Bump all native programs up a level

Don't categorize programs by a single backend.
This commit is contained in:
Greg Fitzgerald
2019-03-02 20:31:57 -07:00
committed by Grimes
parent e1a1296b9b
commit 037fcf6b3d
51 changed files with 52 additions and 52 deletions

View File

@ -0,0 +1,35 @@
[package]
name = "solana-bpfloader"
version = "0.12.0"
description = "Solana BPF Loader"
authors = ["Solana Maintainers <maintainers@solana.com>"]
repository = "https://github.com/solana-labs/solana"
license = "Apache-2.0"
homepage = "https://solana.com/"
edition = "2018"
[features]
bpf_c = []
bpf_rust = []
[dependencies]
bincode = "1.1.2"
byteorder = "1.3.1"
elf = "0.0.10"
libc = "0.2.49"
log = "0.4.2"
solana_rbpf = "=0.1.10"
serde = "1.0.89"
solana-logger = { path = "../../logger", version = "0.12.0" }
solana-sdk = { path = "../../sdk", version = "0.12.0" }
[build-dependencies]
walkdir = "2"
[lib]
name = "solana_bpf_loader"
crate-type = ["lib", "cdylib"]
[[bench]]
name = "bpf_loader"

View File

@ -0,0 +1,131 @@
#![feature(test)]
#![cfg(feature = "bpf_c")]
extern crate byteorder;
extern crate solana_bpf_loader;
extern crate solana_rbpf;
extern crate test;
use byteorder::{ByteOrder, LittleEndian, WriteBytesExt};
use solana_rbpf::EbpfVmRaw;
use std::env;
use std::fs::File;
use std::io::Error;
use std::io::Read;
use std::mem;
use std::path::PathBuf;
use test::Bencher;
/// BPF program file extension
const PLATFORM_FILE_EXTENSION_BPF: &str = "so";
/// Create a BPF program file name
fn create_bpf_path(name: &str) -> PathBuf {
let mut pathbuf = {
let current_exe = env::current_exe().unwrap();
PathBuf::from(current_exe.parent().unwrap().parent().unwrap())
};
pathbuf.push("bpf/");
pathbuf.push(name);
pathbuf.set_extension(PLATFORM_FILE_EXTENSION_BPF);
pathbuf
}
fn empty_check(_prog: &[u8]) -> Result<(), Error> {
Ok(())
}
const ARMSTRONG_LIMIT: u64 = 500;
const ARMSTRONG_EXPECTED: u64 = 5;
#[bench]
fn bench_program_load_elf(bencher: &mut Bencher) {
let mut file = File::open(create_bpf_path("bench_alu")).expect("file open failed");
let mut elf = Vec::new();
file.read_to_end(&mut elf).unwrap();
let mut vm = EbpfVmRaw::new(None).unwrap();
vm.set_verifier(empty_check).unwrap();
bencher.iter(|| {
vm.set_elf(&elf).unwrap();
});
}
#[bench]
fn bench_program_verify(bencher: &mut Bencher) {
let mut file = File::open(create_bpf_path("bench_alu")).expect("file open failed");
let mut elf = Vec::new();
file.read_to_end(&mut elf).unwrap();
let mut vm = EbpfVmRaw::new(None).unwrap();
vm.set_verifier(empty_check).unwrap();
vm.set_elf(&elf).unwrap();
bencher.iter(|| {
vm.set_verifier(solana_bpf_loader::bpf_verifier::check)
.unwrap();
});
}
#[bench]
fn bench_program_alu(bencher: &mut Bencher) {
let ns_per_s = 1000000000;
let one_million = 1000000;
let mut inner_iter = vec![];
inner_iter
.write_u64::<LittleEndian>(ARMSTRONG_LIMIT)
.unwrap();
inner_iter.write_u64::<LittleEndian>(0).unwrap();
let mut file = File::open(create_bpf_path("bench_alu")).expect("file open failed");
let mut elf = Vec::new();
file.read_to_end(&mut elf).unwrap();
let mut vm = solana_bpf_loader::create_vm(&elf).unwrap();
println!("Interpreted:");
assert_eq!(
1, /*true*/
vm.execute_program(&mut inner_iter).unwrap()
);
assert_eq!(ARMSTRONG_LIMIT, LittleEndian::read_u64(&inner_iter));
assert_eq!(
ARMSTRONG_EXPECTED,
LittleEndian::read_u64(&inner_iter[mem::size_of::<u64>()..])
