating cost table, instruction {:?} has cost {}",
program_id, c
);
}
None => {
debug!(
"initiating cost table, failed for instruction {:?}",
program_id
);
}
}
});
debug!(
"restored cost model instruction cost table from blockstore, current values: {:?}",
self.get_instruction_cost_table()
);
}
pub fn calculate_cost(
&mut self,
transaction: &SanitizedTransaction,
demote_program_write_locks: bool,
) -> &TransactionCost {
self.transaction_cost.reset();
self.transaction_cost.signature_cost = self.get_signature_cost(transaction);
self.get_write_lock_cost(transaction, demote_program_write_locks);
self.transaction_cost.data_bytes_cost = self.get_data_bytes_cost(transaction);
self.transaction_cost.execution_cost = self.get_transaction_cost(transaction);
debug!(
"transaction {:?} has cost {:?}",
transaction, self.transaction_cost
);
&self.transaction_cost
}
pub fn upsert_instruction_cost(
&mut self,
program_key: &Pubkey,
cost: u64,
) -> Result<u64, &'static str> {
self.instruction_execution_cost_table
.upsert(program_key, cost);
match self.instruction_execution_cost_table.get_cost(program_key) {
Some(cost) => Ok(*cost),
None => Err("failed to upsert to ExecuteCostTable"),
}
}
pub fn get_instruction_cost_table(&self) -> &HashMap<Pubkey, u64> {
self.instruction_execution_cost_table.get_cost_table()
}
fn get_signature_cost(&self, transaction: &SanitizedTransaction) -> u64 {
transaction.signatures().len() as u64 * SIGNATURE_COST
}
fn get_write_lock_cost(
&mut self,
transaction: &SanitizedTransaction,
demote_program_write_locks: bool,
) {
let message = transaction.message();
message.account_keys_iter().enumerate().for_each(|(i, k)| {
let is_writable = message.is_writable(i, demote_program_write_locks);
if is_writable {
self.transaction_cost.writable_accounts.push(*k);
self.transaction_cost.write_lock_cost += WRITE_LOCK_UNITS;
}
});
}
fn get_data_bytes_cost(&self, transaction: &SanitizedTransaction) -> u64 {
let mut data_bytes_cost: u64 = 0;
transaction
.message()
.program_instructions_iter()
.for_each(|(_, ix)| {
data_bytes_cost += ix.data.len() as u64 / DATA_BYTES_UNITS;
});
data_bytes_cost
}
fn get_transaction_cost(&self, transaction: &SanitizedTransaction) -> u64 {
let mut cost: u64 = 0;
for (program_id, instruction) in transaction.message().program_instructions_iter() {
let instruction_cost = self.find_instruction_cost(program_id);
trace!(
"instruction {:?} has cost of {}",
instruction,
instruction_cost
);
cost = cost.saturating_add(instruction_cost);
}
cost
}
fn find_instruction_cost(&self, program_key: &Pubkey) -> u64 {
match self.instruction_execution_cost_table.get_cost(program_key) {
Some(cost) => *cost,
None => {
let default_value = self.instruction_execution_cost_table.get_mode();
debug!(
"Program key {:?} does not have assigned cost, using mode {}",
program_key, default_value
);
default_value
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use solana_runtime::{
bank::Bank,
genesis_utils::{create_genesis_config, GenesisConfigInfo},
};
use solana_sdk::{
bpf_loader,
hash::Hash,
instruction::CompiledInstruction,
message::Message,
signature::{Keypair, Signer},
system_instruction::{self},
system_program, system_transaction,
transaction::Transaction,
};
use std::{
convert::{TryFrom, TryInto},
str::FromStr,
sync::{Arc, RwLock},
thread::{self, JoinHandle},
};
fn test_setup() -> (Keypair, Hash) {
solana_logger::setup();
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config(10);
let bank = Arc::new(Bank::new_no_wallclock_throttle_for_tests(&genesis_config));
let start_hash = bank.last_blockhash();
(mint_keypair, start_hash)
}
#[test]
fn test_cost_model_instruction_cost() {
let mut testee = CostModel::default();
let known_key = Pubkey::from_str("known11111111111111111111111111111111111111").unwrap();
testee.upsert_instruction_cost(&known_key, 100).unwrap();
// find cost for known programs
assert_eq!(100, testee.find_instruction_cost(&known_key));
testee
.upsert_instruction_cost(&bpf_loader::id(), 1999)
.unwrap();
assert_eq!(1999, testee.find_instruction_cost(&bpf_loader::id()));
// unknown program is assigned with default cost
assert_eq!(
testee.instruction_execution_cost_table.get_mode(),
testee.find_instruction_cost(
&Pubkey::from_str("unknown111111111111111111111111111111111111").unwrap()
)
);
}
#[test]
fn test_cost_model_simple_transaction() {
let (mint_keypair, start_hash) = test_setup();
let keypair = Keypair::new();
let simple_transaction: SanitizedTransaction =
system_transaction::transfer(&mint_keypair, &keypair.pubkey(), 2, start_hash)
.try_into()
.unwrap();
debug!(
"system_transaction simple_transaction {:?}",
simple_transaction
);
// expected cost for one system transfer instructions
let expected_cost = 8;
let mut testee = CostModel::default();
testee
.upsert_instruction_cost(&system_program::id(), expected_cost)
.unwrap();
assert_eq!(
expected_cost,
testee.get_transaction_cost(&simple_transaction)
);
}
#[test]
fn test_cost_model_transaction_many_transfer_instructions() {
let (mint_keypair, start_hash) = test_setup();
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let instructions =
system_instruction::transfer_many(&mint_keypair.pubkey(), &[(key1, 1), (key2, 1)]);
let message = Message::new(&instructions, Some(&mint_keypair.pubkey()));
let tx: SanitizedTransaction = Transaction::new(&[&mint_keypair], message, start_hash)
.try_into()
.unwrap();
debug!("many transfer transaction {:?}", tx);
// expected cost for two system transfer instructions
let program_cost = 8;
let expected_cost = program_cost * 2;
let mut testee = CostModel::default();
testee
.upsert_instruction_cost(&system_program::id(), program_cost)
.unwrap();
assert_eq!(expected_cost, testee.get_transaction_cost(&tx));
}
#[test]
fn test_cost_model_message_many_different_instructions() {
let (mint_keypair, start_hash) = test_setup();
