Initial population of solana-program-sdk

This commit is contained in:
Michael Vines
2020-10-19 13:19:24 -07:00
parent 3718771ffb
commit 63db324204
79 changed files with 1474 additions and 1220 deletions

302
sdk/program/src/account.rs Normal file
View File

@ -0,0 +1,302 @@
use crate::{clock::Epoch, instruction::InstructionError, pubkey::Pubkey};
use std::{
cell::{Ref, RefCell, RefMut},
cmp, fmt,
iter::FromIterator,
rc::Rc,
};
/// An Account with data that is stored on chain
#[repr(C)]
#[frozen_abi(digest = "AVG6bXqVUippoYRAE8e1ewHeZi1UvFx5r5gKspFSEbxM")]
#[derive(Serialize, Deserialize, PartialEq, Eq, Clone, Default, AbiExample)]
#[serde(rename_all = "camelCase")]
pub struct Account {
/// lamports in the account
pub lamports: u64,
/// data held in this account
#[serde(with = "serde_bytes")]
pub data: Vec<u8>,
/// the program that owns this account. If executable, the program that loads this account.
pub owner: Pubkey,
/// this account's data contains a loaded program (and is now read-only)
pub executable: bool,
/// the epoch at which this account will next owe rent
pub rent_epoch: Epoch,
}
impl fmt::Debug for Account {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let data_len = cmp::min(64, self.data.len());
let data_str = if data_len > 0 {
format!(" data: {}", hex::encode(self.data[..data_len].to_vec()))
} else {
"".to_string()
};
write!(
f,
"Account {{ lamports: {} data.len: {} owner: {} executable: {} rent_epoch: {}{} }}",
self.lamports,
self.data.len(),
self.owner,
self.executable,
self.rent_epoch,
data_str,
)
}
}
impl Account {
pub fn new(lamports: u64, space: usize, owner: &Pubkey) -> Self {
Self {
lamports,
data: vec![0u8; space],
owner: *owner,
..Self::default()
}
}
pub fn new_ref(lamports: u64, space: usize, owner: &Pubkey) -> Rc<RefCell<Self>> {
Rc::new(RefCell::new(Self::new(lamports, space, owner)))
}
pub fn new_data<T: serde::Serialize>(
lamports: u64,
state: &T,
owner: &Pubkey,
) -> Result<Self, bincode::Error> {
let data = bincode::serialize(state)?;
Ok(Self {
lamports,
data,
owner: *owner,
..Self::default()
})
}
pub fn new_ref_data<T: serde::Serialize>(
lamports: u64,
state: &T,
owner: &Pubkey,
) -> Result<RefCell<Self>, bincode::Error> {
Ok(RefCell::new(Self::new_data(lamports, state, owner)?))
}
pub fn new_data_with_space<T: serde::Serialize>(
lamports: u64,
state: &T,
space: usize,
owner: &Pubkey,
) -> Result<Self, bincode::Error> {
let mut account = Self::new(lamports, space, owner);
account.serialize_data(state)?;
Ok(account)
}
pub fn new_ref_data_with_space<T: serde::Serialize>(
lamports: u64,
state: &T,
space: usize,
owner: &Pubkey,
) -> Result<RefCell<Self>, bincode::Error> {
Ok(RefCell::new(Self::new_data_with_space(
lamports, state, space, owner,
)?))
}
pub fn deserialize_data<T: serde::de::DeserializeOwned>(&self) -> Result<T, bincode::Error> {
bincode::deserialize(&self.data)
}
pub fn serialize_data<T: serde::Serialize>(&mut self, state: &T) -> Result<(), bincode::Error> {
if bincode::serialized_size(state)? > self.data.len() as u64 {
return Err(Box::new(bincode::ErrorKind::SizeLimit));
}
bincode::serialize_into(&mut self.data[..], state)
}
}
#[repr(C)]
#[derive(Debug)]
pub struct KeyedAccount<'a> {
is_signer: bool, // Transaction was signed by this account's key
is_writable: bool,
key: &'a Pubkey,
pub account: &'a RefCell<Account>,
}
impl<'a> KeyedAccount<'a> {
pub fn signer_key(&self) -> Option<&Pubkey> {
if self.is_signer {
Some(self.key)
} else {
None
}
}
pub fn unsigned_key(&self) -> &Pubkey {
self.key
}
pub fn is_writable(&self) -> bool {
self.is_writable
}
pub fn lamports(&self) -> Result<u64, InstructionError> {
Ok(self.try_borrow()?.lamports)
}
pub fn data_len(&self) -> Result<usize, InstructionError> {
Ok(self.try_borrow()?.data.len())
}
pub fn data_is_empty(&self) -> Result<bool, InstructionError> {
Ok(self.try_borrow()?.data.is_empty())
}
pub fn owner(&self) -> Result<Pubkey, InstructionError> {
Ok(self.try_borrow()?.owner)
}
pub fn executable(&self) -> Result<bool, InstructionError> {
Ok(self.try_borrow()?.executable)
}
pub fn rent_epoch(&self) -> Result<Epoch, InstructionError> {
Ok(self.try_borrow()?.rent_epoch)
}
pub fn try_account_ref(&'a self) -> Result<Ref<Account>, InstructionError> {
self.try_borrow()
}
pub fn try_account_ref_mut(&'a self) -> Result<RefMut<Account>, InstructionError> {
self.try_borrow_mut()
}
fn try_borrow(&self) -> Result<Ref<Account>, InstructionError> {
self.account
.try_borrow()
.map_err(|_| InstructionError::AccountBorrowFailed)
}
fn try_borrow_mut(&self) -> Result<RefMut<Account>, InstructionError> {
self.account
.try_borrow_mut()
.map_err(|_| InstructionError::AccountBorrowFailed)
}
pub fn new(key: &'a Pubkey, is_signer: bool, account: &'a RefCell<Account>) -> Self {
Self {
is_signer,
is_writable: true,
key,
account,
}
}
pub fn new_readonly(key: &'a Pubkey, is_signer: bool, account: &'a RefCell<Account>) -> Self {
Self {
is_signer,
is_writable: false,
key,
account,
}
}
}
impl<'a> PartialEq for KeyedAccount<'a> {
fn eq(&self, other: &Self) -> bool {
self.key == other.key
}
}
impl<'a> From<(&'a Pubkey, &'a RefCell<Account>)> for KeyedAccount<'a> {
fn from((key, account): (&'a Pubkey, &'a RefCell<Account>)) -> Self {
Self {
is_signer: false,
is_writable: true,
key,
account,
}
}
}
impl<'a> From<(&'a Pubkey, bool, &'a RefCell<Account>)> for KeyedAccount<'a> {
fn from((key, is_signer, account): (&'a Pubkey, bool, &'a RefCell<Account>)) -> Self {
Self {
is_signer,
is_writable: true,
key,
account,
}
}
}
impl<'a> From<&'a (&'a Pubkey, &'a RefCell<Account>)> for KeyedAccount<'a> {
fn from((key, account): &'a (&'a Pubkey, &'a RefCell<Account>)) -> Self {
Self {
is_signer: false,
is_writable: true,
key,
account,
}
}
}
pub fn create_keyed_accounts<'a>(
accounts: &'a [(&'a Pubkey, &'a RefCell<Account>)],
) -> Vec<KeyedAccount<'a>> {
accounts.iter().map(Into::into).collect()
}
pub fn create_keyed_is_signer_accounts<'a>(
accounts: &'a [(&'a Pubkey, bool, &'a RefCell<Account>)],
) -> Vec<KeyedAccount<'a>> {
accounts
.iter()
.map(|(key, is_signer, account)| KeyedAccount {
is_signer: *is_signer,
is_writable: false,
key,
account,
})
.collect()
}
pub fn create_keyed_readonly_accounts(
accounts: &[(Pubkey, RefCell<Account>)],
) -> Vec<KeyedAccount> {
accounts
.iter()
.map(|(key, account)| KeyedAccount {
is_signer: false,
is_writable: false,
key,
account,
})
.collect()
}
/// Return all the signers from a set of KeyedAccounts
pub fn get_signers<A>(keyed_accounts: &[KeyedAccount]) -> A
where
A: FromIterator<Pubkey>,
{
keyed_accounts
.iter()
.filter_map(|keyed_account| keyed_account.signer_key())
.cloned()
.collect::<A>()
}
/// Return the next KeyedAccount or a NotEnoughAccountKeys error
pub fn next_keyed_account<'a, 'b, I: Iterator<Item = &'a KeyedAccount<'b>>>(
iter: &mut I,
) -> Result<I::Item, InstructionError> {
iter.next().ok_or(InstructionError::NotEnoughAccountKeys)
}
/// Return true if the first keyed_account is executable, used to determine if
/// the loader should call a program's 'main'
pub fn is_executable(keyed_accounts: &[KeyedAccount]) -> Result<bool, InstructionError> {
Ok(!keyed_accounts.is_empty() && keyed_accounts[0].executable()?)
}

View File

@ -0,0 +1,225 @@
use crate::{account::Account, clock::Epoch, program_error::ProgramError, pubkey::Pubkey};
use std::{
cell::{Ref, RefCell, RefMut},
cmp, fmt,
rc::Rc,
};
/// Account information
#[derive(Clone)]
pub struct AccountInfo<'a> {
/// Public key of the account
pub key: &'a Pubkey,
// Was the transaction signed by this account's public key?
pub is_signer: bool,
// Is the account writable?
pub is_writable: bool,
/// Account members that are mutable by the program
pub lamports: Rc<RefCell<&'a mut u64>>,
/// Account members that are mutable by the program
pub data: Rc<RefCell<&'a mut [u8]>>,
/// Program that owns this account
pub owner: &'a Pubkey,
/// This account's data contains a loaded program (and is now read-only)
pub executable: bool,
/// The epoch at which this account will next owe rent
pub rent_epoch: Epoch,
}
impl<'a> fmt::Debug for AccountInfo<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let data_len = cmp::min(64, self.data_len());
let data_str = if data_len > 0 {
format!(
" data: {} ...",
hex::encode(self.data.borrow()[..data_len].to_vec())
)
} else {
"".to_string()
};
write!(
f,
"AccountInfo {{ key: {} owner: {} is_signer: {} is_writable: {} executable: {} rent_epoch: {} lamports: {} data.len: {} {} }}",
self.key,
self.owner,
self.is_signer,
self.is_writable,
self.executable,
self.rent_epoch,
self.lamports(),
self.data_len(),
data_str,
)
}
}
impl<'a> AccountInfo<'a> {
pub fn signer_key(&self) -> Option<&Pubkey> {
if self.is_signer {
Some(self.key)
} else {
None
}
}
pub fn unsigned_key(&self) -> &Pubkey {
self.key
}
pub fn lamports(&self) -> u64 {
**self.lamports.borrow()
}
pub fn try_lamports(&self) -> Result<u64, ProgramError> {
Ok(**self.try_borrow_lamports()?)
}
pub fn data_len(&self) -> usize {
self.data.borrow().len()
}
pub fn try_data_len(&self) -> Result<usize, ProgramError> {
Ok(self.try_borrow_data()?.len())
}
pub fn data_is_empty(&self) -> bool {
self.data.borrow().is_empty()
}
pub fn try_data_is_empty(&self) -> Result<bool, ProgramError> {
Ok(self.try_borrow_data()?.is_empty())
}
pub fn try_borrow_lamports(&self) -> Result<Ref<&mut u64>, ProgramError> {
self.lamports
.try_borrow()
.map_err(|_| ProgramError::AccountBorrowFailed)
}
pub fn try_borrow_mut_lamports(&self) -> Result<RefMut<&'a mut u64>, ProgramError> {
self.lamports
.try_borrow_mut()
.map_err(|_| ProgramError::AccountBorrowFailed)
}
pub fn try_borrow_data(&self) -> Result<Ref<&mut [u8]>, ProgramError> {
self.data
.try_borrow()
.map_err(|_| ProgramError::AccountBorrowFailed)
}
pub fn try_borrow_mut_data(&self) -> Result<RefMut<&'a mut [u8]>, ProgramError> {
self.data
.try_borrow_mut()
.map_err(|_| ProgramError::AccountBorrowFailed)
}
pub fn new(
key: &'a Pubkey,
is_signer: bool,
is_writable: bool,
lamports: &'a mut u64,
data: &'a mut [u8],
owner: &'a Pubkey,
executable: bool,
rent_epoch: Epoch,
) -> Self {
Self {
key,
is_signer,
is_writable,
lamports: Rc::new(RefCell::new(lamports)),
data: Rc::new(RefCell::new(data)),
owner,
executable,
rent_epoch,
}
}
pub fn deserialize_data<T: serde::de::DeserializeOwned>(&self) -> Result<T, bincode::Error> {
bincode::deserialize(&self.data.borrow())
}
pub fn serialize_data<T: serde::Serialize>(&mut self, state: &T) -> Result<(), bincode::Error> {
if bincode::serialized_size(state)? > self.data_len() as u64 {
return Err(Box::new(bincode::ErrorKind::SizeLimit));
}
bincode::serialize_into(&mut self.data.borrow_mut()[..], state)
}
}
impl<'a> From<(&'a Pubkey, &'a mut Account)> for AccountInfo<'a> {
fn from((key, account): (&'a Pubkey, &'a mut Account)) -> Self {
Self::new(
key,
false,
false,
&mut account.lamports,
&mut account.data,
&account.owner,
account.executable,
account.rent_epoch,
)
}
}
impl<'a> From<(&'a Pubkey, bool, &'a mut Account)> for AccountInfo<'a> {
fn from((key, is_signer, account): (&'a Pubkey, bool, &'a mut Account)) -> Self {
Self::new(
key,
is_signer,
false,
&mut account.lamports,
&mut account.data,
&account.owner,
account.executable,
account.rent_epoch,
)
}
}
impl<'a> From<&'a mut (Pubkey, Account)> for AccountInfo<'a> {
fn from((key, account): &'a mut (Pubkey, Account)) -> Self {
Self::new(
key,
false,
false,
&mut account.lamports,
&mut account.data,
&account.owner,
account.executable,
account.rent_epoch,
)
}
}
pub fn create_account_infos(accounts: &mut [(Pubkey, Account)]) -> Vec<AccountInfo> {
accounts.iter_mut().map(Into::into).collect()
}
pub fn create_is_signer_account_infos<'a>(
accounts: &'a mut [(&'a Pubkey, bool, &'a mut Account)],
) -> Vec<AccountInfo<'a>> {
accounts
.iter_mut()
.map(|(key, is_signer, account)| {
AccountInfo::new(
key,
*is_signer,
false,
&mut account.lamports,
&mut account.data,
&account.owner,
account.executable,
account.rent_epoch,
)
})
.collect()
}
/// Return the next AccountInfo or a NotEnoughAccountKeys error
pub fn next_account_info<'a, 'b, I: Iterator<Item = &'a AccountInfo<'b>>>(
iter: &mut I,
) -> Result<I::Item, ProgramError> {
iter.next().ok_or(ProgramError::NotEnoughAccountKeys)
}

View File

@ -0,0 +1,65 @@
//! useful extras for Account state
use crate::{
account::{Account, KeyedAccount},
instruction::InstructionError,
};
use bincode::ErrorKind;
/// Convenience trait to covert bincode errors to instruction errors.
pub trait StateMut<T> {
fn state(&self) -> Result<T, InstructionError>;
fn set_state(&mut self, state: &T) -> Result<(), InstructionError>;
}
pub trait State<T> {
fn state(&self) -> Result<T, InstructionError>;
fn set_state(&self, state: &T) -> Result<(), InstructionError>;
}
impl<T> StateMut<T> for Account
where
T: serde::Serialize + serde::de::DeserializeOwned,
{
fn state(&self) -> Result<T, InstructionError> {
self.deserialize_data()
.map_err(|_| InstructionError::InvalidAccountData)
}
fn set_state(&mut self, state: &T) -> Result<(), InstructionError> {
self.serialize_data(state).map_err(|err| match *err {
ErrorKind::SizeLimit => InstructionError::AccountDataTooSmall,
_ => InstructionError::GenericError,
})
}
}
impl<'a, T> State<T> for KeyedAccount<'a>
where
T: serde::Serialize + serde::de::DeserializeOwned,
{
fn state(&self) -> Result<T, InstructionError> {
self.try_account_ref()?.state()
}
fn set_state(&self, state: &T) -> Result<(), InstructionError> {
self.try_account_ref_mut()?.set_state(state)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{account::Account, pubkey::Pubkey};
#[test]
fn test_account_state() {
let state = 42u64;
assert!(Account::default().set_state(&state).is_err());
let res = Account::default().state() as Result<u64, InstructionError>;
assert!(res.is_err());
let mut account = Account::new(0, std::mem::size_of::<u64>(), &Pubkey::default());
assert!(account.set_state(&state).is_ok());
let stored_state: u64 = account.state().unwrap();
assert_eq!(stored_state, state);
}
}

View File

@ -0,0 +1,17 @@
//! @brief The latest Solana BPF loader.
//!
//! The BPF loader is responsible for loading, finalizing, and executing BPF
//! programs. Not all networks may support the latest loader. You can use the
//! command-line tools to check if this version of the loader is supported by
//! requesting the account info for the public key below.
//!
//! The program format may change between loaders, and it is crucial to build
//! your program against the proper entrypoint semantics. All programs being
//! deployed to this BPF loader must build against the latest entrypoint version
//! located in `entrypoint.rs`.
//!
//! Note: Programs built for older loaders must use a matching entrypoint
//! version. An example is `bpf_loader_deprecated.rs` which requires
//! `entrypoint_deprecated.rs`.
crate::declare_id!("BPFLoader2111111111111111111111111111111111");

View File

@ -0,0 +1,14 @@
//! @brief The original and now deprecated Solana BPF loader.
//!
//! The BPF loader is responsible for loading, finalizing, and executing BPF
//! programs.
//!
//! This loader is deprecated, and it is strongly encouraged to build for and
//! deploy to the latest BPF loader. For more information see `bpf_loader.rs`
//!
//! The program format may change between loaders, and it is crucial to build
//! your program against the proper entrypoint semantics. All programs being
//! deployed to this BPF loader must build against the deprecated entrypoint
//! version located in `entrypoint_deprecated.rs`.
crate::declare_id!("BPFLoader1111111111111111111111111111111111");