);
bencher.iter(|| {
vm.execute_program(&mut inner_iter).unwrap();
});
let instructions = vm.get_last_instruction_count();
let summary = bencher.bench(|_bencher| {}).unwrap();
println!(" {:?} instructions", instructions);
println!(" {:?} ns/iter median", summary.median as u64);
assert!(0f64 != summary.median);
let mips = (instructions * (ns_per_s / summary.median as u64)) / one_million;
println!(" {:?} MIPS", mips);
println!("{{ \"type\": \"bench\", \"name\": \"bench_program_alu_interpreted_mips\", \"median\": {:?}, \"deviation\": 0 }}", mips);
println!("JIT to native:");
vm.jit_compile().unwrap();
unsafe {
assert_eq!(
1, /*true*/
vm.execute_program_jit(&mut inner_iter).unwrap()
);
}
assert_eq!(ARMSTRONG_LIMIT, LittleEndian::read_u64(&inner_iter));
assert_eq!(
ARMSTRONG_EXPECTED,
LittleEndian::read_u64(&inner_iter[mem::size_of::<u64>()..])
);
bencher.iter(|| unsafe {
vm.execute_program_jit(&mut inner_iter).unwrap();
});
let summary = bencher.bench(|_bencher| {}).unwrap();
println!(" {:?} instructions", instructions);
println!(" {:?} ns/iter median", summary.median as u64);
assert!(0f64 != summary.median);
let mips = (instructions * (ns_per_s / summary.median as u64)) / one_million;
println!(" {:?} MIPS", mips);
println!("{{ \"type\": \"bench\", \"name\": \"bench_program_alu_jit_to_native_mips\", \"median\": {:?}, \"deviation\": 0 }}", mips);
}

View File

@ -0,0 +1,109 @@
extern crate walkdir;
use std::env;
use std::path::Path;
use std::process::Command;
use walkdir::WalkDir;
fn rerun_if_changed(files: &[&str], directories: &[&str]) {
let mut all_files: Vec<_> = files.iter().map(|f| f.to_string()).collect();
for directory in directories {
let files_in_directory: Vec<_> = WalkDir::new(directory)
.into_iter()
.map(|entry| entry.unwrap())
.filter(|entry| entry.file_type().is_file())
.map(|f| f.path().to_str().unwrap().to_owned())
.collect();
all_files.extend_from_slice(&files_in_directory[..]);
}
for file in all_files {
if !Path::new(&file).is_file() {
panic!("{} is not a file", file);
}
println!("cargo:rerun-if-changed={}", file);
}
}
fn main() {
println!("cargo:rerun-if-changed=build.rs");
let bpf_c = !env::var("CARGO_FEATURE_BPF_C").is_err();
if bpf_c {
let out_dir = "OUT_DIR=../../../target/".to_string()
+ &env::var("PROFILE").unwrap()
+ &"/bpf".to_string();
rerun_if_changed(
&[
"../../../sdk/bpf/bpf.ld",
"../../../sdk/bpf/bpf.mk",
"../../bpf/c/makefile",
],
&[
"../../../sdk/bpf/inc",
"../../../sdk/bpf/scripts",
"../../bpf/c/src",
],
);
println!("cargo:warning=(not a warning) Compiling C-based BPF programs");
let status = Command::new("make")
.current_dir("../../bpf/c")
.arg("programs")
.arg(&out_dir)
.status()
.expect("Failed to build C-based BPF programs");
assert!(status.success());
}
let bpf_rust = !env::var("CARGO_FEATURE_BPF_RUST").is_err();
if bpf_rust {
let install_dir =
"../../../../target/".to_string() + &env::var("PROFILE").unwrap() + &"/bpf".to_string();