// construct a transaction with multiple random instructions
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let prog1 = solana_sdk::pubkey::new_rand();
let prog2 = solana_sdk::pubkey::new_rand();
let instructions = vec![
CompiledInstruction::new(3, &(), vec![0, 1]),
CompiledInstruction::new(4, &(), vec![0, 2]),
];
let tx: SanitizedTransaction = Transaction::new_with_compiled_instructions(
&[&mint_keypair],
&[key1, key2],
start_hash,
vec![prog1, prog2],
instructions,
)
.try_into()
.unwrap();
debug!("many random transaction {:?}", tx);
let testee = CostModel::default();
let result = testee.get_transaction_cost(&tx);
// expected cost for two random/unknown program is
let expected_cost = testee.instruction_execution_cost_table.get_mode() * 2;
assert_eq!(expected_cost, result);
}
#[test]
fn test_cost_model_sort_message_accounts_by_type() {
// construct a transaction with two random instructions with same signer
let signer1 = Keypair::new();
let signer2 = Keypair::new();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let prog1 = Pubkey::new_unique();
let prog2 = Pubkey::new_unique();
let instructions = vec![
CompiledInstruction::new(4, &(), vec![0, 2]),
CompiledInstruction::new(5, &(), vec![1, 3]),
];
let tx: SanitizedTransaction = Transaction::new_with_compiled_instructions(
&[&signer1, &signer2],
&[key1, key2],
Hash::new_unique(),
vec![prog1, prog2],
instructions,
)
.try_into()
.unwrap();
let mut cost_model = CostModel::default();
let tx_cost = cost_model.calculate_cost(&tx, /*demote_program_write_locks=*/ true);
assert_eq!(2 + 2, tx_cost.writable_accounts.len());
assert_eq!(signer1.pubkey(), tx_cost.writable_accounts[0]);
assert_eq!(signer2.pubkey(), tx_cost.writable_accounts[1]);
assert_eq!(key1, tx_cost.writable_accounts[2]);
assert_eq!(key2, tx_cost.writable_accounts[3]);
}
#[test]
fn test_cost_model_insert_instruction_cost() {
let key1 = Pubkey::new_unique();
let cost1 = 100;
let mut cost_model = CostModel::default();
// Using default cost for unknown instruction
assert_eq!(
cost_model.instruction_execution_cost_table.get_mode(),
cost_model.find_instruction_cost(&key1)
);
// insert instruction cost to table
assert!(cost_model.upsert_instruction_cost(&key1, cost1).is_ok());
// now it is known insturction with known cost
assert_eq!(cost1, cost_model.find_instruction_cost(&key1));
}
#[test]
fn test_cost_model_calculate_cost() {
let (mint_keypair, start_hash) = test_setup();
let tx: SanitizedTransaction =
system_transaction::transfer(&mint_keypair, &Keypair::new().pubkey(), 2, start_hash)
.try_into()
.unwrap();
let expected_account_cost = WRITE_LOCK_UNITS * 2;
let expected_execution_cost = 8;
let mut cost_model = CostModel::default();
cost_model
.upsert_instruction_cost(&system_program::id(), expected_execution_cost)
.unwrap();
let tx_cost = cost_model.calculate_cost(&tx, /*demote_program_write_locks=*/ true);
assert_eq!(expected_account_cost, tx_cost.write_lock_cost);
assert_eq!(expected_execution_cost, tx_cost.execution_cost);
assert_eq!(2, tx_cost.writable_accounts.len());
}
#[test]
fn test_cost_model_update_instruction_cost() {
let key1 = Pubkey::new_unique();
let cost1 = 100;
let cost2 = 200;
let updated_cost = (cost1 + cost2) / 2;
let mut cost_model = CostModel::default();
// insert instruction cost to table
assert!(cost_model.upsert_instruction_cost(&key1, cost1).is_ok());
assert_eq!(cost1, cost_model.find_instruction_cost(&key1));
// update instruction cost
assert!(cost_model.upsert_instruction_cost(&key1, cost2).is_ok());
assert_eq!(updated_cost, cost_model.find_instruction_cost(&key1));
}
#[test]
fn test_cost_model_can_be_shared_concurrently_with_rwlock() {
let (mint_keypair, start_hash) = test_setup();
// construct a transaction with multiple random instructions
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let prog1 = solana_sdk::pubkey::new_rand();
let prog2 = solana_sdk::pubkey::new_rand();
let instructions = vec![
CompiledInstruction::new(3, &(), vec![0, 1]),
CompiledInstruction::new(4, &(), vec![0, 2]),
];
let tx = Arc::new(
SanitizedTransaction::try_from(Transaction::new_with_compiled_instructions(
&[&mint_keypair],
&[key1, key2],
start_hash,
vec![prog1, prog2],
instructions,
))
.unwrap(),
);
let number_threads = 10;
let expected_account_cost = WRITE_LOCK_UNITS * 3;
let cost1 = 100;
let cost2 = 200;
// execution cost can be either 2 * Default (before write) or cost1+cost2 (after write)
let cost_model: Arc<RwLock<CostModel>> = Arc::new(RwLock::new(CostModel::default()));
let thread_handlers: Vec<JoinHandle<()>> = (0..number_threads)
.map(|i| {
let cost_model = cost_model.clone();
let tx = tx.clone();
if i == 5 {
thread::spawn(move || {
let mut cost_model = cost_model.write().unwrap();
assert!(cost_model.upsert_instruction_cost(&prog1, cost1).is_ok());
assert!(cost_model.upsert_instruction_cost(&prog2, cost2).is_ok());
})
} else {
thread::spawn(move || {
let mut cost_model = cost_model.write().unwrap();
let tx_cost = cost_model
.calculate_cost(&tx, /*demote_program_write_locks=*/ true);
assert_eq!(3, tx_cost.writable_accounts.len());
assert_eq!(expected_account_cost, tx_cost.write_lock_cost);
})
}
})
.collect();
for th in thread_handlers {
th.join().unwrap();
}
}
#[test]
fn test_initialize_cost_table() {
// build cost table
let cost_table = vec![
(Pubkey::new_unique(), 10),
(Pubkey::new_unique(), 20),
(Pubkey::new_unique(), 30),
];
// init cost model
let mut cost_model = CostModel::default();
cost_model.initialize_cost_table(&cost_table);
// verify
for (id, cost) in cost_table.iter() {
assert_eq!(*cost, cost_model.find_instruction_cost(id));
}
// verify built-in programs
assert!(cost_model
.instruction_execution_cost_table
.get_cost(&system_program::id())
.is_some());
assert!(cost_model
.instruction_execution_cost_table
.get_cost(&solana_vote_program::id())
.is_some());
}
}