92
sdk/program/src/clock.rs Normal file
View File

@ -0,0 +1,92 @@
//! Provides information about the network's clock which is made up of ticks, slots, etc...
// The default tick rate that the cluster attempts to achieve. Note that the actual tick
// rate at any given time should be expected to drift
pub const DEFAULT_TICKS_PER_SECOND: u64 = 160;
pub const MS_PER_TICK: u64 = 1000 / DEFAULT_TICKS_PER_SECOND;
// At 160 ticks/s, 64 ticks per slot implies that leader rotation and voting will happen
// every 400 ms. A fast voting cadence ensures faster finality and convergence
pub const DEFAULT_TICKS_PER_SLOT: u64 = 64;
// GCP n1-standard hardware and also a xeon e5-2520 v4 are about this rate of hashes/s
pub const DEFAULT_HASHES_PER_SECOND: u64 = 2_000_000;
// 1 Dev Epoch = 400 ms * 8192 ~= 55 minutes
pub const DEFAULT_DEV_SLOTS_PER_EPOCH: u64 = 8192;
pub const SECONDS_PER_DAY: u64 = 24 * 60 * 60;
pub const TICKS_PER_DAY: u64 = DEFAULT_TICKS_PER_SECOND * SECONDS_PER_DAY;
// 1 Epoch ~= 2 days
pub const DEFAULT_SLOTS_PER_EPOCH: u64 = 2 * TICKS_PER_DAY / DEFAULT_TICKS_PER_SLOT;
// leader schedule is governed by this
pub const NUM_CONSECUTIVE_LEADER_SLOTS: u64 = 4;
pub const DEFAULT_MS_PER_SLOT: u64 = 1_000 * DEFAULT_TICKS_PER_SLOT / DEFAULT_TICKS_PER_SECOND;
/// The time window of recent block hash values that the bank will track the signatures
/// of over. Once the bank discards a block hash, it will reject any transactions that use
/// that `recent_blockhash` in a transaction. Lowering this value reduces memory consumption,
/// but requires clients to update its `recent_blockhash` more frequently. Raising the value
/// lengthens the time a client must wait to be certain a missing transaction will
/// not be processed by the network.
pub const MAX_HASH_AGE_IN_SECONDS: usize = 120;
// Number of maximum recent blockhashes (one blockhash per slot)
pub const MAX_RECENT_BLOCKHASHES: usize =
MAX_HASH_AGE_IN_SECONDS * DEFAULT_TICKS_PER_SECOND as usize / DEFAULT_TICKS_PER_SLOT as usize;
// The maximum age of a blockhash that will be accepted by the leader
pub const MAX_PROCESSING_AGE: usize = MAX_RECENT_BLOCKHASHES / 2;
/// This is maximum time consumed in forwarding a transaction from one node to next, before
/// it can be processed in the target node
pub const MAX_TRANSACTION_FORWARDING_DELAY_GPU: usize = 2;
/// More delay is expected if CUDA is not enabled (as signature verification takes longer)
pub const MAX_TRANSACTION_FORWARDING_DELAY: usize = 6;
/// Slot is a unit of time given to a leader for encoding,
/// is some some number of Ticks long.
pub type Slot = u64;
/// Epoch is a unit of time a given leader schedule is honored,
/// some number of Slots.
pub type Epoch = u64;
pub const GENESIS_EPOCH: Epoch = 0;
/// SlotIndex is an index to the slots of a epoch
pub type SlotIndex = u64;
/// SlotCount is the number of slots in a epoch
pub type SlotCount = u64;
/// UnixTimestamp is an approximate measure of real-world time,
/// expressed as Unix time (ie. seconds since the Unix epoch)
pub type UnixTimestamp = i64;
/// Clock represents network time. Members of Clock start from 0 upon
/// network boot. The best way to map Clock to wallclock time is to use
/// current Slot, as Epochs vary in duration (they start short and grow
/// as the network progresses).
///
#[repr(C)]
#[derive(Serialize, Deserialize, Debug, Default, PartialEq)]
pub struct Clock {
/// the current network/bank Slot
pub slot: Slot,
/// unused
pub unused: u64,
/// the bank Epoch
pub epoch: Epoch,
/// the future Epoch for which the leader schedule has
/// most recently been calculated
pub leader_schedule_epoch: Epoch,
/// computed from genesis creation time and network time
/// in slots, drifts!
pub unix_timestamp: UnixTimestamp,
}

View File

@ -0,0 +1,38 @@
use num_traits::FromPrimitive;
/// Allows custom errors to be decoded back to their original enum
pub trait DecodeError<E> {
fn decode_custom_error_to_enum(custom: u32) -> Option<E>
where
E: FromPrimitive,
{
E::from_u32(custom)
}
fn type_of() -> &'static str;
}
#[cfg(test)]
mod tests {
use super::*;
use num_derive::FromPrimitive;
#[test]
fn test_decode_custom_error_to_enum() {
#[derive(Debug, FromPrimitive, PartialEq)]
enum TestEnum {
A,
B,
C,
}
impl<T> DecodeError<T> for TestEnum {
fn type_of() -> &'static str {
"TestEnum"
}
}
assert_eq!(TestEnum::decode_custom_error_to_enum(0), Some(TestEnum::A));
assert_eq!(TestEnum::decode_custom_error_to_enum(1), Some(TestEnum::B));
assert_eq!(TestEnum::decode_custom_error_to_enum(2), Some(TestEnum::C));
let option: Option<TestEnum> = TestEnum::decode_custom_error_to_enum(3);
assert_eq!(option, None);
}
}

View File

@ -0,0 +1,257 @@
//! @brief Solana Rust-based BPF program entry point supported by the latest
//! BPFLoader. For more information see './bpf_loader.rs'
extern crate alloc;
use crate::{account_info::AccountInfo, program_error::ProgramError, pubkey::Pubkey};
use alloc::vec::Vec;
use std::{
alloc::Layout,
cell::RefCell,
mem::{align_of, size_of},
ptr::null_mut,
rc::Rc,
// Hide Result from bindgen gets confused about generics in non-generic type declarations
result::Result as ResultGeneric,
slice::{from_raw_parts, from_raw_parts_mut},
};
pub type ProgramResult = ResultGeneric<(), ProgramError>;
/// User implemented function to process an instruction
///
/// program_id: Program ID of the currently executing program accounts: Accounts
/// passed as part of the instruction instruction_data: Instruction data
pub type ProcessInstruction =
fn(program_id: &Pubkey, accounts: &[AccountInfo], instruction_data: &[u8]) -> ProgramResult;
/// Programs indicate success with a return value of 0
pub const SUCCESS: u64 = 0;
/// Start address of the memory region used for program heap.
pub const HEAP_START_ADDRESS: usize = 0x300000000;
/// Length of the heap memory region used for program heap.
pub const HEAP_LENGTH: usize = 32 * 1024;
/// Declare the entry point of the program and use the default local heap
/// implementation
///
/// Deserialize the program input arguments and call the user defined
/// `process_instruction` function. Users must call this macro otherwise an
/// entry point for their program will not be created.
///
/// If the program defines the feature `custom-heap` then the default heap
/// implementation will not be included and the program is free to implement
/// their own `#[global_allocator]`
#[macro_export]
macro_rules! entrypoint {
($process_instruction:ident) => {
#[cfg(all(not(feature = "custom-heap"), not(test)))]
#[global_allocator]
static A: $crate::entrypoint::BumpAllocator = $crate::entrypoint::BumpAllocator {
start: $crate::entrypoint::HEAP_START_ADDRESS,
len: $crate::entrypoint::HEAP_LENGTH,
};
/// # Safety
#[no_mangle]
pub unsafe extern "C" fn entrypoint(input: *mut u8) -> u64 {
let (program_id, accounts, instruction_data) =
unsafe { $crate::entrypoint::deserialize(input) };
match $process_instruction(&program_id, &accounts, &instruction_data) {
Ok(()) => $crate::entrypoint::SUCCESS,
Err(error) => error.into(),
}
}
};
}
/// The bump allocator used as the default rust heap when running programs.
pub struct BumpAllocator {
pub start: usize,
pub len: usize,
}
unsafe impl std::alloc::GlobalAlloc for BumpAllocator {
#[inline]
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
let pos_ptr = self.start as *mut usize;
let mut pos = *pos_ptr;
if pos == 0 {
// First time, set starting position
pos = self.start + self.len;
}
pos = pos.saturating_sub(layout.size());
pos &= !(layout.align().wrapping_sub(1));
if pos < self.start + size_of::<*mut u8>() {
return null_mut();
}
*pos_ptr = pos;
pos as *mut u8
}
#[inline]
unsafe fn dealloc(&self, _: *mut u8, _: Layout) {
// I'm a bump allocator, I don't free
}
}
/// Maximum number of bytes a program may add to an account during a single realloc
pub const MAX_PERMITTED_DATA_INCREASE: usize = 1_024 * 10;
/// Deserialize the input arguments
///
/// # Safety
#[allow(clippy::type_complexity)]
pub unsafe fn deserialize<'a>(input: *mut u8) -> (&'a Pubkey, Vec<AccountInfo<'a>>, &'a [u8]) {
let mut offset: usize = 0;
// Number of accounts present
#[allow(clippy::cast_ptr_alignment)]
let num_accounts = *(input.add(offset) as *const u64) as usize;
offset += size_of::<u64>();
// Account Infos
let mut accounts = Vec::with_capacity(num_accounts);
for _ in 0..num_accounts {
let dup_info = *(input.add(offset) as *const u8);
offset += size_of::<u8>();
if dup_info == std::u8::MAX {
#[allow(clippy::cast_ptr_alignment)]
let is_signer = *(input.add(offset) as *const u8) != 0;
offset += size_of::<u8>();
#[allow(clippy::cast_ptr_alignment)]
let is_writable = *(input.add(offset) as *const u8) != 0;
offset += size_of::<u8>();
#[allow(clippy::cast_ptr_alignment)]
let executable = *(input.add(offset) as *const u8) != 0;
offset += size_of::<u8>();
offset += size_of::<u32>(); // padding to u64
let key: &Pubkey = &*(input.add(offset) as *const Pubkey);
offset += size_of::<Pubkey>();
let owner: &Pubkey = &*(input.add(offset) as *const Pubkey);
offset += size_of::<Pubkey>();
#[allow(clippy::cast_ptr_alignment)]
let lamports = Rc::new(RefCell::new(&mut *(input.add(offset) as *mut u64)));
offset += size_of::<u64>();
#[allow(clippy::cast_ptr_alignment)]
let data_len = *(input.add(offset) as *const u64) as usize;
offset += size_of::<u64>();
let data = Rc::new(RefCell::new({
from_raw_parts_mut(input.add(offset), data_len)
}));
offset += data_len + MAX_PERMITTED_DATA_INCREASE;
offset += (offset as *const u8).align_offset(align_of::<u128>()); // padding
#[allow(clippy::cast_ptr_alignment)]
let rent_epoch = *(input.add(offset) as *const u64);
offset += size_of::<u64>();
accounts.push(AccountInfo {
is_signer,
is_writable,
key,
lamports,
data,
owner,
executable,
rent_epoch,
});
} else {
offset += 7; // padding
// Duplicate account, clone the original
accounts.push(accounts[dup_info as usize].clone());
}
}
// Instruction data
#[allow(clippy::cast_ptr_alignment)]
let instruction_data_len = *(input.add(offset) as *const u64) as usize;
offset += size_of::<u64>();
let instruction_data = { from_raw_parts(input.add(offset), instruction_data_len) };
offset += instruction_data_len;
// Program Id
let program_id: &Pubkey = &*(input.add(offset) as *const Pubkey);
(program_id, accounts, instruction_data)
}
#[cfg(test)]
mod test {
use super::*;
use std::alloc::GlobalAlloc;
#[test]
fn test_bump_allocator() {
// alloc the entire
{
let heap = vec![0u8; 128];
let allocator = BumpAllocator {
start: heap.as_ptr() as *const _ as usize,
len: heap.len(),
};
for i in 0..128 - size_of::<*mut u8>() {
let ptr = unsafe {
allocator.alloc(Layout::from_size_align(1, size_of::<u8>()).unwrap())
};
assert_eq!(
ptr as *const _ as usize,
heap.as_ptr() as *const _ as usize + heap.len() - 1 - i
);
}
assert_eq!(null_mut(), unsafe {
allocator.alloc(Layout::from_size_align(1, 1).unwrap())
});
}
// check alignment
{
let heap = vec![0u8; 128];
let allocator = BumpAllocator {
start: heap.as_ptr() as *const _ as usize,
len: heap.len(),
};
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u8>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u8>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u16>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u16>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u32>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u32>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u64>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u64>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u128>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u128>()));
let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, 64).unwrap()) };
assert_eq!(0, ptr.align_offset(64));
}
// alloc entire block (minus the pos ptr)
{
let heap = vec![0u8; 128];
let allocator = BumpAllocator {
start: heap.as_ptr() as *const _ as usize,
len: heap.len(),
};
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(120, size_of::<u8>()).unwrap()) };
assert_ne!(ptr, null_mut());
assert_eq!(0, ptr.align_offset(size_of::<u64>()));
}
}
}

View File

@ -0,0 +1,137 @@
//! @brief Solana Rust-based BPF program entry point supported by the original
//! and now deprecated BPFLoader. For more information see
//! './bpf_loader_deprecated.rs'
extern crate alloc;
use crate::{account_info::AccountInfo, program_error::ProgramError, pubkey::Pubkey};
use alloc::vec::Vec;
use std::{
cell::RefCell,
mem::size_of,
rc::Rc,
// Hide Result from bindgen gets confused about generics in non-generic type declarations
result::Result as ResultGeneric,
slice::{from_raw_parts, from_raw_parts_mut},
};
pub type ProgramResult = ResultGeneric<(), ProgramError>;
/// User implemented function to process an instruction
///
/// program_id: Program ID of the currently executing program
/// accounts: Accounts passed as part of the instruction
/// instruction_data: Instruction data
pub type ProcessInstruction =
fn(program_id: &Pubkey, accounts: &[AccountInfo], instruction_data: &[u8]) -> ProgramResult;
/// Programs indicate success with a return value of 0
pub const SUCCESS: u64 = 0;
/// Declare the entry point of the program.
///
/// Deserialize the program input arguments and call
/// the user defined `process_instruction` function.
/// Users must call this macro otherwise an entry point for
/// their program will not be created.
#[macro_export]
macro_rules! entrypoint_deprecated {
($process_instruction:ident) => {
/// # Safety
#[no_mangle]
pub unsafe extern "C" fn entrypoint(input: *mut u8) -> u64 {
let (program_id, accounts, instruction_data) =
unsafe { $crate::entrypoint_deprecated::deserialize(input) };
match $process_instruction(&program_id, &accounts, &instruction_data) {
Ok(()) => $crate::entrypoint_deprecated::SUCCESS,
Err(error) => error.into(),
}
}
};
}
/// Deserialize the input arguments
///
/// # Safety
#[allow(clippy::type_complexity)]
pub unsafe fn deserialize<'a>(input: *mut u8) -> (&'a Pubkey, Vec<AccountInfo<'a>>, &'a [u8]) {
let mut offset: usize = 0;
// Number of accounts present
#[allow(clippy::cast_ptr_alignment)]
let num_accounts = *(input.add(offset) as *const u64) as usize;
offset += size_of::<u64>();
// Account Infos
let mut accounts = Vec::with_capacity(num_accounts);
for _ in 0..num_accounts {
let dup_info = *(input.add(offset) as *const u8);
offset += size_of::<u8>();
if dup_info == std::u8::MAX {
#[allow(clippy::cast_ptr_alignment)]
let is_signer = *(input.add(offset) as *const u8) != 0;
offset += size_of::<u8>();
#[allow(clippy::cast_ptr_alignment)]
let is_writable = *(input.add(offset) as *const u8) != 0;
offset += size_of::<u8>();
let key: &Pubkey = &*(input.add(offset) as *const Pubkey);
offset += size_of::<Pubkey>();
#[allow(clippy::cast_ptr_alignment)]
let lamports = Rc::new(RefCell::new(&mut *(input.add(offset) as *mut u64)));
offset += size_of::<u64>();
#[allow(clippy::cast_ptr_alignment)]
let data_len = *(input.add(offset) as *const u64) as usize;
offset += size_of::<u64>();
let data = Rc::new(RefCell::new({
from_raw_parts_mut(input.add(offset), data_len)
}));
offset += data_len;
let owner: &Pubkey = &*(input.add(offset) as *const Pubkey);
offset += size_of::<Pubkey>();
#[allow(clippy::cast_ptr_alignment)]
let executable = *(input.add(offset) as *const u8) != 0;
offset += size_of::<u8>();
#[allow(clippy::cast_ptr_alignment)]
let rent_epoch = *(input.add(offset) as *const u64);
offset += size_of::<u64>();
accounts.push(AccountInfo {
is_signer,
is_writable,
key,
lamports,
data,
owner,
executable,
rent_epoch,
});
} else {
// Duplicate account, clone the original
accounts.push(accounts[dup_info as usize].clone());
}
}
// Instruction data
#[allow(clippy::cast_ptr_alignment)]
let instruction_data_len = *(input.add(offset) as *const u64) as usize;
offset += size_of::<u64>();
let instruction_data = { from_raw_parts(input.add(offset), instruction_data_len) };
offset += instruction_data_len;
// Program Id
let program_id: &Pubkey = &*(input.add(offset) as *const Pubkey);
(program_id, accounts, instruction_data)
}