if !Path::new(
"../../bpf/rust/noop/target/bpfel-unknown-unknown/release/solana_bpf_rust_noop.so",
)
.is_file()
{
// Cannot build Rust BPF programs as part of main build because
// to build it requires calling Cargo with different parameters which
// would deadlock due to recursive cargo calls
panic!(
"solana_bpf_rust_noop.so not found, you must manually run \
`build.sh` in programs/bpf/rust/noop to build it"
);
}
rerun_if_changed(
&[
"../../bpf/rust/noop/bpf.ld",
"../../bpf/rust/noop/build.sh",
"../../bpf/rust/noop/Cargo.toml",
"../../bpf/rust/noop/target/bpfel-unknown-unknown/release/solana_bpf_rust_noop.so",
],
&["../../bpf/rust/noop/src"],
);
println!(
"cargo:warning=(not a warning) Installing Rust-based BPF program: solana_bpf_rust_noop"
);
let status = Command::new("mkdir")
.current_dir("../../bpf/rust/noop")
.arg("-p")
.arg(&install_dir)
.status()
.expect("Unable to create BPF install directory");
assert!(status.success());
let status = Command::new("cp")
.current_dir("../../bpf/rust/noop")
.arg("target/bpfel-unknown-unknown/release/solana_bpf_rust_noop.so")
.arg(&install_dir)
.status()
.expect("Failed to copy solana_rust_bpf_noop.so to install directory");
assert!(status.success());
}
}

View File

@ -0,0 +1,324 @@
use solana_rbpf::ebpf;
use std::io::{Error, ErrorKind};
fn reject<S: AsRef<str>>(msg: S) -> Result<(), Error> {
let full_msg = format!("[Verifier] Error: {}", msg.as_ref());
Err(Error::new(ErrorKind::Other, full_msg))
}
fn check_prog_len(prog: &[u8]) -> Result<(), Error> {
if prog.len() % ebpf::INSN_SIZE != 0 {
reject(format!(
"eBPF program length must be a multiple of {:?} octets",
ebpf::INSN_SIZE
))?;
}
if prog.len() > ebpf::PROG_MAX_SIZE {
reject(format!(
"eBPF program length limited to {:?}, here {:?}",
ebpf::PROG_MAX_INSNS,
prog.len() / ebpf::INSN_SIZE
))?;
}
if prog.is_empty() {
reject("No program set, call prog_set() to load one".to_string())?;
}
// TODO BPF program may deterministically exit even if the last
// instruction in the block is not an exit (might be earlier and jumped to)
// TODO need to validate more intelligently
// let last_insn = ebpf::get_insn(prog, (prog.len() / ebpf::INSN_SIZE) - 1);
// if last_insn.opc != ebpf::EXIT {
// reject("program does not end with “EXIT” instruction".to_string())?;
// }
Ok(())
}
fn check_imm_nonzero(insn: &ebpf::Insn, insn_ptr: usize) -> Result<(), Error> {
if insn.imm == 0 {
reject(format!("division by 0 (insn #{:?})", insn_ptr))?;
}
Ok(())
}
fn check_imm_endian(insn: &ebpf::Insn, insn_ptr: usize) -> Result<(), Error> {
match insn.imm {
16 | 32 | 64 => Ok(()),
_ => reject(format!(
"unsupported argument for LE/BE (insn #{:?})",
insn_ptr
)),
}
}
fn check_load_dw(prog: &[u8], insn_ptr: usize) -> Result<(), Error> {
// We know we can reach next insn since we enforce an EXIT insn at the end of program, while
// this function should be called only for LD_DW insn, that cannot be last in program.