View File

@ -1,482 +0,0 @@
//! `cost_tracker` keeps tracking transaction cost per chained accounts as well as for entire block
//! It aggregates `cost_model`, which provides service of calculating transaction cost.
//! The main functions are:
//! - would_transaction_fit(&tx), immutable function to test if `tx` would fit into current block
//! - add_transaction_cost(&tx), mutable function to accumulate `tx` cost to tracker.
//!
use crate::cost_model::{CostModel, CostModelError, TransactionCost};
use crate::cost_tracker_stats::CostTrackerStats;
use solana_sdk::{clock::Slot, pubkey::Pubkey, transaction::SanitizedTransaction};
use std::{
collections::HashMap,
sync::{Arc, RwLock},
};
const WRITABLE_ACCOUNTS_PER_BLOCK: usize = 512;
#[derive(Debug)]
pub struct CostTracker {
cost_model: Arc<RwLock<CostModel>>,
account_cost_limit: u64,
block_cost_limit: u64,
current_bank_slot: Slot,
cost_by_writable_accounts: HashMap<Pubkey, u64>,
block_cost: u64,
}
impl CostTracker {
pub fn new(cost_model: Arc<RwLock<CostModel>>) -> Self {
let (account_cost_limit, block_cost_limit) = {
let cost_model = cost_model.read().unwrap();
(
cost_model.get_account_cost_limit(),
cost_model.get_block_cost_limit(),
)
};
assert!(account_cost_limit <= block_cost_limit);
Self {
cost_model,
account_cost_limit,
block_cost_limit,
current_bank_slot: 0,
cost_by_writable_accounts: HashMap::with_capacity(WRITABLE_ACCOUNTS_PER_BLOCK),
block_cost: 0,
}
}
pub fn would_transaction_fit(
&self,
transaction: &SanitizedTransaction,
demote_program_write_locks: bool,
stats: &mut CostTrackerStats,
) -> Result<(), CostModelError> {
let mut cost_model = self.cost_model.write().unwrap();
let tx_cost = cost_model.calculate_cost(transaction, demote_program_write_locks);
self.would_fit(&tx_cost.writable_accounts, &tx_cost.sum(), stats)
}
pub fn add_transaction_cost(
&mut self,
transaction: &SanitizedTransaction,
demote_program_write_locks: bool,
stats: &mut CostTrackerStats,
) {
let mut cost_model = self.cost_model.write().unwrap();
let tx_cost = cost_model.calculate_cost(transaction, demote_program_write_locks);
let cost = tx_cost.sum();
for account_key in tx_cost.writable_accounts.iter() {
*self
.cost_by_writable_accounts
.entry(*account_key)
.or_insert(0) += cost;
}
self.block_cost += cost;
stats.transaction_count += 1;
stats.block_cost += cost;
}
pub fn reset_if_new_bank(&mut self, slot: Slot, stats: &mut CostTrackerStats) -> bool {
// report stats when slot changes
if slot != stats.bank_slot {
stats.report();
*stats = CostTrackerStats::new(stats.id, slot);
}
if slot != self.current_bank_slot {
self.current_bank_slot = slot;
self.cost_by_writable_accounts.clear();
self.block_cost = 0;
true
} else {
false
}
}
pub fn try_add(
&mut self,
transaction_cost: &TransactionCost,
stats: &mut CostTrackerStats,
) -> Result<u64, CostModelError> {
let cost = transaction_cost.sum();
self.would_fit(&transaction_cost.writable_accounts, &cost, stats)?;
self.add_transaction(&transaction_cost.writable_accounts, &cost);
Ok(self.block_cost)
}
fn would_fit(
&self,
keys: &[Pubkey],
cost: &u64,
stats: &mut CostTrackerStats,
) -> Result<(), CostModelError> {
stats.transaction_cost_histogram.increment(*cost).unwrap();
// check against the total package cost
if self.block_cost + cost > self.block_cost_limit {
return Err(CostModelError::WouldExceedBlockMaxLimit);
}
// check if the transaction itself is more costly than the account_cost_limit
if *cost > self.account_cost_limit {
return Err(CostModelError::WouldExceedAccountMaxLimit);
}
// check each account against account_cost_limit,
for account_key in keys.iter() {
match self.cost_by_writable_accounts.get(account_key) {
Some(chained_cost) => {
stats
.writable_accounts_cost_histogram
.increment(*chained_cost)
.unwrap();
if chained_cost + cost > self.account_cost_limit {
return Err(CostModelError::WouldExceedAccountMaxLimit);
} else {
continue;
}
}
None => continue,
}
}
Ok(())
}
fn add_transaction(&mut self, keys: &[Pubkey], cost: &u64) {
for account_key in keys.iter() {
*self
.cost_by_writable_accounts
.entry(*account_key)
.or_insert(0) += cost;
}
self.block_cost += cost;
}
}
// CostStats can be collected by util, such as ledger_tool
#[derive(Default, Debug)]
pub struct CostStats {
pub bank_slot: Slot,
pub total_cost: u64,
pub number_of_accounts: usize,
pub costliest_account: Pubkey,
