@ -1,160 +0,0 @@
|
||||
//! Simple Bloom Filter
|
||||
use bv::BitVec;
|
||||
use fnv::FnvHasher;
|
||||
use rand::{self, Rng};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::cmp;
|
||||
use std::hash::Hasher;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
/// Generate a stable hash of `self` for each `hash_index`
|
||||
/// Best effort can be made for uniqueness of each hash.
|
||||
pub trait BloomHashIndex {
|
||||
fn hash_at_index(&self, hash_index: u64) -> u64;
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Default, Clone, Debug, PartialEq)]
|
||||
pub struct Bloom<T: BloomHashIndex> {
|
||||
pub keys: Vec<u64>,
|
||||
pub bits: BitVec<u64>,
|
||||
num_bits_set: u64,
|
||||
_phantom: PhantomData<T>,
|
||||
}
|
||||
|
||||
impl<T: BloomHashIndex> Bloom<T> {
|
||||
pub fn new(num_bits: usize, keys: Vec<u64>) -> Self {
|
||||
let bits = BitVec::new_fill(false, num_bits as u64);
|
||||
Bloom {
|
||||
keys,
|
||||
bits,
|
||||
num_bits_set: 0,
|
||||
_phantom: PhantomData::default(),
|
||||
}
|
||||
}
|
||||
/// create filter optimal for num size given the `FALSE_RATE`
|
||||
/// the keys are randomized for picking data out of a collision resistant hash of size
|
||||
/// `keysize` bytes
|
||||
/// https://hur.st/bloomfilter/
|
||||
pub fn random(num_items: usize, false_rate: f64, max_bits: usize) -> Self {
|
||||
let m = Self::num_bits(num_items as f64, false_rate);
|
||||
let num_bits = cmp::max(1, cmp::min(m as usize, max_bits));
|
||||
let num_keys = Self::num_keys(num_bits as f64, num_items as f64) as usize;
|
||||
let keys: Vec<u64> = (0..num_keys).map(|_| rand::thread_rng().gen()).collect();
|
||||
Self::new(num_bits, keys)
|
||||
}
|
||||
pub fn num_bits(num_items: f64, false_rate: f64) -> f64 {
|
||||
let n = num_items;
|
||||
let p = false_rate;
|
||||
((n * p.ln()) / (1f64 / 2f64.powf(2f64.ln())).ln()).ceil()
|
||||
}
|
||||
pub fn num_keys(num_bits: f64, num_items: f64) -> f64 {
|
||||
let n = num_items;
|
||||
let m = num_bits;
|
||||
1f64.max(((m / n) * 2f64.ln()).round())
|
||||
}
|
||||
fn pos(&self, key: &T, k: u64) -> u64 {
|
||||
key.hash_at_index(k) % self.bits.len()
|
||||
}
|
||||
pub fn clear(&mut self) {
|
||||
self.bits = BitVec::new_fill(false, self.bits.len());
|
||||
self.num_bits_set = 0;
|
||||
}
|
||||
pub fn add(&mut self, key: &T) {
|
||||
for k in &self.keys {
|
||||
let pos = self.pos(key, *k);
|
||||
if !self.bits.get(pos) {
|
||||
self.num_bits_set += 1;
|
||||
self.bits.set(pos, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
pub fn contains(&self, key: &T) -> bool {
|
||||
for k in &self.keys {
|
||||
let pos = self.pos(key, *k);
|
||||
if !self.bits.get(pos) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
fn slice_hash(slice: &[u8], hash_index: u64) -> u64 {
|
||||
let mut hasher = FnvHasher::with_key(hash_index);
|
||||
hasher.write(slice);
|
||||
hasher.finish()
|
||||
}
|
||||
|
||||
impl<T: AsRef<[u8]>> BloomHashIndex for T {
|
||||
fn hash_at_index(&self, hash_index: u64) -> u64 {
|
||||
slice_hash(self.as_ref(), hash_index)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
use solana_sdk::hash::{hash, Hash};
|
||||
|
||||
#[test]
|
||||
fn test_bloom_filter() {
|
||||
//empty
|
||||
let bloom: Bloom<Hash> = Bloom::random(0, 0.1, 100);
|
||||
assert_eq!(bloom.keys.len(), 0);
|
||||
assert_eq!(bloom.bits.len(), 1);
|
||||
|
||||
//normal
|
||||
let bloom: Bloom<Hash> = Bloom::random(10, 0.1, 100);
|
||||
assert_eq!(bloom.keys.len(), 3);
|
||||
assert_eq!(bloom.bits.len(), 48);
|
||||
|
||||
//saturated
|
||||
let bloom: Bloom<Hash> = Bloom::random(100, 0.1, 100);
|
||||
assert_eq!(bloom.keys.len(), 1);
|
||||
assert_eq!(bloom.bits.len(), 100);
|
||||
}
|
||||
#[test]
|
||||
fn test_add_contains() {
|
||||
let mut bloom: Bloom<Hash> = Bloom::random(100, 0.1, 100);
|
||||
//known keys to avoid false positives in the test
|
||||
bloom.keys = vec![0, 1, 2, 3];
|
||||
|
||||
let key = hash(b"hello");
|
||||
assert!(!bloom.contains(&key));
|
||||
bloom.add(&key);
|
||||
assert!(bloom.contains(&key));
|
||||
|
||||
let key = hash(b"world");
|
||||
assert!(!bloom.contains(&key));
|
||||
bloom.add(&key);
|
||||
assert!(bloom.contains(&key));
|
||||
}
|
||||
#[test]
|
||||
fn test_random() {
|
||||
let mut b1: Bloom<Hash> = Bloom::random(10, 0.1, 100);
|
||||
let mut b2: Bloom<Hash> = Bloom::random(10, 0.1, 100);
|
||||
b1.keys.sort();
|
||||
b2.keys.sort();
|
||||
assert_ne!(b1.keys, b2.keys);
|
||||
}
|
||||
// Bloom filter math in python
|
||||
// n number of items
|
||||
// p false rate
|
||||
// m number of bits
|
||||
// k number of keys
|
||||
//
|
||||
// n = ceil(m / (-k / log(1 - exp(log(p) / k))))
|
||||
// p = pow(1 - exp(-k / (m / n)), k)
|
||||
// m = ceil((n * log(p)) / log(1 / pow(2, log(2))));
|
||||
// k = round((m / n) * log(2));
|
||||
#[test]
|
||||
fn test_filter_math() {
|
||||
assert_eq!(Bloom::<Hash>::num_bits(100f64, 0.1f64) as u64, 480u64);
|
||||
assert_eq!(Bloom::<Hash>::num_bits(100f64, 0.01f64) as u64, 959u64);
|
||||
assert_eq!(Bloom::<Hash>::num_keys(1000f64, 50f64) as u64, 14u64);
|
||||
assert_eq!(Bloom::<Hash>::num_keys(2000f64, 50f64) as u64, 28u64);
|
||||
assert_eq!(Bloom::<Hash>::num_keys(2000f64, 25f64) as u64, 55u64);
|
||||
//ensure min keys is 1
|
||||
assert_eq!(Bloom::<Hash>::num_keys(20f64, 1000f64) as u64, 1u64);
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user