let next_insn = ebpf::get_insn(prog, insn_ptr + 1);
if next_insn.opc != 0 {
reject(format!(
"incomplete LD_DW instruction (insn #{:?})",
insn_ptr
))?;
}
Ok(())
}
fn check_jmp_offset(prog: &[u8], insn_ptr: usize) -> Result<(), Error> {
let insn = ebpf::get_insn(prog, insn_ptr);
if insn.off == -1 {
reject(format!("infinite loop (insn #{:?})", insn_ptr))?;
}
let dst_insn_ptr = insn_ptr as isize + 1 + insn.off as isize;
if dst_insn_ptr < 0 || dst_insn_ptr as usize >= (prog.len() / ebpf::INSN_SIZE) {
reject(format!(
"jump out of code to #{:?} (insn #{:?})",
dst_insn_ptr, insn_ptr
))?;
}
let dst_insn = ebpf::get_insn(prog, dst_insn_ptr as usize);
if dst_insn.opc == 0 {
reject(format!(
"jump to middle of LD_DW at #{:?} (insn #{:?})",
dst_insn_ptr, insn_ptr
))?;
}
Ok(())
}
fn check_registers(insn: &ebpf::Insn, store: bool, insn_ptr: usize) -> Result<(), Error> {
if insn.src > 10 {
reject(format!("invalid source register (insn #{:?})", insn_ptr))?;
}
match (insn.dst, store) {
(0...9, _) | (10, true) => Ok(()),
(10, false) => reject(format!(
"cannot write into register r10 (insn #{:?})",
insn_ptr
)),
(_, _) => reject(format!(
"invalid destination register (insn #{:?})",
insn_ptr
)),
}
}
pub fn check(prog: &[u8]) -> Result<(), Error> {
check_prog_len(prog)?;
let mut insn_ptr: usize = 0;
while insn_ptr * ebpf::INSN_SIZE < prog.len() {
let insn = ebpf::get_insn(prog, insn_ptr);
let mut store = false;
match insn.opc {
// BPF_LD class
ebpf::LD_ABS_B => {}
ebpf::LD_ABS_H => {}
ebpf::LD_ABS_W => {}
ebpf::LD_ABS_DW => {}
ebpf::LD_IND_B => {}
ebpf::LD_IND_H => {}
ebpf::LD_IND_W => {}
ebpf::LD_IND_DW => {}
ebpf::LD_DW_IMM => {
store = true;
check_load_dw(prog, insn_ptr)?;
insn_ptr += 1;
}
// BPF_LDX class
ebpf::LD_B_REG => {}
ebpf::LD_H_REG => {}
ebpf::LD_W_REG => {}
ebpf::LD_DW_REG => {}
// BPF_ST class
ebpf::ST_B_IMM => store = true,
ebpf::ST_H_IMM => store = true,
ebpf::ST_W_IMM => store = true,
ebpf::ST_DW_IMM => store = true,
// BPF_STX class
ebpf::ST_B_REG => store = true,
ebpf::ST_H_REG => store = true,
ebpf::ST_W_REG => store = true,
ebpf::ST_DW_REG => store = true,
ebpf::ST_W_XADD => {
unimplemented!();
}
ebpf::ST_DW_XADD => {
unimplemented!();
}
// BPF_ALU class
ebpf::ADD32_IMM => {}
ebpf::ADD32_REG => {}
ebpf::SUB32_IMM => {}
ebpf::SUB32_REG => {}
ebpf::MUL32_IMM => {}
ebpf::MUL32_REG => {}
ebpf::DIV32_IMM => {
check_imm_nonzero(&insn, insn_ptr)?;
}
ebpf::DIV32_REG => {}
ebpf::OR32_IMM => {}
ebpf::OR32_REG => {}
ebpf::AND32_IMM => {}
ebpf::AND32_REG => {}
ebpf::LSH32_IMM => {}
ebpf::LSH32_REG => {}
ebpf::RSH32_IMM => {}
ebpf::RSH32_REG => {}
ebpf::NEG32 => {}
ebpf::MOD32_IMM => {
check_imm_nonzero(&insn, insn_ptr)?;
}
ebpf::MOD32_REG => {}
ebpf::XOR32_IMM => {}
ebpf::XOR32_REG => {}
ebpf::MOV32_IMM => {}
ebpf::MOV32_REG => {}
ebpf::ARSH32_IMM => {}
ebpf::ARSH32_REG => {}
ebpf::LE => {
check_imm_endian(&insn, insn_ptr)?;
}
ebpf::BE => {
check_imm_endian(&insn, insn_ptr)?;
}
// BPF_ALU64 class
ebpf::ADD64_IMM => {}
ebpf::ADD64_REG => {}
ebpf::SUB64_IMM => {}
ebpf::SUB64_REG => {}
ebpf::MUL64_IMM => {
check_imm_nonzero(&insn, insn_ptr)?;
}
ebpf::MUL64_REG => {}
ebpf::DIV64_IMM => {
check_imm_nonzero(&insn, insn_ptr)?;
}
ebpf::DIV64_REG => {}
ebpf::OR64_IMM => {}
ebpf::OR64_REG => {}
ebpf::AND64_IMM => {}
ebpf::AND64_REG => {}
ebpf::LSH64_IMM => {}
ebpf::LSH64_REG => {}
ebpf::RSH64_IMM => {}
ebpf::RSH64_REG => {}
ebpf::NEG64 => {}