pub costliest_account_cost: u64,
}
impl CostTracker {
pub fn get_stats(&self) -> CostStats {
let mut stats = CostStats {
bank_slot: self.current_bank_slot,
total_cost: self.block_cost,
number_of_accounts: self.cost_by_writable_accounts.len(),
costliest_account: Pubkey::default(),
costliest_account_cost: 0,
};
for (key, cost) in self.cost_by_writable_accounts.iter() {
if cost > &stats.costliest_account_cost {
stats.costliest_account = *key;
stats.costliest_account_cost = *cost;
}
}
stats
}
}
#[cfg(test)]
mod tests {
use super::*;
use solana_runtime::{
bank::Bank,
genesis_utils::{create_genesis_config, GenesisConfigInfo},
};
use solana_sdk::{
hash::Hash,
signature::{Keypair, Signer},
system_transaction,
transaction::Transaction,
};
use std::{cmp, sync::Arc};
fn test_setup() -> (Keypair, Hash) {
solana_logger::setup();
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config(10);
let bank = Arc::new(Bank::new_no_wallclock_throttle_for_tests(&genesis_config));
let start_hash = bank.last_blockhash();
(mint_keypair, start_hash)
}
fn build_simple_transaction(
mint_keypair: &Keypair,
start_hash: &Hash,
) -> (Transaction, Vec<Pubkey>, u64) {
let keypair = Keypair::new();
let simple_transaction =
system_transaction::transfer(mint_keypair, &keypair.pubkey(), 2, *start_hash);
(simple_transaction, vec![mint_keypair.pubkey()], 5)
}
#[test]
fn test_cost_tracker_initialization() {
let testee = CostTracker::new(Arc::new(RwLock::new(CostModel::new(10, 11))));
assert_eq!(10, testee.account_cost_limit);
assert_eq!(11, testee.block_cost_limit);
assert_eq!(0, testee.cost_by_writable_accounts.len());
assert_eq!(0, testee.block_cost);
}
#[test]
fn test_cost_tracker_ok_add_one() {
let (mint_keypair, start_hash) = test_setup();
let (_tx, keys, cost) = build_simple_transaction(&mint_keypair, &start_hash);
// build testee to have capacity for one simple transaction
let mut testee = CostTracker::new(Arc::new(RwLock::new(CostModel::new(cost, cost))));
assert!(testee
.would_fit(&keys, &cost, &mut CostTrackerStats::default())
.is_ok());
testee.add_transaction(&keys, &cost);
assert_eq!(cost, testee.block_cost);
}
#[test]
fn test_cost_tracker_ok_add_two_same_accounts() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with same signed account
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let (_tx2, keys2, cost2) = build_simple_transaction(&mint_keypair, &start_hash);
// build testee to have capacity for two simple transactions, with same accounts
let mut testee = CostTracker::new(Arc::new(RwLock::new(CostModel::new(
cost1 + cost2,
cost1 + cost2,
))));
{
assert!(testee
.would_fit(&keys1, &cost1, &mut CostTrackerStats::default())
.is_ok());
testee.add_transaction(&keys1, &cost1);
}
{
assert!(testee
.would_fit(&keys2, &cost2, &mut CostTrackerStats::default())
.is_ok());
testee.add_transaction(&keys2, &cost2);
}
assert_eq!(cost1 + cost2, testee.block_cost);
assert_eq!(1, testee.cost_by_writable_accounts.len());
}
#[test]
fn test_cost_tracker_ok_add_two_diff_accounts() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with diff accounts
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let second_account = Keypair::new();
let (_tx2, keys2, cost2) = build_simple_transaction(&second_account, &start_hash);
// build testee to have capacity for two simple transactions, with same accounts
let mut testee = CostTracker::new(Arc::new(RwLock::new(CostModel::new(
cmp::max(cost1, cost2),
cost1 + cost2,
))));
{
assert!(testee
.would_fit(&keys1, &cost1, &mut CostTrackerStats::default())
.is_ok());
testee.add_transaction(&keys1, &cost1);
}
{
assert!(testee
.would_fit(&keys2, &cost2, &mut CostTrackerStats::default())
.is_ok());
testee.add_transaction(&keys2, &cost2);
}
assert_eq!(cost1 + cost2, testee.block_cost);
assert_eq!(2, testee.cost_by_writable_accounts.len());
}
#[test]
fn test_cost_tracker_chain_reach_limit() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with same signed account
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let (_tx2, keys2, cost2) = build_simple_transaction(&mint_keypair, &start_hash);
// build testee to have capacity for two simple transactions, but not for same accounts
let mut testee = CostTracker::new(Arc::new(RwLock::new(CostModel::new(
cmp::min(cost1, cost2),
cost1 + cost2,
))));
// should have room for first transaction
{
assert!(testee