View File

@ -0,0 +1,202 @@
//! configuration for epochs, slots
/// 1 Epoch = 400 * 8192 ms ~= 55 minutes
pub use crate::clock::{Epoch, Slot, DEFAULT_SLOTS_PER_EPOCH};
/// The number of slots before an epoch starts to calculate the leader schedule.
/// Default is an entire epoch, i.e. leader schedule for epoch X is calculated at
/// the beginning of epoch X - 1.
pub const DEFAULT_LEADER_SCHEDULE_SLOT_OFFSET: u64 = DEFAULT_SLOTS_PER_EPOCH;
/// The maximum number of slots before an epoch starts to calculate the leader schedule.
/// Default is an entire epoch, i.e. leader schedule for epoch X is calculated at
/// the beginning of epoch X - 1.
pub const MAX_LEADER_SCHEDULE_EPOCH_OFFSET: u64 = 3;
/// based on MAX_LOCKOUT_HISTORY from vote_program
pub const MINIMUM_SLOTS_PER_EPOCH: u64 = 32;
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, Deserialize, Serialize, AbiExample)]
#[serde(rename_all = "camelCase")]
pub struct EpochSchedule {
/// The maximum number of slots in each epoch.
pub slots_per_epoch: u64,
/// A number of slots before beginning of an epoch to calculate
/// a leader schedule for that epoch
pub leader_schedule_slot_offset: u64,
/// whether epochs start short and grow
pub warmup: bool,
/// basically: log2(slots_per_epoch) - log2(MINIMUM_SLOTS_PER_EPOCH)
pub first_normal_epoch: Epoch,
/// basically: MINIMUM_SLOTS_PER_EPOCH * (2.pow(first_normal_epoch) - 1)
pub first_normal_slot: Slot,
}
impl Default for EpochSchedule {
fn default() -> Self {
Self::custom(
DEFAULT_SLOTS_PER_EPOCH,
DEFAULT_LEADER_SCHEDULE_SLOT_OFFSET,
true,
)
}
}
impl EpochSchedule {
pub fn new(slots_per_epoch: u64) -> Self {
Self::custom(slots_per_epoch, slots_per_epoch, true)
}
pub fn custom(slots_per_epoch: u64, leader_schedule_slot_offset: u64, warmup: bool) -> Self {
assert!(slots_per_epoch >= MINIMUM_SLOTS_PER_EPOCH as u64);
let (first_normal_epoch, first_normal_slot) = if warmup {
let next_power_of_two = slots_per_epoch.next_power_of_two();
let log2_slots_per_epoch = next_power_of_two
.trailing_zeros()
.saturating_sub(MINIMUM_SLOTS_PER_EPOCH.trailing_zeros());
(
u64::from(log2_slots_per_epoch),
next_power_of_two.saturating_sub(MINIMUM_SLOTS_PER_EPOCH),
)
} else {
(0, 0)
};
EpochSchedule {
slots_per_epoch,
leader_schedule_slot_offset,
warmup,
first_normal_epoch,
first_normal_slot,
}
}
/// get the length of the given epoch (in slots)
pub fn get_slots_in_epoch(&self, epoch: Epoch) -> u64 {
if epoch < self.first_normal_epoch {
2u64.pow(epoch as u32 + MINIMUM_SLOTS_PER_EPOCH.trailing_zeros() as u32)
} else {
self.slots_per_epoch
}
}
/// get the epoch for which the given slot should save off
/// information about stakers
pub fn get_leader_schedule_epoch(&self, slot: Slot) -> Epoch {
if slot < self.first_normal_slot {
// until we get to normal slots, behave as if leader_schedule_slot_offset == slots_per_epoch
self.get_epoch_and_slot_index(slot).0 + 1
} else {
self.first_normal_epoch
+ (slot - self.first_normal_slot + self.leader_schedule_slot_offset)
/ self.slots_per_epoch
}
}
/// get epoch for the given slot
pub fn get_epoch(&self, slot: Slot) -> Epoch {
self.get_epoch_and_slot_index(slot).0
}
/// get epoch and offset into the epoch for the given slot
pub fn get_epoch_and_slot_index(&self, slot: Slot) -> (Epoch, u64) {
if slot < self.first_normal_slot {
let epoch = (slot + MINIMUM_SLOTS_PER_EPOCH + 1)
.next_power_of_two()
.trailing_zeros()
- MINIMUM_SLOTS_PER_EPOCH.trailing_zeros()
- 1;
let epoch_len = 2u64.pow(epoch + MINIMUM_SLOTS_PER_EPOCH.trailing_zeros());
(
u64::from(epoch),
slot - (epoch_len - MINIMUM_SLOTS_PER_EPOCH),
)
} else {
(
self.first_normal_epoch + ((slot - self.first_normal_slot) / self.slots_per_epoch),
(slot - self.first_normal_slot) % self.slots_per_epoch,
)
}
}
pub fn get_first_slot_in_epoch(&self, epoch: Epoch) -> Slot {
if epoch <= self.first_normal_epoch {
(2u64.pow(epoch as u32) - 1) * MINIMUM_SLOTS_PER_EPOCH
} else {
(epoch - self.first_normal_epoch) * self.slots_per_epoch + self.first_normal_slot
}
}
pub fn get_last_slot_in_epoch(&self, epoch: Epoch) -> Slot {
self.get_first_slot_in_epoch(epoch) + self.get_slots_in_epoch(epoch) - 1
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_epoch_schedule() {
// one week of slots at 8 ticks/slot, 10 ticks/sec is
// (1 * 7 * 24 * 4500u64).next_power_of_two();
// test values between MINIMUM_SLOT_LEN and MINIMUM_SLOT_LEN * 16, should cover a good mix
for slots_per_epoch in MINIMUM_SLOTS_PER_EPOCH..=MINIMUM_SLOTS_PER_EPOCH * 16 {
let epoch_schedule = EpochSchedule::custom(slots_per_epoch, slots_per_epoch / 2, true);
assert_eq!(epoch_schedule.get_first_slot_in_epoch(0), 0);
assert_eq!(
epoch_schedule.get_last_slot_in_epoch(0),
MINIMUM_SLOTS_PER_EPOCH - 1
);
let mut last_leader_schedule = 0;
let mut last_epoch = 0;
let mut last_slots_in_epoch = MINIMUM_SLOTS_PER_EPOCH;
for slot in 0..(2 * slots_per_epoch) {
// verify that leader_schedule_epoch is continuous over the warmup
// and into the first normal epoch
let leader_schedule = epoch_schedule.get_leader_schedule_epoch(slot);
if leader_schedule != last_leader_schedule {
assert_eq!(leader_schedule, last_leader_schedule + 1);
last_leader_schedule = leader_schedule;
}
let (epoch, offset) = epoch_schedule.get_epoch_and_slot_index(slot);
// verify that epoch increases continuously
if epoch != last_epoch {
assert_eq!(epoch, last_epoch + 1);
last_epoch = epoch;
assert_eq!(epoch_schedule.get_first_slot_in_epoch(epoch), slot);
assert_eq!(epoch_schedule.get_last_slot_in_epoch(epoch - 1), slot - 1);
// verify that slots in an epoch double continuously
// until they reach slots_per_epoch
let slots_in_epoch = epoch_schedule.get_slots_in_epoch(epoch);
if slots_in_epoch != last_slots_in_epoch && slots_in_epoch != slots_per_epoch {
assert_eq!(slots_in_epoch, last_slots_in_epoch * 2);
}
last_slots_in_epoch = slots_in_epoch;
}
// verify that the slot offset is less than slots_in_epoch
assert!(offset < last_slots_in_epoch);
}
// assert that these changed ;)
assert!(last_leader_schedule != 0); // t
assert!(last_epoch != 0);
// assert that we got to "normal" mode
assert!(last_slots_in_epoch == slots_per_epoch);
}
}
}

View File

@ -0,0 +1,368 @@
use crate::clock::{DEFAULT_TICKS_PER_SECOND, DEFAULT_TICKS_PER_SLOT};
use crate::message::Message;
use crate::secp256k1_program;
use log::*;
#[derive(Serialize, Deserialize, PartialEq, Eq, Clone, Debug, AbiExample)]
#[serde(rename_all = "camelCase")]
pub struct FeeCalculator {
// The current cost of a signature This amount may increase/decrease over time based on
// cluster processing load.
pub lamports_per_signature: u64,
}
impl Default for FeeCalculator {
fn default() -> Self {
Self {
lamports_per_signature: 0,
}
}
}
pub struct FeeConfig {
pub secp256k1_program_enabled: bool,
}
impl Default for FeeConfig {
fn default() -> Self {
Self {
secp256k1_program_enabled: true,
}
}
}
impl FeeCalculator {
pub fn new(lamports_per_signature: u64) -> Self {
Self {
lamports_per_signature,
}
}
pub fn calculate_fee(&self, message: &Message) -> u64 {
self.calculate_fee_with_config(message, &FeeConfig::default())
}
pub fn calculate_fee_with_config(&self, message: &Message, fee_config: &FeeConfig) -> u64 {
let mut num_secp256k1_signatures: u64 = 0;
if fee_config.secp256k1_program_enabled {
for instruction in &message.instructions {
let program_index = instruction.program_id_index as usize;
// Transaction may not be sanitized here
if program_index < message.account_keys.len() {
let id = message.account_keys[program_index];
if secp256k1_program::check_id(&id) && !instruction.data.is_empty() {
num_secp256k1_signatures += instruction.data[0] as u64;
}
}
}
}
self.lamports_per_signature
* (u64::from(message.header.num_required_signatures) + num_secp256k1_signatures)
}
}
#[derive(Serialize, Deserialize, PartialEq, Eq, Clone, Debug, AbiExample)]
#[serde(rename_all = "camelCase")]
pub struct FeeRateGovernor {
// The current cost of a signature This amount may increase/decrease over time based on
// cluster processing load.
#[serde(skip)]
pub lamports_per_signature: u64,
// The target cost of a signature when the cluster is operating around target_signatures_per_slot
// signatures
pub target_lamports_per_signature: u64,
// Used to estimate the desired processing capacity of the cluster. As the signatures for
// recent slots are fewer/greater than this value, lamports_per_signature will decrease/increase
// for the next slot. A value of 0 disables lamports_per_signature fee adjustments
pub target_signatures_per_slot: u64,
pub min_lamports_per_signature: u64,
pub max_lamports_per_signature: u64,
// What portion of collected fees are to be destroyed, as a fraction of std::u8::MAX
pub burn_percent: u8,
}
pub const DEFAULT_TARGET_LAMPORTS_PER_SIGNATURE: u64 = 10_000;
pub const DEFAULT_TARGET_SIGNATURES_PER_SLOT: u64 =
50_000 * DEFAULT_TICKS_PER_SLOT / DEFAULT_TICKS_PER_SECOND;
// Percentage of tx fees to burn
pub const DEFAULT_BURN_PERCENT: u8 = 50;
impl Default for FeeRateGovernor {
fn default() -> Self {
Self {
lamports_per_signature: 0,
target_lamports_per_signature: DEFAULT_TARGET_LAMPORTS_PER_SIGNATURE,
target_signatures_per_slot: DEFAULT_TARGET_SIGNATURES_PER_SLOT,
min_lamports_per_signature: 0,
max_lamports_per_signature: 0,
burn_percent: DEFAULT_BURN_PERCENT,
}
}
}
impl FeeRateGovernor {
pub fn new(target_lamports_per_signature: u64, target_signatures_per_slot: u64) -> Self {
let base_fee_rate_governor = Self {
target_lamports_per_signature,
lamports_per_signature: target_lamports_per_signature,
target_signatures_per_slot,
..FeeRateGovernor::default()
};
Self::new_derived(&base_fee_rate_governor, 0)
}
pub fn new_derived(
base_fee_rate_governor: &FeeRateGovernor,
latest_signatures_per_slot: u64,
) -> Self {
let mut me = base_fee_rate_governor.clone();
if me.target_signatures_per_slot > 0 {
// lamports_per_signature can range from 50% to 1000% of
// target_lamports_per_signature
me.min_lamports_per_signature = std::cmp::max(1, me.target_lamports_per_signature / 2);
me.max_lamports_per_signature = me.target_lamports_per_signature * 10;
// What the cluster should charge at `latest_signatures_per_slot`
let desired_lamports_per_signature =
me.max_lamports_per_signature
.min(me.min_lamports_per_signature.max(
me.target_lamports_per_signature
* std::cmp::min(latest_signatures_per_slot, std::u32::MAX as u64)
as u64
/ me.target_signatures_per_slot as u64,
));
trace!(
"desired_lamports_per_signature: {}",
desired_lamports_per_signature
);
let gap = desired_lamports_per_signature as i64
- base_fee_rate_governor.lamports_per_signature as i64;
if gap == 0 {
me.lamports_per_signature = desired_lamports_per_signature;
} else {
// Adjust fee by 5% of target_lamports_per_signature to produce a smooth
// increase/decrease in fees over time.
let gap_adjust =
std::cmp::max(1, me.target_lamports_per_signature / 20) as i64 * gap.signum();
trace!(
"lamports_per_signature gap is {}, adjusting by {}",
gap,
gap_adjust
);
me.lamports_per_signature =
me.max_lamports_per_signature
.min(me.min_lamports_per_signature.max(
(base_fee_rate_governor.lamports_per_signature as i64 + gap_adjust)
as u64,
));
}
} else {
me.lamports_per_signature = base_fee_rate_governor.target_lamports_per_signature;
me.min_lamports_per_signature = me.target_lamports_per_signature;
me.max_lamports_per_signature = me.target_lamports_per_signature;
}
debug!(
"new_derived(): lamports_per_signature: {}",
me.lamports_per_signature
);
me
}
/// calculate unburned fee from a fee total, returns (unburned, burned)
pub fn burn(&self, fees: u64) -> (u64, u64) {
let burned = fees * u64::from(self.burn_percent) / 100;
(fees - burned, burned)
}
/// create a FeeCalculator based on current cluster signature throughput
pub fn create_fee_calculator(&self) -> FeeCalculator {
FeeCalculator::new(self.lamports_per_signature)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{pubkey::Pubkey, system_instruction};
#[test]
fn test_fee_rate_governor_burn() {
let mut fee_rate_governor = FeeRateGovernor::default();
assert_eq!(fee_rate_governor.burn(2), (1, 1));
fee_rate_governor.burn_percent = 0;
assert_eq!(fee_rate_governor.burn(2), (2, 0));
fee_rate_governor.burn_percent = 100;
assert_eq!(fee_rate_governor.burn(2), (0, 2));
}
#[test]
fn test_fee_calculator_calculate_fee() {
// Default: no fee.
let message = Message::default();
assert_eq!(FeeCalculator::default().calculate_fee(&message), 0);
// No signature, no fee.
assert_eq!(FeeCalculator::new(1).calculate_fee(&message), 0);
// One signature, a fee.
let pubkey0 = Pubkey::new(&[0; 32]);
let pubkey1 = Pubkey::new(&[1; 32]);
let ix0 = system_instruction::transfer(&pubkey0, &pubkey1, 1);
let message = Message::new(&[ix0], Some(&pubkey0));
assert_eq!(FeeCalculator::new(2).calculate_fee(&message), 2);
// Two signatures, double the fee.
let ix0 = system_instruction::transfer(&pubkey0, &pubkey1, 1);
let ix1 = system_instruction::transfer(&pubkey1, &pubkey0, 1);
let message = Message::new(&[ix0, ix1], Some(&pubkey0));
assert_eq!(FeeCalculator::new(2).calculate_fee(&message), 4);
}
#[test]
fn test_fee_calculator_calculate_fee_secp256k1() {
use crate::instruction::Instruction;
let pubkey0 = Pubkey::new(&[0; 32]);
let pubkey1 = Pubkey::new(&[1; 32]);
let ix0 = system_instruction::transfer(&pubkey0, &pubkey1, 1);
let mut secp_instruction = Instruction {
program_id: crate::secp256k1_program::id(),
accounts: vec![],
data: vec![],
};
let mut secp_instruction2 = Instruction {
program_id: crate::secp256k1_program::id(),
accounts: vec![],
data: vec![1],
};
let message = Message::new(
&[
ix0.clone(),
secp_instruction.clone(),
secp_instruction2.clone(),
],
Some(&pubkey0),
);
assert_eq!(FeeCalculator::new(1).calculate_fee(&message), 2);
assert_eq!(
FeeCalculator::new(1).calculate_fee_with_config(
&message,
&FeeConfig {
secp256k1_program_enabled: false
}
),
1
);
secp_instruction.data = vec![0];
secp_instruction2.data = vec![10];
let message = Message::new(&[ix0, secp_instruction, secp_instruction2], Some(&pubkey0));
assert_eq!(FeeCalculator::new(1).calculate_fee(&message), 11);
}
#[test]
fn test_fee_rate_governor_derived_default() {
solana_logger::setup();
let f0 = FeeRateGovernor::default();
assert_eq!(
f0.target_signatures_per_slot,
DEFAULT_TARGET_SIGNATURES_PER_SLOT
);
assert_eq!(
f0.target_lamports_per_signature,
DEFAULT_TARGET_LAMPORTS_PER_SIGNATURE
);
assert_eq!(f0.lamports_per_signature, 0);
let f1 = FeeRateGovernor::new_derived(&f0, DEFAULT_TARGET_SIGNATURES_PER_SLOT);
assert_eq!(
f1.target_signatures_per_slot,
DEFAULT_TARGET_SIGNATURES_PER_SLOT
);
assert_eq!(
f1.target_lamports_per_signature,
DEFAULT_TARGET_LAMPORTS_PER_SIGNATURE
);
assert_eq!(
f1.lamports_per_signature,
DEFAULT_TARGET_LAMPORTS_PER_SIGNATURE / 2
); // min
}
#[test]
fn test_fee_rate_governor_derived_adjust() {
solana_logger::setup();
let mut f = FeeRateGovernor::default();
f.target_lamports_per_signature = 100;
f.target_signatures_per_slot = 100;
f = FeeRateGovernor::new_derived(&f, 0);
// Ramp fees up
let mut count = 0;
loop {
let last_lamports_per_signature = f.lamports_per_signature;
f = FeeRateGovernor::new_derived(&f, std::u64::MAX);
info!("[up] f.lamports_per_signature={}", f.lamports_per_signature);
// some maximum target reached
if f.lamports_per_signature == last_lamports_per_signature {
break;
}
// shouldn't take more than 1000 steps to get to minimum
assert!(count < 1000);
count += 1;
}
// Ramp fees down
let mut count = 0;
loop {
let last_lamports_per_signature = f.lamports_per_signature;
f = FeeRateGovernor::new_derived(&f, 0);
info!(
"[down] f.lamports_per_signature={}",
f.lamports_per_signature
);
// some minimum target reached
if f.lamports_per_signature == last_lamports_per_signature {
break;
}
// shouldn't take more than 1000 steps to get to minimum
assert!(count < 1000);
count += 1;
}
// Arrive at target rate
let mut count = 0;
while f.lamports_per_signature != f.target_lamports_per_signature {
f = FeeRateGovernor::new_derived(&f, f.target_signatures_per_slot);
info!(
"[target] f.lamports_per_signature={}",
f.lamports_per_signature
);
// shouldn't take more than 100 steps to get to target
assert!(count < 100);
count += 1;
}
}
}

186
sdk/program/src/hash.rs Normal file
View File

@ -0,0 +1,186 @@
//! The `hash` module provides functions for creating SHA-256 hashes.
use crate::sanitize::Sanitize;
use sha2::{Digest, Sha256};
use std::{convert::TryFrom, fmt, mem, str::FromStr};
use thiserror::Error;
pub const HASH_BYTES: usize = 32;
#[derive(
Serialize, Deserialize, Clone, Copy, Default, Eq, PartialEq, Ord, PartialOrd, Hash, AbiExample,
)]
#[repr(transparent)]
pub struct Hash(pub [u8; HASH_BYTES]);
#[derive(Clone, Default)]
pub struct Hasher {
hasher: Sha256,
}
impl Hasher {
pub fn hash(&mut self, val: &[u8]) {
self.hasher.input(val);
}
pub fn hashv(&mut self, vals: &[&[u8]]) {
for val in vals {
self.hash(val);
}
}
pub fn result(self) -> Hash {
// At the time of this writing, the sha2 library is stuck on an old version
// of generic_array (0.9.0). Decouple ourselves with a clone to our version.
Hash(<[u8; HASH_BYTES]>::try_from(self.hasher.result().as_slice()).unwrap())
}
}
impl Sanitize for Hash {}
impl AsRef<[u8]> for Hash {
fn as_ref(&self) -> &[u8] {
&self.0[..]
}
}
impl fmt::Debug for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", bs58::encode(self.0).into_string())
}
}
impl fmt::Display for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", bs58::encode(self.0).into_string())
}
}
#[derive(Debug, Clone, PartialEq, Eq, Error)]
pub enum ParseHashError {
#[error("string decoded to wrong size for hash")]
WrongSize,
#[error("failed to decoded string to hash")]
Invalid,
}
impl FromStr for Hash {
type Err = ParseHashError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let bytes = bs58::decode(s)
.into_vec()
.map_err(|_| ParseHashError::Invalid)?;
if bytes.len() != mem::size_of::<Hash>() {
Err(ParseHashError::WrongSize)
} else {
Ok(Hash::new(&bytes))
}
}
}
impl Hash {
pub fn new(hash_slice: &[u8]) -> Self {
Hash(<[u8; HASH_BYTES]>::try_from(hash_slice).unwrap())
}
pub const fn new_from_array(hash_array: [u8; HASH_BYTES]) -> Self {
Self(hash_array)
}
/// unique Hash for tests and benchmarks.
pub fn new_unique() -> Self {
use std::sync::atomic::{AtomicU64, Ordering};
static I: AtomicU64 = AtomicU64::new(1);
let mut b = [0u8; HASH_BYTES];
let i = I.fetch_add(1, Ordering::Relaxed);
b[0..8].copy_from_slice(&i.to_le_bytes());
Self::new(&b)
}
pub fn to_bytes(self) -> [u8; HASH_BYTES] {
self.0
}
}
/// Return a Sha256 hash for the given data.
pub fn hashv(vals: &[&[u8]]) -> Hash {
// Perform the calculation inline, calling this from within a program is
// not supported
#[cfg(not(target_arch = "bpf"))]
{
let mut hasher = Hasher::default();
hasher.hashv(vals);
hasher.result()
}
// Call via a system call to perform the calculation
#[cfg(target_arch = "bpf")]
{
extern "C" {
fn sol_sha256(vals: *const u8, val_len: u64, hash_result: *mut u8) -> u64;
};
let mut hash_result = [0; HASH_BYTES];
unsafe {
sol_sha256(
vals as *const _ as *const u8,
vals.len() as u64,
&mut hash_result as *mut _ as *mut u8,
);
}
Hash::new_from_array(hash_result)
}
}
/// Return a Sha256 hash for the given data.
pub fn hash(val: &[u8]) -> Hash {
hashv(&[val])
}
/// Return the hash of the given hash extended with the given value.
pub fn extend_and_hash(id: &Hash, val: &[u8]) -> Hash {
let mut hash_data = id.as_ref().to_vec();
hash_data.extend_from_slice(val);
hash(&hash_data)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_new_unique() {
assert!(Hash::new_unique() != Hash::new_unique());
}
#[test]
fn test_hash_fromstr() {
let hash = hash(&[1u8]);
let mut hash_base58_str = bs58::encode(hash).into_string();
assert_eq!(hash_base58_str.parse::<Hash>(), Ok(hash));
hash_base58_str.push_str(&bs58::encode(hash.0).into_string());
assert_eq!(
hash_base58_str.parse::<Hash>(),
Err(ParseHashError::WrongSize)
);
hash_base58_str.truncate(hash_base58_str.len() / 2);
assert_eq!(hash_base58_str.parse::<Hash>(), Ok(hash));
hash_base58_str.truncate(hash_base58_str.len() / 2);
assert_eq!(
hash_base58_str.parse::<Hash>(),
Err(ParseHashError::WrongSize)
);
let mut hash_base58_str = bs58::encode(hash.0).into_string();
assert_eq!(hash_base58_str.parse::<Hash>(), Ok(hash));
// throw some non-base58 stuff in there
hash_base58_str.replace_range(..1, "I");
assert_eq!(
hash_base58_str.parse::<Hash>(),
Err(ParseHashError::Invalid)
);
}
}