ebpf::MOD64_IMM => {}
ebpf::MOD64_REG => {}
ebpf::XOR64_IMM => {}
ebpf::XOR64_REG => {}
ebpf::MOV64_IMM => {}
ebpf::MOV64_REG => {}
ebpf::ARSH64_IMM => {}
ebpf::ARSH64_REG => {}
// BPF_JMP class
ebpf::JA => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JEQ_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JEQ_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JGT_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JGT_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JGE_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JGE_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JLT_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JLT_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JLE_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JLE_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSET_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSET_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JNE_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JNE_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSGT_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSGT_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSGE_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSGE_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSLT_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSLT_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSLE_IMM => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::JSLE_REG => {
check_jmp_offset(prog, insn_ptr)?;
}
ebpf::CALL_IMM => {}
ebpf::CALL_REG => {}
ebpf::EXIT => {}
_ => {
reject(format!(
"unknown eBPF opcode {:#2x} (insn #{:?})",
insn.opc, insn_ptr
))?;
}
}
check_registers(&insn, store, insn_ptr)?;
insn_ptr += 1;
}
// insn_ptr should now be equal to number of instructions.
if insn_ptr != prog.len() / ebpf::INSN_SIZE {
reject(format!("jumped out of code to #{:?}", insn_ptr))?;
}
Ok(())
}

View File

@ -0,0 +1,277 @@
pub mod bpf_verifier;
use byteorder::{ByteOrder, LittleEndian, WriteBytesExt};
use libc::c_char;
use log::*;
use solana_rbpf::{EbpfVmRaw, MemoryRegion};
use solana_sdk::account::KeyedAccount;
use solana_sdk::loader_instruction::LoaderInstruction;
use solana_sdk::native_program::ProgramError;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::solana_entrypoint;
use std::ffi::CStr;
use std::io::prelude::*;
use std::io::{Error, ErrorKind};
use std::mem;
// TODO use rbpf's disassemble
#[allow(dead_code)]
fn dump_program(key: &Pubkey, prog: &[u8]) {
let mut eight_bytes: Vec<u8> = Vec::new();
info!("BPF Program: {:?}", key);
for i in prog.iter() {
if eight_bytes.len() >= 7 {
info!("{:02X?}", eight_bytes);
eight_bytes.clear();
} else {
eight_bytes.push(i.clone());
}
}
}
pub fn helper_abort_verify(
_arg1: u64,
_arg2: u64,
_arg3: u64,
_arg4: u64,
_arg5: u64,
_ro_regions: &[MemoryRegion],
_rw_regions: &[MemoryRegion],
) -> Result<(()), Error> {
Err(Error::new(
ErrorKind::Other,
"Error: BPF program called abort()!",
))
}
pub fn helper_abort(_arg1: u64, _arg2: u64, _arg3: u64, _arg4: u64, _arg5: u64) -> u64 {
// Never called because its verify function always returns an error
0
}
pub fn helper_sol_panic_verify(
_arg1: u64,
_arg2: u64,
_arg3: u64,
_arg4: u64,
_arg5: u64,
_ro_regions: &[MemoryRegion],
_rw_regions: &[MemoryRegion],
) -> Result<(()), Error> {
Err(Error::new(ErrorKind::Other, "Error: BPF program Panic!"))