.would_fit(&keys1, &cost1, &mut CostTrackerStats::default())
.is_ok());
testee.add_transaction(&keys1, &cost1);
}
// but no more sapce on the same chain (same signer account)
{
assert!(testee
.would_fit(&keys2, &cost2, &mut CostTrackerStats::default())
.is_err());
}
}
#[test]
fn test_cost_tracker_reach_limit() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with diff accounts
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let second_account = Keypair::new();
let (_tx2, keys2, cost2) = build_simple_transaction(&second_account, &start_hash);
// build testee to have capacity for each chain, but not enough room for both transactions
let mut testee = CostTracker::new(Arc::new(RwLock::new(CostModel::new(
cmp::max(cost1, cost2),
cost1 + cost2 - 1,
))));
// should have room for first transaction
{
assert!(testee
.would_fit(&keys1, &cost1, &mut CostTrackerStats::default())
.is_ok());
testee.add_transaction(&keys1, &cost1);
}
// but no more room for package as whole
{
assert!(testee
.would_fit(&keys2, &cost2, &mut CostTrackerStats::default())
.is_err());
}
}
#[test]
fn test_cost_tracker_reset() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with same signed account
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let (_tx2, keys2, cost2) = build_simple_transaction(&mint_keypair, &start_hash);
// build testee to have capacity for two simple transactions, but not for same accounts
let mut testee = CostTracker::new(Arc::new(RwLock::new(CostModel::new(
cmp::min(cost1, cost2),
cost1 + cost2,
))));
// should have room for first transaction
{
assert!(testee
.would_fit(&keys1, &cost1, &mut CostTrackerStats::default())
.is_ok());
testee.add_transaction(&keys1, &cost1);
assert_eq!(1, testee.cost_by_writable_accounts.len());
assert_eq!(cost1, testee.block_cost);
}
// but no more sapce on the same chain (same signer account)
{
assert!(testee
.would_fit(&keys2, &cost2, &mut CostTrackerStats::default())
.is_err());
}
// reset the tracker
{
testee.reset_if_new_bank(100, &mut CostTrackerStats::default());
assert_eq!(0, testee.cost_by_writable_accounts.len());
assert_eq!(0, testee.block_cost);
}
//now the second transaction can be added
{
assert!(testee
.would_fit(&keys2, &cost2, &mut CostTrackerStats::default())
.is_ok());
}
}
#[test]
fn test_cost_tracker_try_add_is_atomic() {
let acct1 = Pubkey::new_unique();
let acct2 = Pubkey::new_unique();
let acct3 = Pubkey::new_unique();
let cost = 100;
let account_max = cost * 2;
let block_max = account_max * 3; // for three accts
let mut testee = CostTracker::new(Arc::new(RwLock::new(CostModel::new(
account_max,
block_max,
))));
// case 1: a tx writes to 3 accounts, should success, we will have:
// | acct1 | $cost |
// | acct2 | $cost |
// | acct2 | $cost |
// and block_cost = $cost
{
let tx_cost = TransactionCost {
writable_accounts: vec![acct1, acct2, acct3],
execution_cost: cost,
..TransactionCost::default()
};
assert!(testee
.try_add(&tx_cost, &mut CostTrackerStats::default())
.is_ok());
let stat = testee.get_stats();
assert_eq!(cost, stat.total_cost);
assert_eq!(3, stat.number_of_accounts);
assert_eq!(cost, stat.costliest_account_cost);
}
// case 2: add tx writes to acct2 with $cost, should succeed, result to
// | acct1 | $cost |
// | acct2 | $cost * 2 |
// | acct2 | $cost |
// and block_cost = $cost * 2
{
let tx_cost = TransactionCost {
writable_accounts: vec![acct2],
execution_cost: cost,
..TransactionCost::default()
};
assert!(testee
.try_add(&tx_cost, &mut CostTrackerStats::default())
.is_ok());
let stat = testee.get_stats();
assert_eq!(cost * 2, stat.total_cost);
assert_eq!(3, stat.number_of_accounts);
assert_eq!(cost * 2, stat.costliest_account_cost);
assert_eq!(acct2, stat.costliest_account);
}
// case 3: add tx writes to [acct1, acct2], acct2 exceeds limit, should failed atomically,
// we shoudl still have:
// | acct1 | $cost |
// | acct2 | $cost |
// | acct2 | $cost |
// and block_cost = $cost
{
let tx_cost = TransactionCost {
writable_accounts: vec![acct1, acct2],
execution_cost: cost,
..TransactionCost::default()
};
assert!(testee
.try_add(&tx_cost, &mut CostTrackerStats::default())
.is_err());
let stat = testee.get_stats();
assert_eq!(cost * 2, stat.total_cost);
assert_eq!(3, stat.number_of_accounts);
assert_eq!(cost * 2, stat.costliest_account_cost);
assert_eq!(acct2, stat.costliest_account);
}
}
}