View File

@ -0,0 +1,4 @@
//! Lamports credited to this address will be removed from the total supply (burned) at the end of
//! the current block.
crate::declare_id!("1nc1nerator11111111111111111111111111111111");

View File

@ -0,0 +1,299 @@
//! Defines a composable Instruction type and a memory-efficient CompiledInstruction.
use crate::sanitize::Sanitize;
use crate::{pubkey::Pubkey, short_vec};
use bincode::serialize;
use serde::Serialize;
use thiserror::Error;
/// Reasons the runtime might have rejected an instruction.
#[derive(Serialize, Deserialize, Debug, Error, PartialEq, Eq, Clone, AbiExample, AbiEnumVisitor)]
pub enum InstructionError {
/// Deprecated! Use CustomError instead!
/// The program instruction returned an error
#[error("generic instruction error")]
GenericError,
/// The arguments provided to a program were invalid
#[error("invalid program argument")]
InvalidArgument,
/// An instruction's data contents were invalid
#[error("invalid instruction data")]
InvalidInstructionData,
/// An account's data contents was invalid
#[error("invalid account data for instruction")]
InvalidAccountData,
/// An account's data was too small
#[error("account data too small for instruction")]
AccountDataTooSmall,
/// An account's balance was too small to complete the instruction
#[error("insufficient funds for instruction")]
InsufficientFunds,
/// The account did not have the expected program id
#[error("incorrect program id for instruction")]
IncorrectProgramId,
/// A signature was required but not found
#[error("missing required signature for instruction")]
MissingRequiredSignature,
/// An initialize instruction was sent to an account that has already been initialized.
#[error("instruction requires an uninitialized account")]
AccountAlreadyInitialized,
/// An attempt to operate on an account that hasn't been initialized.
#[error("instruction requires an initialized account")]
UninitializedAccount,
/// Program's instruction lamport balance does not equal the balance after the instruction
#[error("sum of account balances before and after instruction do not match")]
UnbalancedInstruction,
/// Program modified an account's program id
#[error("instruction modified the program id of an account")]
ModifiedProgramId,
/// Program spent the lamports of an account that doesn't belong to it
#[error("instruction spent from the balance of an account it does not own")]
ExternalAccountLamportSpend,
/// Program modified the data of an account that doesn't belong to it
#[error("instruction modified data of an account it does not own")]
ExternalAccountDataModified,
/// Read-only account's lamports modified
#[error("instruction changed the balance of a read-only account")]
ReadonlyLamportChange,
/// Read-only account's data was modified
#[error("instruction modified data of a read-only account")]
ReadonlyDataModified,
/// An account was referenced more than once in a single instruction
// Deprecated, instructions can now contain duplicate accounts
#[error("instruction contains duplicate accounts")]
DuplicateAccountIndex,
/// Executable bit on account changed, but shouldn't have
#[error("instruction changed executable bit of an account")]
ExecutableModified,
/// Rent_epoch account changed, but shouldn't have
#[error("instruction modified rent epoch of an account")]
RentEpochModified,
/// The instruction expected additional account keys
#[error("insufficient account keys for instruction")]
NotEnoughAccountKeys,
/// A non-system program changed the size of the account data
#[error("non-system instruction changed account size")]
AccountDataSizeChanged,
/// The instruction expected an executable account
#[error("instruction expected an executable account")]
AccountNotExecutable,
/// Failed to borrow a reference to account data, already borrowed
#[error("instruction tries to borrow reference for an account which is already borrowed")]
AccountBorrowFailed,
/// Account data has an outstanding reference after a program's execution
#[error("instruction left account with an outstanding reference borrowed")]
AccountBorrowOutstanding,
/// The same account was multiply passed to an on-chain program's entrypoint, but the program
/// modified them differently. A program can only modify one instance of the account because
/// the runtime cannot determine which changes to pick or how to merge them if both are modified
#[error("instruction modifications of multiply-passed account differ")]
DuplicateAccountOutOfSync,
/// Allows on-chain programs to implement program-specific error types and see them returned
/// by the Solana runtime. A program-specific error may be any type that is represented as
/// or serialized to a u32 integer.
#[error("custom program error: {0:#x}")]
Custom(u32),
/// The return value from the program was invalid. Valid errors are either a defined builtin
/// error value or a user-defined error in the lower 32 bits.
#[error("program returned invalid error code")]
InvalidError,
/// Executable account's data was modified
#[error("instruction changed executable accounts data")]
ExecutableDataModified,
/// Executable account's lamports modified
#[error("instruction changed the balance of a executable account")]
ExecutableLamportChange,
/// Executable accounts must be rent exempt
#[error("executable accounts must be rent exempt")]
ExecutableAccountNotRentExempt,
/// Unsupported program id
#[error("Unsupported program id")]
UnsupportedProgramId,
/// Cross-program invocation call depth too deep
#[error("Cross-program invocation call depth too deep")]
CallDepth,
/// An account required by the instruction is missing
#[error("An account required by the instruction is missing")]
MissingAccount,
/// Cross-program invocation reentrancy not allowed for this instruction
#[error("Cross-program invocation reentrancy not allowed for this instruction")]
ReentrancyNotAllowed,
/// Length of the seed is too long for address generation
#[error("Length of the seed is too long for address generation")]
MaxSeedLengthExceeded,
/// Provided seeds do not result in a valid address
#[error("Provided seeds do not result in a valid address")]
InvalidSeeds,
/// Failed to reallocate account data of this length
#[error("Failed to reallocate account data")]
InvalidRealloc,
/// Computational budget exceeded
#[error("Computational budget exceeded")]
ComputationalBudgetExceeded,
}
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
pub struct Instruction {
/// Pubkey of the instruction processor that executes this instruction
pub program_id: Pubkey,
/// Metadata for what accounts should be passed to the instruction processor
pub accounts: Vec<AccountMeta>,
/// Opaque data passed to the instruction processor
pub data: Vec<u8>,
}
impl Instruction {
pub fn new<T: Serialize>(program_id: Pubkey, data: &T, accounts: Vec<AccountMeta>) -> Self {
let data = serialize(data).unwrap();
Self {
program_id,
data,
accounts,
}
}
}
/// Account metadata used to define Instructions
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
pub struct AccountMeta {
/// An account's public key
pub pubkey: Pubkey,
/// True if an Instruction requires a Transaction signature matching `pubkey`.
pub is_signer: bool,
/// True if the `pubkey` can be loaded as a read-write account.
pub is_writable: bool,
}
impl AccountMeta {
pub fn new(pubkey: Pubkey, is_signer: bool) -> Self {
Self {
pubkey,
is_signer,
is_writable: true,
}
}
pub fn new_readonly(pubkey: Pubkey, is_signer: bool) -> Self {
Self {
pubkey,
is_signer,
is_writable: false,
}
}
}
/// An instruction to execute a program
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone, AbiExample)]
#[serde(rename_all = "camelCase")]
pub struct CompiledInstruction {
/// Index into the transaction keys array indicating the program account that executes this instruction
pub program_id_index: u8,
/// Ordered indices into the transaction keys array indicating which accounts to pass to the program
#[serde(with = "short_vec")]
pub accounts: Vec<u8>,
/// The program input data
#[serde(with = "short_vec")]
pub data: Vec<u8>,
}
impl Sanitize for CompiledInstruction {}
impl CompiledInstruction {
pub fn new<T: Serialize>(program_ids_index: u8, data: &T, accounts: Vec<u8>) -> Self {
let data = serialize(data).unwrap();
Self {
program_id_index: program_ids_index,
data,
accounts,
}
}
pub fn program_id<'a>(&self, program_ids: &'a [Pubkey]) -> &'a Pubkey {
&program_ids[self.program_id_index as usize]
}
/// Visit each unique instruction account index once
pub fn visit_each_account(
&self,
work: &mut dyn FnMut(usize, usize) -> Result<(), InstructionError>,
) -> Result<(), InstructionError> {
let mut unique_index = 0;
'root: for (i, account_index) in self.accounts.iter().enumerate() {
// Note: This is an O(n^2) algorithm,
// but performed on a very small slice and requires no heap allocations
for account_index_before in self.accounts[..i].iter() {
if account_index_before == account_index {
continue 'root; // skip dups
}
}
work(unique_index, *account_index as usize)?;
unique_index += 1;
}
Ok(())
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_visit_each_account() {
let do_work = |accounts: &[u8]| -> (usize, usize) {
let mut unique_total = 0;
let mut account_total = 0;
let mut work = |unique_index: usize, account_index: usize| {
unique_total += unique_index;
account_total += account_index;
Ok(())
};
let instruction = CompiledInstruction::new(0, &[0], accounts.to_vec());
instruction.visit_each_account(&mut work).unwrap();
(unique_total, account_total)
};
assert_eq!((6, 6), do_work(&[0, 1, 2, 3]));
assert_eq!((6, 6), do_work(&[0, 1, 1, 2, 3]));
assert_eq!((6, 6), do_work(&[0, 1, 2, 3, 3]));
assert_eq!((6, 6), do_work(&[0, 0, 1, 1, 2, 2, 3, 3]));
assert_eq!((0, 2), do_work(&[2, 2]));
}
}

View File

@ -1,2 +1,71 @@
#![cfg_attr(RUSTC_WITH_SPECIALIZATION, feature(specialization))]
#![cfg_attr(RUSTC_NEEDS_PROC_MACRO_HYGIENE, feature(proc_macro_hygiene))]
// Allows macro expansion of `use ::solana_program_sdk::*` to work within this crate
extern crate self as solana_program_sdk;
pub mod account;
pub mod account_info;
pub mod account_utils;
pub mod bpf_loader;
pub mod bpf_loader_deprecated;
pub mod clock;
pub mod decode_error;
pub mod entrypoint;
pub mod entrypoint_deprecated;
pub mod epoch_schedule;
pub mod fee_calculator;
pub mod hash;
pub mod incinerator;
pub mod instruction;
pub mod loader_instruction;
pub mod log;
pub mod message;
pub mod native_token;
pub mod nonce;
pub mod program;
pub mod program_error;
pub mod program_option;
pub mod program_pack;
pub mod program_stubs;
pub mod pubkey;
pub mod rent;
pub mod sanitize;
pub mod secp256k1_program;
pub mod serialize_utils;
pub mod short_vec;
pub mod slot_hashes;
pub mod slot_history;
pub mod stake_history;
pub mod system_instruction;
pub mod system_program;
pub mod sysvar;
/// Convenience macro to declare a static public key and functions to interact with it
///
/// Input: a single literal base58 string representation of a program's id
///
/// # Example
///
/// ```
/// # // wrapper is used so that the macro invocation occurs in the item position
/// # // rather than in the statement position which isn't allowed.
/// use std::str::FromStr;
/// use solana_program_sdk::{declare_id, pubkey::Pubkey};
///
/// # mod item_wrapper {
/// # use solana_program_sdk::declare_id;
/// declare_id!("My11111111111111111111111111111111111111111");
/// # }
/// # use item_wrapper::id;
///
/// let my_id = Pubkey::from_str("My11111111111111111111111111111111111111111").unwrap();
/// assert_eq!(id(), my_id);
/// ```
pub use solana_sdk_macro::program_sdk_declare_id as declare_id;
#[macro_use]
extern crate serde_derive;
#[macro_use]
extern crate solana_frozen_abi_macro;

View File

@ -0,0 +1,53 @@
use crate::{
instruction::{AccountMeta, Instruction},
pubkey::Pubkey,
sysvar::rent,
};
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub enum LoaderInstruction {
/// Write program data into an account
///
/// # Account references
/// 0. [WRITE, SIGNER] Account to write to
Write {
/// Offset at which to write the given bytes
offset: u32,
/// Serialized program data
#[serde(with = "serde_bytes")]
bytes: Vec<u8>,
},
/// Finalize an account loaded with program data for execution
///
/// The exact preparation steps is loader specific but on success the loader must set the executable
/// bit of the account.
///
/// # Account references
/// 0. [WRITE, SIGNER] The account to prepare for execution
/// 1. [] Rent sysvar
Finalize,
}
pub fn write(
account_pubkey: &Pubkey,
program_id: &Pubkey,
offset: u32,
bytes: Vec<u8>,
) -> Instruction {
let account_metas = vec![AccountMeta::new(*account_pubkey, true)];
Instruction::new(
*program_id,
&LoaderInstruction::Write { offset, bytes },
account_metas,
)
}
pub fn finalize(account_pubkey: &Pubkey, program_id: &Pubkey) -> Instruction {
let account_metas = vec![
AccountMeta::new(*account_pubkey, true),
AccountMeta::new(rent::id(), false),
];
Instruction::new(*program_id, &LoaderInstruction::Finalize, account_metas)
}

98
sdk/program/src/log.rs Normal file
View File

@ -0,0 +1,98 @@
//! @brief Solana Rust-based BPF program logging
use crate::account_info::AccountInfo;
/// Prints a string
/// There are two forms and are fast
/// 1. Single string
/// 2. 5 integers
#[macro_export]
macro_rules! info {
($msg:expr) => {
$crate::log::sol_log($msg)
};
($arg1:expr, $arg2:expr, $arg3:expr, $arg4:expr, $arg5:expr) => {
$crate::log::sol_log_64(
$arg1 as u64,
$arg2 as u64,
$arg3 as u64,
$arg4 as u64,
$arg5 as u64,
)
}; // `format!()` is not supported yet, Issue #3099
// `format!()` incurs a very large runtime overhead so it should be used with care
// ($($arg:tt)*) => ($crate::log::sol_log(&format!($($arg)*)));
}
/// Prints a string to stdout
///
/// @param message - Message to print
#[inline]
pub fn sol_log(message: &str) {
#[cfg(target_arch = "bpf")]
unsafe {
sol_log_(message.as_ptr(), message.len() as u64);
}
#[cfg(not(target_arch = "bpf"))]
crate::program_stubs::sol_log(message);
}
#[cfg(target_arch = "bpf")]
extern "C" {
fn sol_log_(message: *const u8, len: u64);
}
/// Prints 64 bit values represented as hexadecimal to stdout
///
/// @param argx - integer arguments to print
#[inline]
pub fn sol_log_64(arg1: u64, arg2: u64, arg3: u64, arg4: u64, arg5: u64) {
#[cfg(target_arch = "bpf")]
unsafe {
sol_log_64_(arg1, arg2, arg3, arg4, arg5);
}
#[cfg(not(target_arch = "bpf"))]
crate::program_stubs::sol_log_64(arg1, arg2, arg3, arg4, arg5);
}
#[cfg(target_arch = "bpf")]
extern "C" {
fn sol_log_64_(arg1: u64, arg2: u64, arg3: u64, arg4: u64, arg5: u64);
}
/// Prints the hexadecimal representation of a slice
///
/// @param slice - The array to print
#[allow(dead_code)]
pub fn sol_log_slice(slice: &[u8]) {
for (i, s) in slice.iter().enumerate() {
info!(0, 0, 0, i, *s);
}
}
/// Prints the hexadecimal representation of the program's input parameters
///
/// @param ka - A pointer to an array of `AccountInfo` to print
/// @param data - A pointer to the instruction data to print
#[allow(dead_code)]
pub fn sol_log_params(accounts: &[AccountInfo], data: &[u8]) {
for (i, account) in accounts.iter().enumerate() {
info!("AccountInfo");
info!(0, 0, 0, 0, i);
info!("- Is signer");
info!(0, 0, 0, 0, account.is_signer);
info!("- Key");
account.key.log();
info!("- Lamports");
info!(0, 0, 0, 0, account.lamports());
info!("- Account data length");
info!(0, 0, 0, 0, account.data_len());
info!("- Owner");
account.owner.log();
}
info!("Instruction data");
sol_log_slice(data);
}