}
pub fn helper_sol_panic(_arg1: u64, _arg2: u64, _arg3: u64, _arg4: u64, _arg5: u64) -> u64 {
// Never called because its verify function always returns an error
0
}
pub fn helper_sol_log_verify(
addr: u64,
_arg2: u64,
_arg3: u64,
_arg4: u64,
_arg5: u64,
ro_regions: &[MemoryRegion],
_rw_regions: &[MemoryRegion],
) -> Result<(()), Error> {
for region in ro_regions.iter() {
if region.addr <= addr && (addr as u64) < region.addr + region.len {
let c_buf: *const c_char = addr as *const c_char;
let max_size = region.addr + region.len - addr;
unsafe {
for i in 0..max_size {
if std::ptr::read(c_buf.offset(i as isize)) == 0 {
return Ok(());
}
}
}
return Err(Error::new(ErrorKind::Other, "Error, Unterminated string"));
}
}
Err(Error::new(
ErrorKind::Other,
"Error: Load segfault, bad string pointer",
))
}
pub fn helper_sol_log(addr: u64, _arg2: u64, _arg3: u64, _arg4: u64, _arg5: u64) -> u64 {
let c_buf: *const c_char = addr as *const c_char;
let c_str: &CStr = unsafe { CStr::from_ptr(c_buf) };
match c_str.to_str() {
Ok(slice) => info!("sol_log: {:?}", slice),
Err(e) => warn!("Error: Cannot print invalid string: {}", e),
};
0
}
pub fn helper_sol_log_u64(arg1: u64, arg2: u64, arg3: u64, arg4: u64, arg5: u64) -> u64 {
info!(
"sol_log_u64: {:#x}, {:#x}, {:#x}, {:#x}, {:#x}",
arg1, arg2, arg3, arg4, arg5
);
0
}
pub fn create_vm(prog: &[u8]) -> Result<EbpfVmRaw, Error> {
let mut vm = EbpfVmRaw::new(None)?;
vm.set_verifier(bpf_verifier::check)?;
vm.set_max_instruction_count(36000)?; // TODO 36000 is a wag, need to tune
vm.set_elf(&prog)?;
vm.register_helper_ex("abort", Some(helper_abort_verify), helper_abort)?;
vm.register_helper_ex("sol_panic", Some(helper_sol_panic_verify), helper_sol_panic)?;
vm.register_helper_ex(
"sol_panic_",
Some(helper_sol_panic_verify),
helper_sol_panic,
)?;
vm.register_helper_ex("sol_log", Some(helper_sol_log_verify), helper_sol_log)?;
vm.register_helper_ex("sol_log_", Some(helper_sol_log_verify), helper_sol_log)?;
vm.register_helper_ex("sol_log_64", None, helper_sol_log_u64)?;
vm.register_helper_ex("sol_log_64_", None, helper_sol_log_u64)?;
Ok(vm)
}
fn serialize_parameters(
program_id: &Pubkey,
keyed_accounts: &mut [KeyedAccount],
data: &[u8],
tick_height: u64,
) -> Vec<u8> {
assert_eq!(32, mem::size_of::<Pubkey>());
let mut v: Vec<u8> = Vec::new();
v.write_u64::<LittleEndian>(keyed_accounts.len() as u64)
.unwrap();
for info in keyed_accounts.iter_mut() {
v.write_u64::<LittleEndian>(info.signer_key().is_some() as u64)
.unwrap();
v.write_all(info.unsigned_key().as_ref()).unwrap();
v.write_u64::<LittleEndian>(info.account.tokens).unwrap();
v.write_u64::<LittleEndian>(info.account.userdata.len() as u64)
.unwrap();
v.write_all(&info.account.userdata).unwrap();
v.write_all(info.account.owner.as_ref()).unwrap();
}
v.write_u64::<LittleEndian>(data.len() as u64).unwrap();
v.write_all(data).unwrap();
v.write_u64::<LittleEndian>(tick_height).unwrap();
v.write_all(program_id.as_ref()).unwrap();
v
}
fn deserialize_parameters(keyed_accounts: &mut [KeyedAccount], buffer: &[u8]) {
assert_eq!(32, mem::size_of::<Pubkey>());