View File

@ -1,75 +0,0 @@
//! The Stats is not thread safe, each thread should have its own
//! instance of stat with `id`; Stat reports and reset for each slot.
#[derive(Debug, Default)]
pub struct CostTrackerStats {
pub id: u32,
pub transaction_cost_histogram: histogram::Histogram,
pub writable_accounts_cost_histogram: histogram::Histogram,
pub transaction_count: u64,
pub block_cost: u64,
pub bank_slot: u64,
}
impl CostTrackerStats {
pub fn new(id: u32, bank_slot: u64) -> Self {
CostTrackerStats {
id,
bank_slot,
..CostTrackerStats::default()
}
}
pub fn report(&self) {
datapoint_info!(
"cost_tracker_stats",
("id", self.id as i64, i64),
(
"transaction_cost_unit_min",
self.transaction_cost_histogram.minimum().unwrap_or(0),
i64
),
(
"transaction_cost_unit_max",
self.transaction_cost_histogram.maximum().unwrap_or(0),
i64
),
(
"transaction_cost_unit_mean",
self.transaction_cost_histogram.mean().unwrap_or(0),
i64
),
(
"transaction_cost_unit_2nd_std",
self.transaction_cost_histogram
.percentile(95.0)
.unwrap_or(0),
i64
),
(
"writable_accounts_cost_min",
self.writable_accounts_cost_histogram.minimum().unwrap_or(0),
i64
),
(
"writable_accounts_cost_max",
self.writable_accounts_cost_histogram.maximum().unwrap_or(0),
i64
),
(
"writable_accounts_cost_mean",
self.writable_accounts_cost_histogram.mean().unwrap_or(0),
i64
),
(
"writable_accounts_cost_2nd_std",
self.writable_accounts_cost_histogram
.percentile(95.0)
.unwrap_or(0),
i64
),
("transaction_count", self.transaction_count as i64, i64),
("block_cost", self.block_cost as i64, i64),
("bank_slot", self.bank_slot as i64, i64),
);
}
}

View File

@ -3,10 +3,9 @@
//! packing transactions into block; it also triggers persisting cost
//! table to blockstore.
use crate::cost_model::CostModel;
use solana_ledger::blockstore::Blockstore;
use solana_measure::measure::Measure;
use solana_runtime::bank::ExecuteTimings;
use solana_runtime::{bank::ExecuteTimings, cost_model::CostModel};
use solana_sdk::timing::timestamp;
use std::{
sync::{