797
sdk/program/src/message.rs Normal file
View File

@ -0,0 +1,797 @@
//! A library for generating a message from a sequence of instructions
use crate::sanitize::{Sanitize, SanitizeError};
use crate::serialize_utils::{
append_slice, append_u16, append_u8, read_pubkey, read_slice, read_u16, read_u8,
};
use crate::{
hash::Hash,
instruction::{AccountMeta, CompiledInstruction, Instruction},
pubkey::Pubkey,
short_vec, system_instruction,
};
use itertools::Itertools;
use std::convert::TryFrom;
fn position(keys: &[Pubkey], key: &Pubkey) -> u8 {
keys.iter().position(|k| k == key).unwrap() as u8
}
fn compile_instruction(ix: &Instruction, keys: &[Pubkey]) -> CompiledInstruction {
let accounts: Vec<_> = ix
.accounts
.iter()
.map(|account_meta| position(keys, &account_meta.pubkey))
.collect();
CompiledInstruction {
program_id_index: position(keys, &ix.program_id),
data: ix.data.clone(),
accounts,
}
}
fn compile_instructions(ixs: &[Instruction], keys: &[Pubkey]) -> Vec<CompiledInstruction> {
ixs.iter().map(|ix| compile_instruction(ix, keys)).collect()
}
/// A helper struct to collect pubkeys referenced by a set of instructions and read-only counts
#[derive(Debug, PartialEq, Eq)]
struct InstructionKeys {
pub signed_keys: Vec<Pubkey>,
pub unsigned_keys: Vec<Pubkey>,
pub num_readonly_signed_accounts: u8,
pub num_readonly_unsigned_accounts: u8,
}
impl InstructionKeys {
fn new(
signed_keys: Vec<Pubkey>,
unsigned_keys: Vec<Pubkey>,
num_readonly_signed_accounts: u8,
num_readonly_unsigned_accounts: u8,
) -> Self {
Self {
signed_keys,
unsigned_keys,
num_readonly_signed_accounts,
num_readonly_unsigned_accounts,
}
}
}
/// Return pubkeys referenced by all instructions, with the ones needing signatures first. If the
/// payer key is provided, it is always placed first in the list of signed keys. Read-only signed
/// accounts are placed last in the set of signed accounts. Read-only unsigned accounts,
/// including program ids, are placed last in the set. No duplicates and order is preserved.
fn get_keys(instructions: &[Instruction], payer: Option<&Pubkey>) -> InstructionKeys {
let programs: Vec<_> = get_program_ids(instructions)
.iter()
.map(|program_id| AccountMeta {
pubkey: *program_id,
is_signer: false,
is_writable: false,
})
.collect();
let mut keys_and_signed: Vec<_> = instructions
.iter()
.flat_map(|ix| ix.accounts.iter())
.collect();
keys_and_signed.extend(&programs);
keys_and_signed.sort_by(|x, y| {
y.is_signer
.cmp(&x.is_signer)
.then(y.is_writable.cmp(&x.is_writable))
});
let payer_account_meta;
if let Some(payer) = payer {
payer_account_meta = AccountMeta {
pubkey: *payer,
is_signer: true,
is_writable: true,
};
keys_and_signed.insert(0, &payer_account_meta);
}
let mut unique_metas: Vec<AccountMeta> = vec![];
for account_meta in keys_and_signed {
// Promote to writable if a later AccountMeta requires it
if let Some(x) = unique_metas
.iter_mut()
.find(|x| x.pubkey == account_meta.pubkey)
{
x.is_writable |= account_meta.is_writable;
continue;
}
unique_metas.push(account_meta.clone());
}
let mut signed_keys = vec![];
let mut unsigned_keys = vec![];
let mut num_readonly_signed_accounts = 0;
let mut num_readonly_unsigned_accounts = 0;
for account_meta in unique_metas {
if account_meta.is_signer {
signed_keys.push(account_meta.pubkey);
if !account_meta.is_writable {
num_readonly_signed_accounts += 1;
}
} else {
unsigned_keys.push(account_meta.pubkey);
if !account_meta.is_writable {
num_readonly_unsigned_accounts += 1;
}
}
}
InstructionKeys::new(
signed_keys,
unsigned_keys,
num_readonly_signed_accounts,
num_readonly_unsigned_accounts,
)
}
/// Return program ids referenced by all instructions. No duplicates and order is preserved.
fn get_program_ids(instructions: &[Instruction]) -> Vec<Pubkey> {
instructions
.iter()
.map(|ix| ix.program_id)
.unique()
.collect()
}
#[frozen_abi(digest = "BVC5RhetsNpheGipt5rUrkR6RDDUHtD5sCLK1UjymL4S")]
#[derive(Serialize, Deserialize, Default, Debug, PartialEq, Eq, Clone, AbiExample)]
#[serde(rename_all = "camelCase")]
pub struct MessageHeader {
/// The number of signatures required for this message to be considered valid. The
/// signatures must match the first `num_required_signatures` of `account_keys`.
/// NOTE: Serialization-related changes must be paired with the direct read at sigverify.
pub num_required_signatures: u8,
/// The last num_readonly_signed_accounts of the signed keys are read-only accounts. Programs
/// may process multiple transactions that load read-only accounts within a single PoH entry,
/// but are not permitted to credit or debit lamports or modify account data. Transactions
/// targeting the same read-write account are evaluated sequentially.
pub num_readonly_signed_accounts: u8,
/// The last num_readonly_unsigned_accounts of the unsigned keys are read-only accounts.
pub num_readonly_unsigned_accounts: u8,
}
#[frozen_abi(digest = "A18PN3BWKw4hU69STY79SyRS3tS6w54nCgYRRx77vQiL")]
#[derive(Serialize, Deserialize, Default, Debug, PartialEq, Eq, Clone, AbiExample)]
#[serde(rename_all = "camelCase")]
pub struct Message {
/// The message header, identifying signed and read-only `account_keys`
/// NOTE: Serialization-related changes must be paired with the direct read at sigverify.
pub header: MessageHeader,
/// All the account keys used by this transaction
#[serde(with = "short_vec")]
pub account_keys: Vec<Pubkey>,
/// The id of a recent ledger entry.
pub recent_blockhash: Hash,
/// Programs that will be executed in sequence and committed in one atomic transaction if all
/// succeed.
#[serde(with = "short_vec")]
pub instructions: Vec<CompiledInstruction>,
}
impl Sanitize for Message {
fn sanitize(&self) -> std::result::Result<(), SanitizeError> {
// signing area and read-only non-signing area should not overlap
if self.header.num_required_signatures as usize
+ self.header.num_readonly_unsigned_accounts as usize
> self.account_keys.len()
{
return Err(SanitizeError::IndexOutOfBounds);
}
// there should be at least 1 RW fee-payer account.
if self.header.num_readonly_signed_accounts >= self.header.num_required_signatures {
return Err(SanitizeError::IndexOutOfBounds);
}
for ci in &self.instructions {
if ci.program_id_index as usize >= self.account_keys.len() {
return Err(SanitizeError::IndexOutOfBounds);
}
// A program cannot be a payer.
if ci.program_id_index == 0 {
return Err(SanitizeError::IndexOutOfBounds);
}
for ai in &ci.accounts {
if *ai as usize >= self.account_keys.len() {
return Err(SanitizeError::IndexOutOfBounds);
}
}
}
self.account_keys.sanitize()?;
self.recent_blockhash.sanitize()?;
self.instructions.sanitize()?;
Ok(())
}
}
impl Message {
pub fn new_with_compiled_instructions(
num_required_signatures: u8,
num_readonly_signed_accounts: u8,
num_readonly_unsigned_accounts: u8,
account_keys: Vec<Pubkey>,
recent_blockhash: Hash,
instructions: Vec<CompiledInstruction>,
) -> Self {
Self {
header: MessageHeader {
num_required_signatures,
num_readonly_signed_accounts,
num_readonly_unsigned_accounts,
},
account_keys,
recent_blockhash,
instructions,
}
}
pub fn new(instructions: &[Instruction], payer: Option<&Pubkey>) -> Self {
let InstructionKeys {
mut signed_keys,
unsigned_keys,
num_readonly_signed_accounts,
num_readonly_unsigned_accounts,
} = get_keys(instructions, payer);
let num_required_signatures = signed_keys.len() as u8;
signed_keys.extend(&unsigned_keys);
let instructions = compile_instructions(instructions, &signed_keys);
Self::new_with_compiled_instructions(
num_required_signatures,
num_readonly_signed_accounts,
num_readonly_unsigned_accounts,
signed_keys,
Hash::default(),
instructions,
)
}
pub fn new_with_nonce(
mut instructions: Vec<Instruction>,
payer: Option<&Pubkey>,
nonce_account_pubkey: &Pubkey,
nonce_authority_pubkey: &Pubkey,
) -> Self {
let nonce_ix = system_instruction::advance_nonce_account(
&nonce_account_pubkey,
&nonce_authority_pubkey,
);
instructions.insert(0, nonce_ix);
Self::new(&instructions, payer)
}
pub fn compile_instruction(&self, ix: &Instruction) -> CompiledInstruction {
compile_instruction(ix, &self.account_keys)
}
pub fn serialize(&self) -> Vec<u8> {
bincode::serialize(self).unwrap()
}
pub fn program_ids(&self) -> Vec<&Pubkey> {
self.instructions
.iter()
.map(|ix| &self.account_keys[ix.program_id_index as usize])
.collect()
}
pub fn is_key_passed_to_program(&self, index: usize) -> bool {
if let Ok(index) = u8::try_from(index) {
for ix in self.instructions.iter() {
if ix.accounts.contains(&index) {
return true;
}
}
}
false
}
pub fn program_position(&self, index: usize) -> Option<usize> {
let program_ids = self.program_ids();
program_ids
.iter()
.position(|&&pubkey| pubkey == self.account_keys[index])
}
pub fn is_writable(&self, i: usize) -> bool {
i < (self.header.num_required_signatures - self.header.num_readonly_signed_accounts)
as usize
|| (i >= self.header.num_required_signatures as usize
&& i < self.account_keys.len()
- self.header.num_readonly_unsigned_accounts as usize)
}
pub fn is_signer(&self, i: usize) -> bool {
i < self.header.num_required_signatures as usize
}
pub fn get_account_keys_by_lock_type(&self) -> (Vec<&Pubkey>, Vec<&Pubkey>) {
let mut writable_keys = vec![];
let mut readonly_keys = vec![];
for (i, key) in self.account_keys.iter().enumerate() {
if self.is_writable(i) {
writable_keys.push(key);
} else {
readonly_keys.push(key);
}
}
(writable_keys, readonly_keys)
}
// First encode the number of instructions:
// [0..2 - num_instructions
//
// Then a table of offsets of where to find them in the data
// 3..2*num_instructions table of instruction offsets
//
// Each instruction is then encoded as:
// 0..2 - num_accounts
// 3 - meta_byte -> (bit 0 signer, bit 1 is_writable)
// 4..36 - pubkey - 32 bytes
// 36..64 - program_id
// 33..34 - data len - u16
// 35..data_len - data
pub fn serialize_instructions(&self) -> Vec<u8> {
// 64 bytes is a reasonable guess, calculating exactly is slower in benchmarks
let mut data = Vec::with_capacity(self.instructions.len() * (32 * 2));
append_u16(&mut data, self.instructions.len() as u16);
for _ in 0..self.instructions.len() {
append_u16(&mut data, 0);
}
for (i, instruction) in self.instructions.iter().enumerate() {
let start_instruction_offset = data.len() as u16;
let start = 2 + (2 * i);
data[start..start + 2].copy_from_slice(&start_instruction_offset.to_le_bytes());
append_u16(&mut data, instruction.accounts.len() as u16);
for account_index in &instruction.accounts {
let account_index = *account_index as usize;
let is_signer = self.is_signer(account_index);
let is_writable = self.is_writable(account_index);
let mut meta_byte = 0;
if is_signer {
meta_byte |= 1 << Self::IS_SIGNER_BIT;
}
if is_writable {
meta_byte |= 1 << Self::IS_WRITABLE_BIT;
}
append_u8(&mut data, meta_byte);
append_slice(&mut data, self.account_keys[account_index].as_ref());
}
let program_id = &self.account_keys[instruction.program_id_index as usize];
append_slice(&mut data, program_id.as_ref());
append_u16(&mut data, instruction.data.len() as u16);
append_slice(&mut data, &instruction.data);
}
data
}
const IS_SIGNER_BIT: usize = 0;
const IS_WRITABLE_BIT: usize = 1;
pub fn deserialize_instruction(
index: usize,
data: &[u8],
) -> Result<Instruction, SanitizeError> {
let mut current = 0;
let _num_instructions = read_u16(&mut current, &data)?;
// index into the instruction byte-offset table.
current += index * 2;
let start = read_u16(&mut current, &data)?;
current = start as usize;
let num_accounts = read_u16(&mut current, &data)?;
let mut accounts = Vec::with_capacity(num_accounts as usize);
for _ in 0..num_accounts {
let meta_byte = read_u8(&mut current, &data)?;
let mut is_signer = false;
let mut is_writable = false;
if meta_byte & (1 << Self::IS_SIGNER_BIT) != 0 {
is_signer = true;
}
if meta_byte & (1 << Self::IS_WRITABLE_BIT) != 0 {
is_writable = true;
}
let pubkey = read_pubkey(&mut current, &data)?;
accounts.push(AccountMeta {
pubkey,
is_signer,
is_writable,
});
}
let program_id = read_pubkey(&mut current, &data)?;
let data_len = read_u16(&mut current, &data)?;
let data = read_slice(&mut current, &data, data_len as usize)?;
Ok(Instruction {
program_id,
data,
accounts,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::instruction::AccountMeta;
#[test]
fn test_message_unique_program_ids() {
let program_id0 = Pubkey::default();
let program_ids = get_program_ids(&[
Instruction::new(program_id0, &0, vec![]),
Instruction::new(program_id0, &0, vec![]),
]);
assert_eq!(program_ids, vec![program_id0]);
}
#[test]
fn test_message_unique_program_ids_not_adjacent() {
let program_id0 = Pubkey::default();
let program_id1 = Pubkey::new_unique();
let program_ids = get_program_ids(&[
Instruction::new(program_id0, &0, vec![]),
Instruction::new(program_id1, &0, vec![]),
Instruction::new(program_id0, &0, vec![]),
]);
assert_eq!(program_ids, vec![program_id0, program_id1]);
}
#[test]
fn test_message_unique_program_ids_order_preserved() {
let program_id0 = Pubkey::new_unique();
let program_id1 = Pubkey::default(); // Key less than program_id0
let program_ids = get_program_ids(&[
Instruction::new(program_id0, &0, vec![]),
Instruction::new(program_id1, &0, vec![]),
Instruction::new(program_id0, &0, vec![]),
]);
assert_eq!(program_ids, vec![program_id0, program_id1]);
}
#[test]
fn test_message_unique_keys_both_signed() {
let program_id = Pubkey::default();
let id0 = Pubkey::default();
let keys = get_keys(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, true)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, true)]),
],
None,
);
assert_eq!(keys, InstructionKeys::new(vec![id0], vec![], 0, 0));
}
#[test]
fn test_message_unique_keys_signed_and_payer() {
let program_id = Pubkey::default();
let id0 = Pubkey::default();
let keys = get_keys(
&[Instruction::new(
program_id,
&0,
vec![AccountMeta::new(id0, true)],
)],
Some(&id0),
);
assert_eq!(keys, InstructionKeys::new(vec![id0], vec![], 0, 0));
}
#[test]
fn test_message_unique_keys_unsigned_and_payer() {
let program_id = Pubkey::default();
let id0 = Pubkey::default();
let keys = get_keys(
&[Instruction::new(
program_id,
&0,
vec![AccountMeta::new(id0, false)],
)],
Some(&id0),
);
assert_eq!(keys, InstructionKeys::new(vec![id0], vec![], 0, 0));
}
#[test]
fn test_message_unique_keys_one_signed() {
let program_id = Pubkey::default();
let id0 = Pubkey::default();
let keys = get_keys(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, true)]),
],
None,
);
assert_eq!(keys, InstructionKeys::new(vec![id0], vec![], 0, 0));
}
#[test]
fn test_message_unique_keys_one_readonly_signed() {
let program_id = Pubkey::default();
let id0 = Pubkey::default();
let keys = get_keys(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new_readonly(id0, true)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, true)]),
],
None,
);
// Ensure the key is no longer readonly
assert_eq!(keys, InstructionKeys::new(vec![id0], vec![], 0, 0));
}
#[test]
fn test_message_unique_keys_one_readonly_unsigned() {
let program_id = Pubkey::default();
let id0 = Pubkey::default();
let keys = get_keys(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new_readonly(id0, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, false)]),
],
None,
);
// Ensure the key is no longer readonly
assert_eq!(keys, InstructionKeys::new(vec![], vec![id0], 0, 0));
}
#[test]
fn test_message_unique_keys_order_preserved() {
let program_id = Pubkey::default();
let id0 = Pubkey::new_unique();
let id1 = Pubkey::default(); // Key less than id0
let keys = get_keys(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id1, false)]),
],
None,
);
assert_eq!(keys, InstructionKeys::new(vec![], vec![id0, id1], 0, 0));
}
#[test]
fn test_message_unique_keys_not_adjacent() {
let program_id = Pubkey::default();
let id0 = Pubkey::default();
let id1 = Pubkey::new_unique();
let keys = get_keys(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id1, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, true)]),
],
None,
);
assert_eq!(keys, InstructionKeys::new(vec![id0], vec![id1], 0, 0));
}
#[test]
fn test_message_signed_keys_first() {
let program_id = Pubkey::default();
let id0 = Pubkey::default();
let id1 = Pubkey::new_unique();
let keys = get_keys(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id1, true)]),
],
None,
);
assert_eq!(keys, InstructionKeys::new(vec![id1], vec![id0], 0, 0));
}
#[test]
// Ensure there's a way to calculate the number of required signatures.
fn test_message_signed_keys_len() {
let program_id = Pubkey::default();
let id0 = Pubkey::default();
let ix = Instruction::new(program_id, &0, vec![AccountMeta::new(id0, false)]);
let message = Message::new(&[ix], None);
assert_eq!(message.header.num_required_signatures, 0);
let ix = Instruction::new(program_id, &0, vec![AccountMeta::new(id0, true)]);
let message = Message::new(&[ix], Some(&id0));
assert_eq!(message.header.num_required_signatures, 1);
}
#[test]
fn test_message_readonly_keys_last() {
let program_id = Pubkey::default();
let id0 = Pubkey::default(); // Identical key/program_id should be de-duped
let id1 = Pubkey::new_unique();
let id2 = Pubkey::new_unique();
let id3 = Pubkey::new_unique();
let keys = get_keys(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new_readonly(id0, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new_readonly(id1, true)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id2, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id3, true)]),
],
None,
);
assert_eq!(
keys,
InstructionKeys::new(vec![id3, id1], vec![id2, id0], 1, 1)
);
}
#[test]
fn test_message_kitchen_sink() {
let program_id0 = Pubkey::new_unique();
let program_id1 = Pubkey::new_unique();
let id0 = Pubkey::default();
let id1 = Pubkey::new_unique();
let message = Message::new(
&[
Instruction::new(program_id0, &0, vec![AccountMeta::new(id0, false)]),
Instruction::new(program_id1, &0, vec![AccountMeta::new(id1, true)]),
Instruction::new(program_id0, &0, vec![AccountMeta::new(id1, false)]),
],
Some(&id1),
);
assert_eq!(
message.instructions[0],
CompiledInstruction::new(2, &0, vec![1])
);
assert_eq!(
message.instructions[1],
CompiledInstruction::new(3, &0, vec![0])
);
assert_eq!(
message.instructions[2],
CompiledInstruction::new(2, &0, vec![0])
);
}
#[test]
fn test_message_payer_first() {
let program_id = Pubkey::default();
let payer = Pubkey::new_unique();
let id0 = Pubkey::default();
let ix = Instruction::new(program_id, &0, vec![AccountMeta::new(id0, false)]);
let message = Message::new(&[ix], Some(&payer));
assert_eq!(message.header.num_required_signatures, 1);
let ix = Instruction::new(program_id, &0, vec![AccountMeta::new(id0, true)]);
let message = Message::new(&[ix], Some(&payer));
assert_eq!(message.header.num_required_signatures, 2);
let ix = Instruction::new(
program_id,
&0,
vec![AccountMeta::new(payer, true), AccountMeta::new(id0, true)],
);
let message = Message::new(&[ix], Some(&payer));
assert_eq!(message.header.num_required_signatures, 2);
}
#[test]
fn test_message_program_last() {
let program_id = Pubkey::default();
let id0 = Pubkey::new_unique();
let id1 = Pubkey::new_unique();
let keys = get_keys(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new_readonly(id0, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new_readonly(id1, true)]),
],
None,
);
assert_eq!(
keys,
InstructionKeys::new(vec![id1], vec![id0, program_id], 1, 2)
);
}
#[test]
fn test_program_position() {
let program_id0 = Pubkey::default();
let program_id1 = Pubkey::new_unique();
let id = Pubkey::new_unique();
let message = Message::new(
&[
Instruction::new(program_id0, &0, vec![AccountMeta::new(id, false)]),
Instruction::new(program_id1, &0, vec![AccountMeta::new(id, true)]),
],
Some(&id),
);
assert_eq!(message.program_position(0), None);
assert_eq!(message.program_position(1), Some(0));
assert_eq!(message.program_position(2), Some(1));
}
#[test]
fn test_is_writable() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
let key4 = Pubkey::new_unique();
let key5 = Pubkey::new_unique();
let message = Message {
header: MessageHeader {
num_required_signatures: 3,
num_readonly_signed_accounts: 2,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![key0, key1, key2, key3, key4, key5],
recent_blockhash: Hash::default(),
instructions: vec![],
};
assert_eq!(message.is_writable(0), true);
assert_eq!(message.is_writable(1), false);
assert_eq!(message.is_writable(2), false);
assert_eq!(message.is_writable(3), true);
assert_eq!(message.is_writable(4), true);
assert_eq!(message.is_writable(5), false);
}
#[test]
fn test_get_account_keys_by_lock_type() {
let program_id = Pubkey::default();
let id0 = Pubkey::new_unique();
let id1 = Pubkey::new_unique();
let id2 = Pubkey::new_unique();
let id3 = Pubkey::new_unique();
let message = Message::new(
&[
Instruction::new(program_id, &0, vec![AccountMeta::new(id0, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new(id1, true)]),
Instruction::new(program_id, &0, vec![AccountMeta::new_readonly(id2, false)]),
Instruction::new(program_id, &0, vec![AccountMeta::new_readonly(id3, true)]),
],
Some(&id1),
);
assert_eq!(
message.get_account_keys_by_lock_type(),
(vec![&id1, &id0], vec![&id3, &id2, &program_id])
);
}
#[test]
fn test_decompile_instructions() {
solana_logger::setup();
let program_id0 = Pubkey::new_unique();
let program_id1 = Pubkey::new_unique();
let id0 = Pubkey::new_unique();
let id1 = Pubkey::new_unique();
let id2 = Pubkey::new_unique();
let id3 = Pubkey::new_unique();
let instructions = vec![
Instruction::new(program_id0, &0, vec![AccountMeta::new(id0, false)]),
Instruction::new(program_id0, &0, vec![AccountMeta::new(id1, true)]),
Instruction::new(program_id1, &0, vec![AccountMeta::new_readonly(id2, false)]),
Instruction::new(program_id1, &0, vec![AccountMeta::new_readonly(id3, true)]),
];
let message = Message::new(&instructions, Some(&id1));
let serialized = message.serialize_instructions();
for (i, instruction) in instructions.iter().enumerate() {
assert_eq!(
Message::deserialize_instruction(i, &serialized).unwrap(),
*instruction
);
}
}
}