let mut start = mem::size_of::<u64>();
for info in keyed_accounts.iter_mut() {
start += mem::size_of::<u64>(); // skip signer_key boolean
start += mem::size_of::<Pubkey>(); // skip pubkey
info.account.tokens = LittleEndian::read_u64(&buffer[start..]);
start += mem::size_of::<u64>() // skip tokens
+ mem::size_of::<u64>(); // skip length tag
let end = start + info.account.userdata.len();
info.account.userdata.clone_from_slice(&buffer[start..end]);
start += info.account.userdata.len() // skip userdata
+ mem::size_of::<Pubkey>(); // skip owner
}
}
solana_entrypoint!(entrypoint);
fn entrypoint(
program_id: &Pubkey,
keyed_accounts: &mut [KeyedAccount],
tx_data: &[u8],
tick_height: u64,
) -> Result<(), ProgramError> {
solana_logger::setup();
if keyed_accounts[0].account.executable {
let (progs, params) = keyed_accounts.split_at_mut(1);
let prog = &progs[0].account.userdata;
info!("Call BPF program");
//dump_program(keyed_accounts[0].key, prog);
let mut vm = match create_vm(prog) {
Ok(vm) => vm,
Err(e) => {
warn!("Failed to create BPF VM: {}", e);
return Err(ProgramError::GenericError);
}
};
let mut v = serialize_parameters(program_id, params, &tx_data, tick_height);
match vm.execute_program(v.as_mut_slice()) {
Ok(status) => {
if 0 == status {
warn!("BPF program failed: {}", status);
return Err(ProgramError::GenericError);
}
}
Err(e) => {
warn!("BPF VM failed to run program: {}", e);
return Err(ProgramError::GenericError);
}
}
deserialize_parameters(params, &v);
info!(
"BPF program executed {} instructions",
vm.get_last_instruction_count()
);
} else if let Ok(instruction) = bincode::deserialize(tx_data) {
if keyed_accounts[0].signer_key().is_none() {
warn!("key[0] did not sign the transaction");
return Err(ProgramError::GenericError);
}
match instruction {
LoaderInstruction::Write { offset, bytes } => {
let offset = offset as usize;
let len = bytes.len();
debug!("Write: offset={} length={}", offset, len);
if keyed_accounts[0].account.userdata.len() < offset + len {
warn!(
"Write overflow: {} < {}",
keyed_accounts[0].account.userdata.len(),
offset + len
);
return Err(ProgramError::GenericError);
}
keyed_accounts[0].account.userdata[offset..offset + len].copy_from_slice(&bytes);
}
LoaderInstruction::Finalize => {
keyed_accounts[0].account.executable = true;
info!(
"Finalize: account {:?}",
keyed_accounts[0].signer_key().unwrap()
);
}
}
} else {
warn!("Invalid program transaction: {:?}", tx_data);
return Err(ProgramError::GenericError);
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic(expected = "Error: Execution exceeded maximum number of instructions")]
fn test_non_terminating_program() {
#[rustfmt::skip]
let prog = &[
0x07, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, // r6 + 1
0x05, 0x00, 0xfe, 0xff, 0x00, 0x00, 0x00, 0x00, // goto -2
0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // exit
];
let input = &mut [0x00];
let mut vm = EbpfVmRaw::new(None).unwrap();
vm.set_verifier(bpf_verifier::check).unwrap();
vm.set_max_instruction_count(10).unwrap();
vm.set_program(prog).unwrap();
vm.execute_program(input).unwrap();
}
}