View File

@ -1,279 +0,0 @@
/// ExecuteCostTable is aggregated by Cost Model, it keeps each program's
/// average cost in its HashMap, with fixed capacity to avoid from growing
/// unchecked.
/// When its capacity limit is reached, it prunes old and less-used programs
/// to make room for new ones.
use log::*;
use solana_sdk::pubkey::Pubkey;
use std::{collections::HashMap, time::SystemTime};
// prune is rather expensive op, free up bulk space in each operation
// would be more efficient. PRUNE_RATIO defines the after prune table
// size will be original_size * PRUNE_RATIO.
const PRUNE_RATIO: f64 = 0.75;
// with 50_000 TPS as norm, weights occurrences '100' per microsec
const OCCURRENCES_WEIGHT: i64 = 100;
const DEFAULT_CAPACITY: usize = 1024;
#[derive(Debug)]
pub struct ExecuteCostTable {
capacity: usize,
table: HashMap<Pubkey, u64>,
occurrences: HashMap<Pubkey, (usize, SystemTime)>,
}
impl Default for ExecuteCostTable {
fn default() -> Self {
ExecuteCostTable::new(DEFAULT_CAPACITY)
}
}
impl ExecuteCostTable {
pub fn new(cap: usize) -> Self {
Self {
capacity: cap,
table: HashMap::with_capacity(cap),
occurrences: HashMap::with_capacity(cap),
}
}
pub fn get_cost_table(&self) -> &HashMap<Pubkey, u64> {
&self.table
}
pub fn get_count(&self) -> usize {
self.table.len()
}
// instead of assigning unknown program with a configured/hard-coded cost
// use average or mode function to make a educated guess.
pub fn get_average(&self) -> u64 {
if self.table.is_empty() {
0
} else {
self.table.iter().map(|(_, value)| value).sum::<u64>() / self.get_count() as u64
}
}
pub fn get_mode(&self) -> u64 {
if self.occurrences.is_empty() {
0
} else {
let key = self
.occurrences
.iter()
.max_by_key(|&(_, count)| count)
.map(|(key, _)| key)
.expect("cannot find mode from cost table");
*self.table.get(key).unwrap()
}
}
// returns None if program doesn't exist in table. In this case,
// client is advised to call `get_average()` or `get_mode()` to
// assign a 'default' value for new program.
pub fn get_cost(&self, key: &Pubkey) -> Option<&u64> {
self.table.get(key)
}
pub fn upsert(&mut self, key: &Pubkey, value: u64) -> Option<u64> {
let need_to_add = self.table.get(key).is_none();
let current_size = self.get_count();
if current_size == self.capacity && need_to_add {
self.prune_to(&((current_size as f64 * PRUNE_RATIO) as usize));
}
let program_cost = self.table.entry(*key).or_insert(value);
*program_cost = (*program_cost + value) / 2;
let (count, timestamp) = self
.occurrences
.entry(*key)
.or_insert((0, SystemTime::now()));
*count += 1;
*timestamp = SystemTime::now();
Some(*program_cost)
}
// prune the old programs so the table contains `new_size` of records,
// where `old` is defined as weighted age, which is negatively correlated
// with program's age and
// positively correlated with how frequently the program
// is executed (eg. occurrence),
fn prune_to(&mut self, new_size: &usize) {
debug!(
"prune cost table, current size {}, new size {}",
self.get_count(),
new_size
);
if *new_size == self.get_count() {
return;
}
if *new_size == 0 {
self.table.clear();
self.occurrences.clear();
return;
}
let now = SystemTime::now();
let mut sorted_by_weighted_age: Vec<_> = self
.occurrences
.iter()
.map(|(key, (count, timestamp))| {
let age = now.duration_since(*timestamp).unwrap().as_micros();
let weighted_age = *count as i64 * OCCURRENCES_WEIGHT + -(age as i64);
(weighted_age, *key)
})
.collect();
sorted_by_weighted_age.sort_by(|x, y| x.0.partial_cmp(&y.0).unwrap());
for i in sorted_by_weighted_age.iter() {
self.table.remove(&i.1);
self.occurrences.remove(&i.1);
if *new_size == self.get_count() {
break;
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_execute_cost_table_prune_simple_table() {
solana_logger::setup();
let capacity: usize = 3;
let mut testee = ExecuteCostTable::new(capacity);
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
testee.upsert(&key1, 1);
testee.upsert(&key2, 2);
testee.upsert(&key3, 3);
testee.prune_to(&(capacity - 1));
// the oldest, key1, should be pruned
assert!(testee.get_cost(&key1).is_none());
assert!(testee.get_cost(&key2).is_some());
assert!(testee.get_cost(&key2).is_some());
}
#[test]
fn test_execute_cost_table_prune_weighted_table() {
solana_logger::setup();
let capacity: usize = 3;
let mut testee = ExecuteCostTable::new(capacity);
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
testee.upsert(&key1, 1);
testee.upsert(&key1, 1);
testee.upsert(&key2, 2);
testee.upsert(&key3, 3);
testee.prune_to(&(capacity - 1));
// the oldest, key1, has 2 counts; 2nd oldest Key2 has 1 count;
// expect key2 to be pruned.
assert!(testee.get_cost(&key1).is_some());
assert!(testee.get_cost(&key2).is_none());
assert!(testee.get_cost(&key3).is_some());
}
#[test]
fn test_execute_cost_table_upsert_within_capacity() {
solana_logger::setup();
let mut testee = ExecuteCostTable::default();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let cost1: u64 = 100;
let cost2: u64 = 110;
// query empty table
assert!(testee.get_cost(&key1).is_none());
// insert one record
testee.upsert(&key1, cost1);
assert_eq!(1, testee.get_count());
assert_eq!(cost1, testee.get_average());
assert_eq!(cost1, testee.get_mode());
assert_eq!(&cost1, testee.get_cost(&key1).unwrap());
// insert 2nd record
testee.upsert(&key2, cost2);
assert_eq!(2, testee.get_count());
assert_eq!((cost1 + cost2) / 2_u64, testee.get_average());
assert_eq!(cost2, testee.get_mode());
assert_eq!(&cost1, testee.get_cost(&key1).unwrap());
assert_eq!(&cost2, testee.get_cost(&key2).unwrap());
// update 1st record
testee.upsert(&key1, cost2);
assert_eq!(2, testee.get_count());
assert_eq!(((cost1 + cost2) / 2 + cost2) / 2, testee.get_average());
assert_eq!((cost1 + cost2) / 2, testee.get_mode());
assert_eq!(&((cost1 + cost2) / 2), testee.get_cost(&key1).unwrap());
assert_eq!(&cost2, testee.get_cost(&key2).unwrap());
}
#[test]
fn test_execute_cost_table_upsert_exceeds_capacity() {
solana_logger::setup();
let capacity: usize = 2;
let mut testee = ExecuteCostTable::new(capacity);
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
let key4 = Pubkey::new_unique();
let cost1: u64 = 100;
let cost2: u64 = 110;
let cost3: u64 = 120;
let cost4: u64 = 130;
// insert one record
testee.upsert(&key1, cost1);
assert_eq!(1, testee.get_count());
assert_eq!(&cost1, testee.get_cost(&key1).unwrap());
// insert 2nd record
testee.upsert(&key2, cost2);
assert_eq!(2, testee.get_count());
assert_eq!(&cost1, testee.get_cost(&key1).unwrap());
assert_eq!(&cost2, testee.get_cost(&key2).unwrap());
// insert 3rd record, pushes out the oldest (eg 1st) record
testee.upsert(&key3, cost3);
assert_eq!(2, testee.get_count());
assert_eq!((cost2 + cost3) / 2_u64, testee.get_average());
assert_eq!(cost3, testee.get_mode());
assert!(testee.get_cost(&key1).is_none());
assert_eq!(&cost2, testee.get_cost(&key2).unwrap());
assert_eq!(&cost3, testee.get_cost(&key3).unwrap());
// update 2nd record, so the 3rd becomes the oldest
// add 4th record, pushes out 3rd key
testee.upsert(&key2, cost1);
testee.upsert(&key4, cost4);
assert_eq!(((cost1 + cost2) / 2 + cost4) / 2_u64, testee.get_average());
assert_eq!((cost1 + cost2) / 2, testee.get_mode());
assert_eq!(2, testee.get_count());
assert!(testee.get_cost(&key1).is_none());
assert_eq!(&((cost1 + cost2) / 2), testee.get_cost(&key2).unwrap());
assert!(testee.get_cost(&key3).is_none());
assert_eq!(&cost4, testee.get_cost(&key4).unwrap());
}
}