View File

@ -0,0 +1,38 @@
/// There are 10^9 lamports in one SOL
pub const LAMPORTS_PER_SOL: u64 = 1_000_000_000;
/// Approximately convert fractional native tokens (lamports) into native tokens (SOL)
pub fn lamports_to_sol(lamports: u64) -> f64 {
lamports as f64 / LAMPORTS_PER_SOL as f64
}
/// Approximately convert native tokens (SOL) into fractional native tokens (lamports)
pub fn sol_to_lamports(sol: f64) -> u64 {
(sol * LAMPORTS_PER_SOL as f64) as u64
}
use std::fmt::{Debug, Display, Formatter, Result};
pub struct Sol(pub u64);
impl Sol {
fn write_in_sol(&self, f: &mut Formatter) -> Result {
write!(
f,
"◎{}.{:09}",
self.0 / LAMPORTS_PER_SOL,
self.0 % LAMPORTS_PER_SOL
)
}
}
impl Display for Sol {
fn fmt(&self, f: &mut Formatter) -> Result {
self.write_in_sol(f)
}
}
impl Debug for Sol {
fn fmt(&self, f: &mut Formatter) -> Result {
self.write_in_sol(f)
}
}

View File

@ -0,0 +1,884 @@
use crate::{
account::{self, KeyedAccount},
account_utils::State as AccountUtilsState,
instruction::InstructionError,
nonce::{self, state::Versions, State},
pubkey::Pubkey,
system_instruction::NonceError,
system_program,
sysvar::{recent_blockhashes::RecentBlockhashes, rent::Rent},
};
use std::{cell::RefCell, collections::HashSet};
pub trait Account {
fn advance_nonce_account(
&self,
recent_blockhashes: &RecentBlockhashes,
signers: &HashSet<Pubkey>,
) -> Result<(), InstructionError>;
fn withdraw_nonce_account(
&self,
lamports: u64,
to: &KeyedAccount,
recent_blockhashes: &RecentBlockhashes,
rent: &Rent,
signers: &HashSet<Pubkey>,
) -> Result<(), InstructionError>;
fn initialize_nonce_account(
&self,
nonce_authority: &Pubkey,
recent_blockhashes: &RecentBlockhashes,
rent: &Rent,
) -> Result<(), InstructionError>;
fn authorize_nonce_account(
&self,
nonce_authority: &Pubkey,
signers: &HashSet<Pubkey>,
) -> Result<(), InstructionError>;
}
impl<'a> Account for KeyedAccount<'a> {
fn advance_nonce_account(
&self,
recent_blockhashes: &RecentBlockhashes,
signers: &HashSet<Pubkey>,
) -> Result<(), InstructionError> {
if recent_blockhashes.is_empty() {
return Err(NonceError::NoRecentBlockhashes.into());
}
let state = AccountUtilsState::<Versions>::state(self)?.convert_to_current();
match state {
State::Initialized(data) => {
if !signers.contains(&data.authority) {
return Err(InstructionError::MissingRequiredSignature);
}
let recent_blockhash = recent_blockhashes[0].blockhash;
if data.blockhash == recent_blockhash {
return Err(NonceError::NotExpired.into());
}
let new_data = nonce::state::Data {
blockhash: recent_blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
..data
};
self.set_state(&Versions::new_current(State::Initialized(new_data)))
}
_ => Err(NonceError::BadAccountState.into()),
}
}
fn withdraw_nonce_account(
&self,
lamports: u64,
to: &KeyedAccount,
recent_blockhashes: &RecentBlockhashes,
rent: &Rent,
signers: &HashSet<Pubkey>,
) -> Result<(), InstructionError> {
let signer = match AccountUtilsState::<Versions>::state(self)?.convert_to_current() {
State::Uninitialized => {
if lamports > self.lamports()? {
return Err(InstructionError::InsufficientFunds);
}
*self.unsigned_key()
}
State::Initialized(ref data) => {
if lamports == self.lamports()? {
if data.blockhash == recent_blockhashes[0].blockhash {
return Err(NonceError::NotExpired.into());
}
} else {
let min_balance = rent.minimum_balance(self.data_len()?);
if lamports + min_balance > self.lamports()? {
return Err(InstructionError::InsufficientFunds);
}
}
data.authority
}
};
if !signers.contains(&signer) {
return Err(InstructionError::MissingRequiredSignature);
}
self.try_account_ref_mut()?.lamports -= lamports;
to.try_account_ref_mut()?.lamports += lamports;
Ok(())
}
fn initialize_nonce_account(
&self,
nonce_authority: &Pubkey,
recent_blockhashes: &RecentBlockhashes,
rent: &Rent,
) -> Result<(), InstructionError> {
if recent_blockhashes.is_empty() {
return Err(NonceError::NoRecentBlockhashes.into());
}
match AccountUtilsState::<Versions>::state(self)?.convert_to_current() {
State::Uninitialized => {
let min_balance = rent.minimum_balance(self.data_len()?);
if self.lamports()? < min_balance {
return Err(InstructionError::InsufficientFunds);
}
let data = nonce::state::Data {
authority: *nonce_authority,
blockhash: recent_blockhashes[0].blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
};
self.set_state(&Versions::new_current(State::Initialized(data)))
}
_ => Err(NonceError::BadAccountState.into()),
}
}
fn authorize_nonce_account(
&self,
nonce_authority: &Pubkey,
signers: &HashSet<Pubkey>,
) -> Result<(), InstructionError> {
match AccountUtilsState::<Versions>::state(self)?.convert_to_current() {
State::Initialized(data) => {
if !signers.contains(&data.authority) {
return Err(InstructionError::MissingRequiredSignature);
}
let new_data = nonce::state::Data {
authority: *nonce_authority,
..data
};
self.set_state(&Versions::new_current(State::Initialized(new_data)))
}
_ => Err(NonceError::BadAccountState.into()),
}
}
}
pub fn create_account(lamports: u64) -> RefCell<account::Account> {
RefCell::new(
account::Account::new_data_with_space(
lamports,
&Versions::new_current(State::Uninitialized),
State::size(),
&system_program::id(),
)
.expect("nonce_account"),
)
}
/// Convenience function for working with keyed accounts in tests
pub fn with_test_keyed_account<F>(lamports: u64, signer: bool, f: F)
where
F: Fn(&KeyedAccount),
{
let pubkey = Pubkey::new_unique();
let account = create_account(lamports);
let keyed_account = KeyedAccount::new(&pubkey, signer, &account);
f(&keyed_account)
}
#[cfg(test)]
mod test {
use super::*;
use crate::{
account::KeyedAccount,
account_utils::State as AccountUtilsState,
nonce::{self, State},
system_instruction::NonceError,
sysvar::recent_blockhashes::{create_test_recent_blockhashes, RecentBlockhashes},
};
use std::iter::FromIterator;
#[test]
fn default_is_uninitialized() {
assert_eq!(State::default(), State::Uninitialized)
}
#[test]
fn keyed_account_expected_behavior() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |keyed_account| {
let data = nonce::state::Data {
authority: *keyed_account.unsigned_key(),
..nonce::state::Data::default()
};
let mut signers = HashSet::new();
signers.insert(*keyed_account.signer_key().unwrap());
let state = AccountUtilsState::<Versions>::state(keyed_account)
.unwrap()
.convert_to_current();
// New is in Uninitialzed state
assert_eq!(state, State::Uninitialized);
let recent_blockhashes = create_test_recent_blockhashes(95);
let authorized = keyed_account.unsigned_key();
keyed_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
let state = AccountUtilsState::<Versions>::state(keyed_account)
.unwrap()
.convert_to_current();
let data = nonce::state::Data {
blockhash: recent_blockhashes[0].blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
..data
};
// First nonce instruction drives state from Uninitialized to Initialized
assert_eq!(state, State::Initialized(data.clone()));
let recent_blockhashes = create_test_recent_blockhashes(63);
keyed_account
.advance_nonce_account(&recent_blockhashes, &signers)
.unwrap();
let state = AccountUtilsState::<Versions>::state(keyed_account)
.unwrap()
.convert_to_current();
let data = nonce::state::Data {
blockhash: recent_blockhashes[0].blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
..data
};
// Second nonce instruction consumes and replaces stored nonce
assert_eq!(state, State::Initialized(data.clone()));
let recent_blockhashes = create_test_recent_blockhashes(31);
keyed_account
.advance_nonce_account(&recent_blockhashes, &signers)
.unwrap();
let state = AccountUtilsState::<Versions>::state(keyed_account)
.unwrap()
.convert_to_current();
let data = nonce::state::Data {
blockhash: recent_blockhashes[0].blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
..data
};
// Third nonce instruction for fun and profit
assert_eq!(state, State::Initialized(data));
with_test_keyed_account(42, false, |to_keyed| {
let recent_blockhashes = create_test_recent_blockhashes(0);
let withdraw_lamports = keyed_account.account.borrow().lamports;
let expect_nonce_lamports =
keyed_account.account.borrow().lamports - withdraw_lamports;
let expect_to_lamports = to_keyed.account.borrow().lamports + withdraw_lamports;
keyed_account
.withdraw_nonce_account(
withdraw_lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
)
.unwrap();
// Empties Account balance
assert_eq!(
keyed_account.account.borrow().lamports,
expect_nonce_lamports
);
// Account balance goes to `to`
assert_eq!(to_keyed.account.borrow().lamports, expect_to_lamports);
})
})
}
#[test]
fn nonce_inx_initialized_account_not_signer_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_account| {
let recent_blockhashes = create_test_recent_blockhashes(31);
let authority = *nonce_account.unsigned_key();
nonce_account
.initialize_nonce_account(&authority, &recent_blockhashes, &rent)
.unwrap();
let pubkey = nonce_account.account.borrow().owner;
let nonce_account = KeyedAccount::new(&pubkey, false, nonce_account.account);
let state = AccountUtilsState::<Versions>::state(&nonce_account)
.unwrap()
.convert_to_current();
let data = nonce::state::Data {
authority,
blockhash: recent_blockhashes[0].blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
};
assert_eq!(state, State::Initialized(data));
let signers = HashSet::new();
let recent_blockhashes = create_test_recent_blockhashes(0);
let result = nonce_account.advance_nonce_account(&recent_blockhashes, &signers);
assert_eq!(result, Err(InstructionError::MissingRequiredSignature),);
})
}
#[test]
fn nonce_inx_with_empty_recent_blockhashes_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |keyed_account| {
let mut signers = HashSet::new();
signers.insert(*keyed_account.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(0);
let authorized = *keyed_account.unsigned_key();
keyed_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
let recent_blockhashes = RecentBlockhashes::from_iter(vec![].into_iter());
let result = keyed_account.advance_nonce_account(&recent_blockhashes, &signers);
assert_eq!(result, Err(NonceError::NoRecentBlockhashes.into()));
})
}
#[test]
fn nonce_inx_too_early_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |keyed_account| {
let mut signers = HashSet::new();
signers.insert(*keyed_account.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(63);
let authorized = *keyed_account.unsigned_key();
keyed_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
let result = keyed_account.advance_nonce_account(&recent_blockhashes, &signers);
assert_eq!(result, Err(NonceError::NotExpired.into()));
})
}
#[test]
fn nonce_inx_uninitialized_account_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |keyed_account| {
let mut signers = HashSet::new();
signers.insert(*keyed_account.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(63);
let result = keyed_account.advance_nonce_account(&recent_blockhashes, &signers);
assert_eq!(result, Err(NonceError::BadAccountState.into()));
})
}
#[test]
fn nonce_inx_independent_nonce_authority_ok() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_account| {
with_test_keyed_account(42, true, |nonce_authority| {
let mut signers = HashSet::new();
signers.insert(*nonce_account.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(63);
let authorized = *nonce_authority.unsigned_key();
nonce_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
let mut signers = HashSet::new();
signers.insert(*nonce_authority.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(31);
let result = nonce_account.advance_nonce_account(&recent_blockhashes, &signers);
assert_eq!(result, Ok(()));
});
});
}
#[test]
fn nonce_inx_no_nonce_authority_sig_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_account| {
with_test_keyed_account(42, false, |nonce_authority| {
let mut signers = HashSet::new();
signers.insert(*nonce_account.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(63);
let authorized = *nonce_authority.unsigned_key();
nonce_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
let result = nonce_account.advance_nonce_account(&recent_blockhashes, &signers);
assert_eq!(result, Err(InstructionError::MissingRequiredSignature),);
});
});
}
#[test]
fn withdraw_inx_unintialized_acc_ok() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_keyed| {
let state = AccountUtilsState::<Versions>::state(nonce_keyed)
.unwrap()
.convert_to_current();
assert_eq!(state, State::Uninitialized);
with_test_keyed_account(42, false, |to_keyed| {
let mut signers = HashSet::new();
signers.insert(*nonce_keyed.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(0);
let withdraw_lamports = nonce_keyed.account.borrow().lamports;
let expect_nonce_lamports =
nonce_keyed.account.borrow().lamports - withdraw_lamports;
let expect_to_lamports = to_keyed.account.borrow().lamports + withdraw_lamports;
nonce_keyed
.withdraw_nonce_account(
withdraw_lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
)
.unwrap();
let state = AccountUtilsState::<Versions>::state(nonce_keyed)
.unwrap()
.convert_to_current();
// Withdraw instruction...
// Deinitializes Account state
assert_eq!(state, State::Uninitialized);
// Empties Account balance
assert_eq!(nonce_keyed.account.borrow().lamports, expect_nonce_lamports);
// Account balance goes to `to`
assert_eq!(to_keyed.account.borrow().lamports, expect_to_lamports);
})
})
}
#[test]
fn withdraw_inx_unintialized_acc_unsigned_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, false, |nonce_keyed| {
let state = AccountUtilsState::<Versions>::state(nonce_keyed)
.unwrap()
.convert_to_current();
assert_eq!(state, State::Uninitialized);
with_test_keyed_account(42, false, |to_keyed| {
let signers = HashSet::new();
let recent_blockhashes = create_test_recent_blockhashes(0);
let lamports = nonce_keyed.account.borrow().lamports;
let result = nonce_keyed.withdraw_nonce_account(
lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
);
assert_eq!(result, Err(InstructionError::MissingRequiredSignature),);
})
})
}
#[test]
fn withdraw_inx_unintialized_acc_insuff_funds_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_keyed| {
let state = AccountUtilsState::<Versions>::state(nonce_keyed)
.unwrap()
.convert_to_current();
assert_eq!(state, State::Uninitialized);
with_test_keyed_account(42, false, |to_keyed| {
let mut signers = HashSet::new();
signers.insert(*nonce_keyed.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(0);
let lamports = nonce_keyed.account.borrow().lamports + 1;
let result = nonce_keyed.withdraw_nonce_account(
lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
);
assert_eq!(result, Err(InstructionError::InsufficientFunds));
})
})
}
#[test]
fn withdraw_inx_uninitialized_acc_two_withdraws_ok() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_keyed| {
with_test_keyed_account(42, false, |to_keyed| {
let mut signers = HashSet::new();
signers.insert(*nonce_keyed.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(0);
let withdraw_lamports = nonce_keyed.account.borrow().lamports / 2;
let nonce_expect_lamports =
nonce_keyed.account.borrow().lamports - withdraw_lamports;
let to_expect_lamports = to_keyed.account.borrow().lamports + withdraw_lamports;
nonce_keyed
.withdraw_nonce_account(
withdraw_lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
)
.unwrap();
let state = AccountUtilsState::<Versions>::state(nonce_keyed)
.unwrap()
.convert_to_current();
assert_eq!(state, State::Uninitialized);
assert_eq!(nonce_keyed.account.borrow().lamports, nonce_expect_lamports);
assert_eq!(to_keyed.account.borrow().lamports, to_expect_lamports);
let withdraw_lamports = nonce_keyed.account.borrow().lamports;
let nonce_expect_lamports =
nonce_keyed.account.borrow().lamports - withdraw_lamports;
let to_expect_lamports = to_keyed.account.borrow().lamports + withdraw_lamports;
nonce_keyed
.withdraw_nonce_account(
withdraw_lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
)
.unwrap();
let state = AccountUtilsState::<Versions>::state(nonce_keyed)
.unwrap()
.convert_to_current();
assert_eq!(state, State::Uninitialized);
assert_eq!(nonce_keyed.account.borrow().lamports, nonce_expect_lamports);
assert_eq!(to_keyed.account.borrow().lamports, to_expect_lamports);
})
})
}
#[test]
fn withdraw_inx_initialized_acc_two_withdraws_ok() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_keyed| {
let mut signers = HashSet::new();
signers.insert(*nonce_keyed.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(31);
let authority = *nonce_keyed.unsigned_key();
nonce_keyed
.initialize_nonce_account(&authority, &recent_blockhashes, &rent)
.unwrap();
let state = AccountUtilsState::<Versions>::state(nonce_keyed)
.unwrap()
.convert_to_current();
let data = nonce::state::Data {
authority,
blockhash: recent_blockhashes[0].blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
};
assert_eq!(state, State::Initialized(data.clone()));
with_test_keyed_account(42, false, |to_keyed| {
let withdraw_lamports = nonce_keyed.account.borrow().lamports - min_lamports;
let nonce_expect_lamports =
nonce_keyed.account.borrow().lamports - withdraw_lamports;
let to_expect_lamports = to_keyed.account.borrow().lamports + withdraw_lamports;
nonce_keyed
.withdraw_nonce_account(
withdraw_lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
)
.unwrap();
let state = AccountUtilsState::<Versions>::state(nonce_keyed)
.unwrap()
.convert_to_current();
let data = nonce::state::Data {
blockhash: recent_blockhashes[0].blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
..data.clone()
};
assert_eq!(state, State::Initialized(data));
assert_eq!(nonce_keyed.account.borrow().lamports, nonce_expect_lamports);
assert_eq!(to_keyed.account.borrow().lamports, to_expect_lamports);
let recent_blockhashes = create_test_recent_blockhashes(0);
let withdraw_lamports = nonce_keyed.account.borrow().lamports;
let nonce_expect_lamports =
nonce_keyed.account.borrow().lamports - withdraw_lamports;
let to_expect_lamports = to_keyed.account.borrow().lamports + withdraw_lamports;
nonce_keyed
.withdraw_nonce_account(
withdraw_lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
)
.unwrap();
assert_eq!(nonce_keyed.account.borrow().lamports, nonce_expect_lamports);
assert_eq!(to_keyed.account.borrow().lamports, to_expect_lamports);
})
})
}
#[test]
fn withdraw_inx_initialized_acc_nonce_too_early_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_keyed| {
let recent_blockhashes = create_test_recent_blockhashes(0);
let authorized = *nonce_keyed.unsigned_key();
nonce_keyed
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
with_test_keyed_account(42, false, |to_keyed| {
let mut signers = HashSet::new();
signers.insert(*nonce_keyed.signer_key().unwrap());
let withdraw_lamports = nonce_keyed.account.borrow().lamports;
let result = nonce_keyed.withdraw_nonce_account(
withdraw_lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
);
assert_eq!(result, Err(NonceError::NotExpired.into()));
})
})
}
#[test]
fn withdraw_inx_initialized_acc_insuff_funds_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_keyed| {
let recent_blockhashes = create_test_recent_blockhashes(95);
let authorized = *nonce_keyed.unsigned_key();
nonce_keyed
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
with_test_keyed_account(42, false, |to_keyed| {
let recent_blockhashes = create_test_recent_blockhashes(63);
let mut signers = HashSet::new();
signers.insert(*nonce_keyed.signer_key().unwrap());
let withdraw_lamports = nonce_keyed.account.borrow().lamports + 1;
let result = nonce_keyed.withdraw_nonce_account(
withdraw_lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
);
assert_eq!(result, Err(InstructionError::InsufficientFunds));
})
})
}
#[test]
fn withdraw_inx_initialized_acc_insuff_rent_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_keyed| {
let recent_blockhashes = create_test_recent_blockhashes(95);
let authorized = *nonce_keyed.unsigned_key();
nonce_keyed
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
with_test_keyed_account(42, false, |to_keyed| {
let recent_blockhashes = create_test_recent_blockhashes(63);
let mut signers = HashSet::new();
signers.insert(*nonce_keyed.signer_key().unwrap());
let withdraw_lamports = nonce_keyed.account.borrow().lamports - min_lamports + 1;
let result = nonce_keyed.withdraw_nonce_account(
withdraw_lamports,
&to_keyed,
&recent_blockhashes,
&rent,
&signers,
);
assert_eq!(result, Err(InstructionError::InsufficientFunds));
})
})
}
#[test]
fn initialize_inx_ok() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |keyed_account| {
let state = AccountUtilsState::<Versions>::state(keyed_account)
.unwrap()
.convert_to_current();
assert_eq!(state, State::Uninitialized);
let mut signers = HashSet::new();
signers.insert(*keyed_account.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(0);
let authority = *keyed_account.unsigned_key();
let result =
keyed_account.initialize_nonce_account(&authority, &recent_blockhashes, &rent);
let data = nonce::state::Data {
authority,
blockhash: recent_blockhashes[0].blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
};
assert_eq!(result, Ok(()));
let state = AccountUtilsState::<Versions>::state(keyed_account)
.unwrap()
.convert_to_current();
assert_eq!(state, State::Initialized(data));
})
}
#[test]
fn initialize_inx_empty_recent_blockhashes_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |keyed_account| {
let mut signers = HashSet::new();
signers.insert(*keyed_account.signer_key().unwrap());
let recent_blockhashes = RecentBlockhashes::from_iter(vec![].into_iter());
let authorized = *keyed_account.unsigned_key();
let result =
keyed_account.initialize_nonce_account(&authorized, &recent_blockhashes, &rent);
assert_eq!(result, Err(NonceError::NoRecentBlockhashes.into()));
})
}
#[test]
fn initialize_inx_initialized_account_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |keyed_account| {
let recent_blockhashes = create_test_recent_blockhashes(31);
let authorized = *keyed_account.unsigned_key();
keyed_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
let recent_blockhashes = create_test_recent_blockhashes(0);
let result =
keyed_account.initialize_nonce_account(&authorized, &recent_blockhashes, &rent);
assert_eq!(result, Err(NonceError::BadAccountState.into()));
})
}
#[test]
fn initialize_inx_uninitialized_acc_insuff_funds_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports - 42, true, |keyed_account| {
let recent_blockhashes = create_test_recent_blockhashes(63);
let authorized = *keyed_account.unsigned_key();
let result =
keyed_account.initialize_nonce_account(&authorized, &recent_blockhashes, &rent);
assert_eq!(result, Err(InstructionError::InsufficientFunds));
})
}
#[test]
fn authorize_inx_ok() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_account| {
let mut signers = HashSet::new();
signers.insert(*nonce_account.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(31);
let authorized = *nonce_account.unsigned_key();
nonce_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
let authority = Pubkey::default();
let data = nonce::state::Data {
authority,
blockhash: recent_blockhashes[0].blockhash,
fee_calculator: recent_blockhashes[0].fee_calculator.clone(),
};
let result = nonce_account.authorize_nonce_account(&Pubkey::default(), &signers);
assert_eq!(result, Ok(()));
let state = AccountUtilsState::<Versions>::state(nonce_account)
.unwrap()
.convert_to_current();
assert_eq!(state, State::Initialized(data));
})
}
#[test]
fn authorize_inx_uninitialized_state_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_account| {
let mut signers = HashSet::new();
signers.insert(*nonce_account.signer_key().unwrap());
let result = nonce_account.authorize_nonce_account(&Pubkey::default(), &signers);
assert_eq!(result, Err(NonceError::BadAccountState.into()));
})
}
#[test]
fn authorize_inx_bad_authority_fail() {
let rent = Rent {
lamports_per_byte_year: 42,
..Rent::default()
};
let min_lamports = rent.minimum_balance(State::size());
with_test_keyed_account(min_lamports + 42, true, |nonce_account| {
let mut signers = HashSet::new();
signers.insert(*nonce_account.signer_key().unwrap());
let recent_blockhashes = create_test_recent_blockhashes(31);
let authorized = &Pubkey::default().clone();
nonce_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &rent)
.unwrap();
let result = nonce_account.authorize_nonce_account(&Pubkey::default(), &signers);
assert_eq!(result, Err(InstructionError::MissingRequiredSignature));
})
}
}

View File

@ -0,0 +1,5 @@
pub mod account;
pub use account::{create_account, Account};
pub mod state;
pub use state::State;
pub mod utils;

View File

@ -0,0 +1,39 @@
use super::Versions;
use crate::{fee_calculator::FeeCalculator, hash::Hash, pubkey::Pubkey};
use serde_derive::{Deserialize, Serialize};
#[derive(Debug, Default, Serialize, Deserialize, PartialEq, Clone)]
pub struct Data {
pub authority: Pubkey,
pub blockhash: Hash,
pub fee_calculator: FeeCalculator,
}
#[derive(Debug, Serialize, Deserialize, PartialEq, Clone)]
pub enum State {
Uninitialized,
Initialized(Data),
}
impl Default for State {
fn default() -> Self {
State::Uninitialized
}
}
impl State {
pub fn size() -> usize {
let data = Versions::new_current(State::Initialized(Data::default()));
bincode::serialized_size(&data).unwrap() as usize
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn default_is_uninitialized() {
assert_eq!(State::default(), State::Uninitialized)
}
}

View File

@ -0,0 +1,21 @@
mod current;
pub use current::{Data, State};
use serde_derive::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize, PartialEq, Clone)]
pub enum Versions {
Current(Box<State>),
}
impl Versions {
pub fn new_current(state: State) -> Self {
Self::Current(Box::new(state))
}
pub fn convert_to_current(self) -> State {
match self {
Self::Current(state) => *state,
}
}
}

View File

@ -0,0 +1,86 @@
use crate::{
account::Account,
account_utils::StateMut,
fee_calculator::FeeCalculator,
hash::Hash,
nonce::{state::Versions, State},
};
pub fn verify_nonce_account(acc: &Account, hash: &Hash) -> bool {
match StateMut::<Versions>::state(acc).map(|v| v.convert_to_current()) {
Ok(State::Initialized(ref data)) => *hash == data.blockhash,
_ => false,
}
}
pub fn fee_calculator_of(account: &Account) -> Option<FeeCalculator> {
let state = StateMut::<Versions>::state(account)
.ok()?
.convert_to_current();
match state {
State::Initialized(data) => Some(data.fee_calculator),
_ => None,
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
account_utils::State as AccountUtilsState,
hash::Hash,
nonce::{account::with_test_keyed_account, Account as NonceAccount, State},
sysvar::{recent_blockhashes::create_test_recent_blockhashes, rent::Rent},
};
use std::collections::HashSet;
#[test]
fn verify_nonce_ok() {
with_test_keyed_account(42, true, |nonce_account| {
let mut signers = HashSet::new();
signers.insert(nonce_account.signer_key().unwrap());
let state: State = nonce_account.state().unwrap();
// New is in Uninitialzed state
assert_eq!(state, State::Uninitialized);
let recent_blockhashes = create_test_recent_blockhashes(0);
let authorized = nonce_account.unsigned_key();
nonce_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &Rent::free())
.unwrap();
assert!(verify_nonce_account(
&nonce_account.account.borrow(),
&recent_blockhashes[0].blockhash,
));
});
}
#[test]
fn verify_nonce_bad_acc_state_fail() {
with_test_keyed_account(42, true, |nonce_account| {
assert!(!verify_nonce_account(
&nonce_account.account.borrow(),
&Hash::default()
));
});
}
#[test]
fn verify_nonce_bad_query_hash_fail() {
with_test_keyed_account(42, true, |nonce_account| {
let mut signers = HashSet::new();
signers.insert(nonce_account.signer_key().unwrap());
let state: State = nonce_account.state().unwrap();
// New is in Uninitialzed state
assert_eq!(state, State::Uninitialized);
let recent_blockhashes = create_test_recent_blockhashes(0);
let authorized = nonce_account.unsigned_key();
nonce_account
.initialize_nonce_account(&authorized, &recent_blockhashes, &Rent::free())
.unwrap();
assert!(!verify_nonce_account(
&nonce_account.account.borrow(),
&recent_blockhashes[1].blockhash,
));
});
}
}

View File

@ -0,0 +1,60 @@
use crate::{account_info::AccountInfo, entrypoint::ProgramResult, instruction::Instruction};
/// Invoke a cross-program instruction
pub fn invoke(instruction: &Instruction, account_infos: &[AccountInfo]) -> ProgramResult {
invoke_signed(instruction, account_infos, &[])
}
/// Invoke a cross-program instruction with program signatures
pub fn invoke_signed(
instruction: &Instruction,
account_infos: &[AccountInfo],
signers_seeds: &[&[&[u8]]],
) -> ProgramResult {
// Check that the account RefCells are consistent with the request
for account_meta in instruction.accounts.iter() {
for account_info in account_infos.iter() {
if account_meta.pubkey == *account_info.key {
if account_meta.is_writable {
let _ = account_info.try_borrow_mut_lamports()?;
let _ = account_info.try_borrow_mut_data()?;
} else {
let _ = account_info.try_borrow_lamports()?;
let _ = account_info.try_borrow_data()?;
}
break;
}
}
}
#[cfg(target_arch = "bpf")]
{
let result = unsafe {
sol_invoke_signed_rust(
instruction as *const _ as *const u8,
account_infos as *const _ as *const u8,
account_infos.len() as u64,
signers_seeds as *const _ as *const u8,
signers_seeds.len() as u64,
)
};
match result {
crate::entrypoint::SUCCESS => Ok(()),
_ => Err(result.into()),
}
}
#[cfg(not(target_arch = "bpf"))]
crate::program_stubs::sol_invoke_signed(instruction, account_infos, signers_seeds)
}
#[cfg(target_arch = "bpf")]
extern "C" {
fn sol_invoke_signed_rust(
instruction_addr: *const u8,
account_infos_addr: *const u8,
account_infos_len: u64,
signers_seeds_addr: *const u8,
signers_seeds_len: u64,
) -> u64;
}

View File

@ -0,0 +1,215 @@
use crate::info;
use crate::{decode_error::DecodeError, instruction::InstructionError, pubkey::PubkeyError};
use num_traits::{FromPrimitive, ToPrimitive};
use std::convert::TryFrom;
use thiserror::Error;
/// Reasons the program may fail
#[derive(Clone, Debug, Deserialize, Eq, Error, PartialEq, Serialize)]
pub enum ProgramError {
/// Allows on-chain programs to implement program-specific error types and see them returned
/// by the Solana runtime. A program-specific error may be any type that is represented as
/// or serialized to a u32 integer.
#[error("Custom program error: {0:#x}")]
Custom(u32),
#[error("The arguments provided to a program instruction where invalid")]
InvalidArgument,
#[error("An instruction's data contents was invalid")]
InvalidInstructionData,
#[error("An account's data contents was invalid")]
InvalidAccountData,
#[error("An account's data was too small")]
AccountDataTooSmall,
#[error("An account's balance was too small to complete the instruction")]
InsufficientFunds,
#[error("The account did not have the expected program id")]
IncorrectProgramId,
#[error("A signature was required but not found")]
MissingRequiredSignature,
#[error("An initialize instruction was sent to an account that has already been initialized")]
AccountAlreadyInitialized,
#[error("An attempt to operate on an account that hasn't been initialized")]
UninitializedAccount,
#[error("The instruction expected additional account keys")]
NotEnoughAccountKeys,
#[error("Failed to borrow a reference to account data, already borrowed")]
AccountBorrowFailed,
#[error("Length of the seed is too long for address generation")]
MaxSeedLengthExceeded,
#[error("Provided seeds do not result in a valid address")]
InvalidSeeds,
}
pub trait PrintProgramError {
fn print<E>(&self)
where
E: 'static + std::error::Error + DecodeError<E> + PrintProgramError + FromPrimitive;
}
impl PrintProgramError for ProgramError {
fn print<E>(&self)
where
E: 'static + std::error::Error + DecodeError<E> + PrintProgramError + FromPrimitive,
{
match self {
Self::Custom(error) => {
if let Some(custom_error) = E::decode_custom_error_to_enum(*error) {
custom_error.print::<E>();
} else {
info!("Error: Unknown");
}
}
Self::InvalidArgument => info!("Error: InvalidArgument"),
Self::InvalidInstructionData => info!("Error: InvalidInstructionData"),
Self::InvalidAccountData => info!("Error: InvalidAccountData"),
Self::AccountDataTooSmall => info!("Error: AccountDataTooSmall"),
Self::InsufficientFunds => info!("Error: InsufficientFunds"),
Self::IncorrectProgramId => info!("Error: IncorrectProgramId"),
Self::MissingRequiredSignature => info!("Error: MissingRequiredSignature"),
Self::AccountAlreadyInitialized => info!("Error: AccountAlreadyInitialized"),
Self::UninitializedAccount => info!("Error: UninitializedAccount"),
Self::NotEnoughAccountKeys => info!("Error: NotEnoughAccountKeys"),
Self::AccountBorrowFailed => info!("Error: AccountBorrowFailed"),
Self::MaxSeedLengthExceeded => info!("Error: MaxSeedLengthExceeded"),
Self::InvalidSeeds => info!("Error: InvalidSeeds"),
}
}
}
/// Builtin return values occupy the upper 32 bits
const BUILTIN_BIT_SHIFT: usize = 32;
macro_rules! to_builtin {
($error:expr) => {
($error as u64) << BUILTIN_BIT_SHIFT
};
}
pub const CUSTOM_ZERO: u64 = to_builtin!(1);
pub const INVALID_ARGUMENT: u64 = to_builtin!(2);
pub const INVALID_INSTRUCTION_DATA: u64 = to_builtin!(3);
pub const INVALID_ACCOUNT_DATA: u64 = to_builtin!(4);
pub const ACCOUNT_DATA_TOO_SMALL: u64 = to_builtin!(5);
pub const INSUFFICIENT_FUNDS: u64 = to_builtin!(6);
pub const INCORRECT_PROGRAM_ID: u64 = to_builtin!(7);
pub const MISSING_REQUIRED_SIGNATURES: u64 = to_builtin!(8);
pub const ACCOUNT_ALREADY_INITIALIZED: u64 = to_builtin!(9);
pub const UNINITIALIZED_ACCOUNT: u64 = to_builtin!(10);
pub const NOT_ENOUGH_ACCOUNT_KEYS: u64 = to_builtin!(11);
pub const ACCOUNT_BORROW_FAILED: u64 = to_builtin!(12);
pub const MAX_SEED_LENGTH_EXCEEDED: u64 = to_builtin!(13);
pub const INVALID_SEEDS: u64 = to_builtin!(14);
impl From<ProgramError> for u64 {
fn from(error: ProgramError) -> Self {
match error {
ProgramError::InvalidArgument => INVALID_ARGUMENT,
ProgramError::InvalidInstructionData => INVALID_INSTRUCTION_DATA,
ProgramError::InvalidAccountData => INVALID_ACCOUNT_DATA,
ProgramError::AccountDataTooSmall => ACCOUNT_DATA_TOO_SMALL,
ProgramError::InsufficientFunds => INSUFFICIENT_FUNDS,
ProgramError::IncorrectProgramId => INCORRECT_PROGRAM_ID,
ProgramError::MissingRequiredSignature => MISSING_REQUIRED_SIGNATURES,
ProgramError::AccountAlreadyInitialized => ACCOUNT_ALREADY_INITIALIZED,
ProgramError::UninitializedAccount => UNINITIALIZED_ACCOUNT,
ProgramError::NotEnoughAccountKeys => NOT_ENOUGH_ACCOUNT_KEYS,
ProgramError::AccountBorrowFailed => ACCOUNT_BORROW_FAILED,
ProgramError::MaxSeedLengthExceeded => MAX_SEED_LENGTH_EXCEEDED,
ProgramError::InvalidSeeds => INVALID_SEEDS,
ProgramError::Custom(error) => {
if error == 0 {
CUSTOM_ZERO
} else {
error as u64
}
}
}
}
}
impl From<u64> for ProgramError {
fn from(error: u64) -> Self {
match error {
INVALID_ARGUMENT => ProgramError::InvalidArgument,
INVALID_INSTRUCTION_DATA => ProgramError::InvalidInstructionData,
INVALID_ACCOUNT_DATA => ProgramError::InvalidAccountData,
ACCOUNT_DATA_TOO_SMALL => ProgramError::AccountDataTooSmall,
INSUFFICIENT_FUNDS => ProgramError::InsufficientFunds,
INCORRECT_PROGRAM_ID => ProgramError::IncorrectProgramId,
MISSING_REQUIRED_SIGNATURES => ProgramError::MissingRequiredSignature,
ACCOUNT_ALREADY_INITIALIZED => ProgramError::AccountAlreadyInitialized,
UNINITIALIZED_ACCOUNT => ProgramError::UninitializedAccount,
NOT_ENOUGH_ACCOUNT_KEYS => ProgramError::NotEnoughAccountKeys,
ACCOUNT_BORROW_FAILED => ProgramError::AccountBorrowFailed,
MAX_SEED_LENGTH_EXCEEDED => ProgramError::MaxSeedLengthExceeded,
INVALID_SEEDS => ProgramError::InvalidSeeds,
CUSTOM_ZERO => ProgramError::Custom(0),
_ => ProgramError::Custom(error as u32),
}
}
}
impl TryFrom<InstructionError> for ProgramError {
type Error = InstructionError;
fn try_from(error: InstructionError) -> Result<Self, Self::Error> {
match error {
Self::Error::Custom(err) => Ok(Self::Custom(err)),
Self::Error::InvalidArgument => Ok(Self::InvalidArgument),
Self::Error::InvalidInstructionData => Ok(Self::InvalidInstructionData),
Self::Error::InvalidAccountData => Ok(Self::InvalidAccountData),
Self::Error::AccountDataTooSmall => Ok(Self::AccountDataTooSmall),
Self::Error::InsufficientFunds => Ok(Self::InsufficientFunds),
Self::Error::IncorrectProgramId => Ok(Self::IncorrectProgramId),
Self::Error::MissingRequiredSignature => Ok(Self::MissingRequiredSignature),
Self::Error::AccountAlreadyInitialized => Ok(Self::AccountAlreadyInitialized),
Self::Error::UninitializedAccount => Ok(Self::UninitializedAccount),
Self::Error::NotEnoughAccountKeys => Ok(Self::NotEnoughAccountKeys),
Self::Error::AccountBorrowFailed => Ok(Self::AccountBorrowFailed),
Self::Error::MaxSeedLengthExceeded => Ok(Self::MaxSeedLengthExceeded),
_ => Err(error),
}
}
}
impl<T> From<T> for InstructionError
where
T: ToPrimitive,
{
fn from(error: T) -> Self {
let error = error.to_u64().unwrap_or(0xbad_c0de);
match error {
CUSTOM_ZERO => InstructionError::Custom(0),
INVALID_ARGUMENT => InstructionError::InvalidArgument,
INVALID_INSTRUCTION_DATA => InstructionError::InvalidInstructionData,
INVALID_ACCOUNT_DATA => InstructionError::InvalidAccountData,
ACCOUNT_DATA_TOO_SMALL => InstructionError::AccountDataTooSmall,
INSUFFICIENT_FUNDS => InstructionError::InsufficientFunds,
INCORRECT_PROGRAM_ID => InstructionError::IncorrectProgramId,
MISSING_REQUIRED_SIGNATURES => InstructionError::MissingRequiredSignature,
ACCOUNT_ALREADY_INITIALIZED => InstructionError::AccountAlreadyInitialized,
UNINITIALIZED_ACCOUNT => InstructionError::UninitializedAccount,
NOT_ENOUGH_ACCOUNT_KEYS => InstructionError::NotEnoughAccountKeys,
ACCOUNT_BORROW_FAILED => InstructionError::AccountBorrowFailed,
MAX_SEED_LENGTH_EXCEEDED => InstructionError::MaxSeedLengthExceeded,
INVALID_SEEDS => InstructionError::InvalidSeeds,
_ => {
// A valid custom error has no bits set in the upper 32
if error >> BUILTIN_BIT_SHIFT == 0 {
InstructionError::Custom(error as u32)
} else {
Self::InvalidError
}
}
}
}
}
impl From<PubkeyError> for ProgramError {
fn from(error: PubkeyError) -> Self {
match error {
PubkeyError::MaxSeedLengthExceeded => ProgramError::MaxSeedLengthExceeded,
PubkeyError::InvalidSeeds => ProgramError::InvalidSeeds,
}
}
}