View File

@ -20,12 +20,8 @@ pub mod cluster_slots_service;
pub mod commitment_service;
pub mod completed_data_sets_service;
pub mod consensus;
pub mod cost_model;
pub mod cost_tracker;
pub mod cost_tracker_stats;
pub mod cost_update_service;
pub mod duplicate_repair_status;
pub mod execute_cost_table;
pub mod fetch_stage;
pub mod fork_choice;
pub mod gen_keys;

View File

@ -8,8 +8,6 @@ use crate::{
ClusterInfoVoteListener, GossipDuplicateConfirmedSlotsSender, GossipVerifiedVoteHashSender,
VerifiedVoteSender, VoteTracker,
},
cost_model::CostModel,
cost_tracker::CostTracker,
fetch_stage::FetchStage,
sigverify::TransactionSigVerifier,
sigverify_stage::SigVerifyStage,
@ -24,6 +22,8 @@ use solana_rpc::{
};
use solana_runtime::{
bank_forks::BankForks,
cost_model::CostModel,
cost_tracker::CostTracker,
vote_sender_types::{ReplayVoteReceiver, ReplayVoteSender},
};
use std::{

View File

@ -12,7 +12,6 @@ use crate::{
cluster_slots::ClusterSlots,
completed_data_sets_service::CompletedDataSetsSender,
consensus::Tower,
cost_model::CostModel,
cost_update_service::CostUpdateService,
ledger_cleanup_service::LedgerCleanupService,
replay_stage::{ReplayStage, ReplayStageConfig},
@ -43,6 +42,7 @@ use solana_runtime::{
bank::ExecuteTimings,
bank_forks::BankForks,
commitment::BlockCommitmentCache,
cost_model::CostModel,
snapshot_config::SnapshotConfig,
snapshot_package::{AccountsPackageReceiver, AccountsPackageSender, PendingSnapshotPackage},
vote_sender_types::ReplayVoteSender,

View File

@ -8,7 +8,6 @@ use {
cluster_info_vote_listener::VoteTracker,
completed_data_sets_service::CompletedDataSetsService,
consensus::{reconcile_blockstore_roots_with_tower, Tower},
cost_model::CostModel,
rewards_recorder_service::{RewardsRecorderSender, RewardsRecorderService},
sample_performance_service::SamplePerformanceService,
serve_repair::ServeRepair,
@ -69,6 +68,7 @@ use {
bank::Bank,
bank_forks::BankForks,
commitment::BlockCommitmentCache,
cost_model::CostModel,
hardened_unpack::{open_genesis_config, MAX_GENESIS_ARCHIVE_UNPACKED_SIZE},
snapshot_archive_info::SnapshotArchiveInfoGetter,
snapshot_config::SnapshotConfig,