View File

@ -0,0 +1,980 @@
//! A C representation of Rust's `std::option::Option` used accross the FFI
//! boundary for Solana program interfaces
//!
//! This implementation mostly matches `std::option` except iterators since the iteration
//! trait requires returning `std::option::Option`
use std::{
convert, mem,
ops::{Deref, DerefMut},
};
/// A C representation of Rust's `std::option::Option`
#[repr(C)]
#[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
pub enum COption<T> {
/// No value
None,
/// Some value `T`
Some(T),
}
/////////////////////////////////////////////////////////////////////////////
// Type implementation
/////////////////////////////////////////////////////////////////////////////
impl<T> COption<T> {
/////////////////////////////////////////////////////////////////////////
// Querying the contained values
/////////////////////////////////////////////////////////////////////////
/// Returns `true` if the option is a [`COption::Some`] value.
///
/// # Examples
///
/// ```ignore
/// let x: COption<u32> = COption::Some(2);
/// assert_eq!(x.is_some(), true);
///
/// let x: COption<u32> = COption::None;
/// assert_eq!(x.is_some(), false);
/// ```
///
/// [`COption::Some`]: #variant.COption::Some
#[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
#[inline]
pub fn is_some(&self) -> bool {
match *self {
COption::Some(_) => true,
COption::None => false,
}
}
/// Returns `true` if the option is a [`COption::None`] value.
///
/// # Examples
///
/// ```ignore
/// let x: COption<u32> = COption::Some(2);
/// assert_eq!(x.is_none(), false);
///
/// let x: COption<u32> = COption::None;
/// assert_eq!(x.is_none(), true);
/// ```
///
/// [`COption::None`]: #variant.COption::None
#[must_use = "if you intended to assert that this doesn't have a value, consider \
`.and_then(|| panic!(\"`COption` had a value when expected `COption::None`\"))` instead"]
#[inline]
pub fn is_none(&self) -> bool {
!self.is_some()
}
/// Returns `true` if the option is a [`COption::Some`] value containing the given value.
///
/// # Examples
///
/// ```ignore
/// #![feature(option_result_contains)]
///
/// let x: COption<u32> = COption::Some(2);
/// assert_eq!(x.contains(&2), true);
///
/// let x: COption<u32> = COption::Some(3);
/// assert_eq!(x.contains(&2), false);
///
/// let x: COption<u32> = COption::None;
/// assert_eq!(x.contains(&2), false);
/// ```
#[must_use]
#[inline]
pub fn contains<U>(&self, x: &U) -> bool
where
U: PartialEq<T>,
{
match self {
COption::Some(y) => x == y,
COption::None => false,
}
}
/////////////////////////////////////////////////////////////////////////
// Adapter for working with references
/////////////////////////////////////////////////////////////////////////
/// Converts from `&COption<T>` to `COption<&T>`.
///
/// # Examples
///
/// Converts an `COption<`[`String`]`>` into an `COption<`[`usize`]`>`, preserving the original.
/// The [`map`] method takes the `self` argument by value, consuming the original,
/// so this technique uses `as_ref` to first take an `COption` to a reference
/// to the value inside the original.
///
/// [`map`]: enum.COption.html#method.map
/// [`String`]: ../../std/string/struct.String.html
/// [`usize`]: ../../std/primitive.usize.html
///
/// ```ignore
/// let text: COption<String> = COption::Some("Hello, world!".to_string());
/// // First, cast `COption<String>` to `COption<&String>` with `as_ref`,
/// // then consume *that* with `map`, leaving `text` on the stack.
/// let text_length: COption<usize> = text.as_ref().map(|s| s.len());
/// println!("still can print text: {:?}", text);
/// ```
#[inline]
pub fn as_ref(&self) -> COption<&T> {
match *self {
COption::Some(ref x) => COption::Some(x),
COption::None => COption::None,
}
}
/// Converts from `&mut COption<T>` to `COption<&mut T>`.
///
/// # Examples
///
/// ```ignore
/// let mut x = COption::Some(2);
/// match x.as_mut() {
/// COption::Some(v) => *v = 42,
/// COption::None => {},
/// }
/// assert_eq!(x, COption::Some(42));
/// ```
#[inline]
pub fn as_mut(&mut self) -> COption<&mut T> {
match *self {
COption::Some(ref mut x) => COption::Some(x),
COption::None => COption::None,
}
}
/////////////////////////////////////////////////////////////////////////
// Getting to contained values
/////////////////////////////////////////////////////////////////////////
/// Unwraps an option, yielding the content of a [`COption::Some`].
///
/// # Panics
///
/// Panics if the value is a [`COption::None`] with a custom panic message provided by
/// `msg`.
///
/// [`COption::Some`]: #variant.COption::Some
/// [`COption::None`]: #variant.COption::None
///
/// # Examples
///
/// ```ignore
/// let x = COption::Some("value");
/// assert_eq!(x.expect("the world is ending"), "value");
/// ```
///
/// ```ignore{.should_panic}
/// let x: COption<&str> = COption::None;
/// x.expect("the world is ending"); // panics with `the world is ending`
/// ```
#[inline]
pub fn expect(self, msg: &str) -> T {
match self {
COption::Some(val) => val,
COption::None => expect_failed(msg),
}
}
/// Moves the value `v` out of the `COption<T>` if it is [`COption::Some(v)`].
///
/// In general, because this function may panic, its use is discouraged.
/// Instead, prefer to use pattern matching and handle the [`COption::None`]
/// case explicitly.
///
/// # Panics
///
/// Panics if the self value equals [`COption::None`].
///
/// [`COption::Some(v)`]: #variant.COption::Some
/// [`COption::None`]: #variant.COption::None
///
/// # Examples
///
/// ```ignore
/// let x = COption::Some("air");
/// assert_eq!(x.unwrap(), "air");
/// ```
///
/// ```ignore{.should_panic}
/// let x: COption<&str> = COption::None;
/// assert_eq!(x.unwrap(), "air"); // fails
/// ```
#[inline]
pub fn unwrap(self) -> T {
match self {
COption::Some(val) => val,
COption::None => panic!("called `COption::unwrap()` on a `COption::None` value"),
}
}
/// Returns the contained value or a default.
///
/// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use [`unwrap_or_else`],
/// which is lazily evaluated.
///
/// [`unwrap_or_else`]: #method.unwrap_or_else
///
/// # Examples
///
/// ```ignore
/// assert_eq!(COption::Some("car").unwrap_or("bike"), "car");
/// assert_eq!(COption::None.unwrap_or("bike"), "bike");
/// ```
#[inline]
pub fn unwrap_or(self, def: T) -> T {
match self {
COption::Some(x) => x,
COption::None => def,
}
}
/// Returns the contained value or computes it from a closure.
///
/// # Examples
///
/// ```ignore
/// let k = 10;
/// assert_eq!(COption::Some(4).unwrap_or_else(|| 2 * k), 4);
/// assert_eq!(COption::None.unwrap_or_else(|| 2 * k), 20);
/// ```
#[inline]
pub fn unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T {
match self {
COption::Some(x) => x,
COption::None => f(),
}
}
/////////////////////////////////////////////////////////////////////////
// Transforming contained values
/////////////////////////////////////////////////////////////////////////
/// Maps an `COption<T>` to `COption<U>` by applying a function to a contained value.
///
/// # Examples
///
/// Converts an `COption<`[`String`]`>` into an `COption<`[`usize`]`>`, consuming the original:
///
/// [`String`]: ../../std/string/struct.String.html
/// [`usize`]: ../../std/primitive.usize.html
///
/// ```ignore
/// let maybe_some_string = COption::Some(String::from("Hello, World!"));
/// // `COption::map` takes self *by value*, consuming `maybe_some_string`
/// let maybe_some_len = maybe_some_string.map(|s| s.len());
///
/// assert_eq!(maybe_some_len, COption::Some(13));
/// ```
#[inline]
pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> COption<U> {
match self {
COption::Some(x) => COption::Some(f(x)),
COption::None => COption::None,
}
}
/// Applies a function to the contained value (if any),
/// or returns the provided default (if not).
///
/// # Examples
///
/// ```ignore
/// let x = COption::Some("foo");
/// assert_eq!(x.map_or(42, |v| v.len()), 3);
///
/// let x: COption<&str> = COption::None;
/// assert_eq!(x.map_or(42, |v| v.len()), 42);
/// ```
#[inline]
pub fn map_or<U, F: FnOnce(T) -> U>(self, default: U, f: F) -> U {
match self {
COption::Some(t) => f(t),
COption::None => default,
}
}
/// Applies a function to the contained value (if any),
/// or computes a default (if not).
///
/// # Examples
///
/// ```ignore
/// let k = 21;
///
/// let x = COption::Some("foo");
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
///
/// let x: COption<&str> = COption::None;
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
/// ```
#[inline]
pub fn map_or_else<U, D: FnOnce() -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
match self {
COption::Some(t) => f(t),
COption::None => default(),
}
}
/// Transforms the `COption<T>` into a [`Result<T, E>`], mapping [`COption::Some(v)`] to
/// [`Ok(v)`] and [`COption::None`] to [`Err(err)`].
///
/// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
/// result of a function call, it is recommended to use [`ok_or_else`], which is
/// lazily evaluated.
///
/// [`Result<T, E>`]: ../../std/result/enum.Result.html
/// [`Ok(v)`]: ../../std/result/enum.Result.html#variant.Ok
/// [`Err(err)`]: ../../std/result/enum.Result.html#variant.Err
/// [`COption::None`]: #variant.COption::None
/// [`COption::Some(v)`]: #variant.COption::Some
/// [`ok_or_else`]: #method.ok_or_else
///
/// # Examples
///
/// ```ignore
/// let x = COption::Some("foo");
/// assert_eq!(x.ok_or(0), Ok("foo"));
///
/// let x: COption<&str> = COption::None;
/// assert_eq!(x.ok_or(0), Err(0));
/// ```
#[inline]
pub fn ok_or<E>(self, err: E) -> Result<T, E> {
match self {
COption::Some(v) => Ok(v),
COption::None => Err(err),
}
}
/// Transforms the `COption<T>` into a [`Result<T, E>`], mapping [`COption::Some(v)`] to
/// [`Ok(v)`] and [`COption::None`] to [`Err(err())`].
///
/// [`Result<T, E>`]: ../../std/result/enum.Result.html
/// [`Ok(v)`]: ../../std/result/enum.Result.html#variant.Ok
/// [`Err(err())`]: ../../std/result/enum.Result.html#variant.Err
/// [`COption::None`]: #variant.COption::None
/// [`COption::Some(v)`]: #variant.COption::Some
///
/// # Examples
///
/// ```ignore
/// let x = COption::Some("foo");
/// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
///
/// let x: COption<&str> = COption::None;
/// assert_eq!(x.ok_or_else(|| 0), Err(0));
/// ```
#[inline]
pub fn ok_or_else<E, F: FnOnce() -> E>(self, err: F) -> Result<T, E> {
match self {
COption::Some(v) => Ok(v),
COption::None => Err(err()),
}
}
/////////////////////////////////////////////////////////////////////////
// Boolean operations on the values, eager and lazy
/////////////////////////////////////////////////////////////////////////
/// Returns [`COption::None`] if the option is [`COption::None`], otherwise returns `optb`.
///
/// [`COption::None`]: #variant.COption::None
///
/// # Examples
///
/// ```ignore
/// let x = COption::Some(2);
/// let y: COption<&str> = COption::None;
/// assert_eq!(x.and(y), COption::None);
///
/// let x: COption<u32> = COption::None;
/// let y = COption::Some("foo");
/// assert_eq!(x.and(y), COption::None);
///
/// let x = COption::Some(2);
/// let y = COption::Some("foo");
/// assert_eq!(x.and(y), COption::Some("foo"));
///
/// let x: COption<u32> = COption::None;
/// let y: COption<&str> = COption::None;
/// assert_eq!(x.and(y), COption::None);
/// ```
#[inline]
pub fn and<U>(self, optb: COption<U>) -> COption<U> {
match self {
COption::Some(_) => optb,
COption::None => COption::None,
}
}
/// Returns [`COption::None`] if the option is [`COption::None`], otherwise calls `f` with the
/// wrapped value and returns the result.
///
/// COption::Some languages call this operation flatmap.
///
/// [`COption::None`]: #variant.COption::None
///
/// # Examples
///
/// ```ignore
/// fn sq(x: u32) -> COption<u32> { COption::Some(x * x) }
/// fn nope(_: u32) -> COption<u32> { COption::None }
///
/// assert_eq!(COption::Some(2).and_then(sq).and_then(sq), COption::Some(16));
/// assert_eq!(COption::Some(2).and_then(sq).and_then(nope), COption::None);
/// assert_eq!(COption::Some(2).and_then(nope).and_then(sq), COption::None);
/// assert_eq!(COption::None.and_then(sq).and_then(sq), COption::None);
/// ```
#[inline]
pub fn and_then<U, F: FnOnce(T) -> COption<U>>(self, f: F) -> COption<U> {
match self {
COption::Some(x) => f(x),
COption::None => COption::None,
}
}
/// Returns [`COption::None`] if the option is [`COption::None`], otherwise calls `predicate`
/// with the wrapped value and returns:
///
/// - [`COption::Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
/// value), and
/// - [`COption::None`] if `predicate` returns `false`.
///
/// This function works similar to [`Iterator::filter()`]. You can imagine
/// the `COption<T>` being an iterator over one or zero elements. `filter()`
/// lets you decide which elements to keep.
///
/// # Examples
///
/// ```ignore
/// fn is_even(n: &i32) -> bool {
/// n % 2 == 0
/// }
///
/// assert_eq!(COption::None.filter(is_even), COption::None);
/// assert_eq!(COption::Some(3).filter(is_even), COption::None);
/// assert_eq!(COption::Some(4).filter(is_even), COption::Some(4));
/// ```
///
/// [`COption::None`]: #variant.COption::None
/// [`COption::Some(t)`]: #variant.COption::Some
/// [`Iterator::filter()`]: ../../std/iter/trait.Iterator.html#method.filter
#[inline]
pub fn filter<P: FnOnce(&T) -> bool>(self, predicate: P) -> Self {
if let COption::Some(x) = self {
if predicate(&x) {
return COption::Some(x);
}
}
COption::None
}
/// Returns the option if it contains a value, otherwise returns `optb`.
///
/// Arguments passed to `or` are eagerly evaluated; if you are passing the
/// result of a function call, it is recommended to use [`or_else`], which is
/// lazily evaluated.
///
/// [`or_else`]: #method.or_else
///
/// # Examples
///
/// ```ignore
/// let x = COption::Some(2);
/// let y = COption::None;
/// assert_eq!(x.or(y), COption::Some(2));
///
/// let x = COption::None;
/// let y = COption::Some(100);
/// assert_eq!(x.or(y), COption::Some(100));
///
/// let x = COption::Some(2);
/// let y = COption::Some(100);
/// assert_eq!(x.or(y), COption::Some(2));
///
/// let x: COption<u32> = COption::None;
/// let y = COption::None;
/// assert_eq!(x.or(y), COption::None);
/// ```
#[inline]
pub fn or(self, optb: COption<T>) -> COption<T> {
match self {
COption::Some(_) => self,
COption::None => optb,
}
}
/// Returns the option if it contains a value, otherwise calls `f` and
/// returns the result.
///
/// # Examples
///
/// ```ignore
/// fn nobody() -> COption<&'static str> { COption::None }
/// fn vikings() -> COption<&'static str> { COption::Some("vikings") }
///
/// assert_eq!(COption::Some("barbarians").or_else(vikings), COption::Some("barbarians"));
/// assert_eq!(COption::None.or_else(vikings), COption::Some("vikings"));
/// assert_eq!(COption::None.or_else(nobody), COption::None);
/// ```
#[inline]
pub fn or_else<F: FnOnce() -> COption<T>>(self, f: F) -> COption<T> {
match self {
COption::Some(_) => self,
COption::None => f(),
}
}
/// Returns [`COption::Some`] if exactly one of `self`, `optb` is [`COption::Some`], otherwise returns [`COption::None`].
///
/// [`COption::Some`]: #variant.COption::Some
/// [`COption::None`]: #variant.COption::None
///
/// # Examples
///
/// ```ignore
/// let x = COption::Some(2);
/// let y: COption<u32> = COption::None;
/// assert_eq!(x.xor(y), COption::Some(2));
///
/// let x: COption<u32> = COption::None;
/// let y = COption::Some(2);
/// assert_eq!(x.xor(y), COption::Some(2));
///
/// let x = COption::Some(2);
/// let y = COption::Some(2);
/// assert_eq!(x.xor(y), COption::None);
///
/// let x: COption<u32> = COption::None;
/// let y: COption<u32> = COption::None;
/// assert_eq!(x.xor(y), COption::None);
/// ```
#[inline]
pub fn xor(self, optb: COption<T>) -> COption<T> {
match (self, optb) {
(COption::Some(a), COption::None) => COption::Some(a),
(COption::None, COption::Some(b)) => COption::Some(b),
_ => COption::None,
}
}
/////////////////////////////////////////////////////////////////////////
// Entry-like operations to insert if COption::None and return a reference
/////////////////////////////////////////////////////////////////////////
/// Inserts `v` into the option if it is [`COption::None`], then
/// returns a mutable reference to the contained value.
///
/// [`COption::None`]: #variant.COption::None
///
/// # Examples
///
/// ```ignore
/// let mut x = COption::None;
///
/// {
/// let y: &mut u32 = x.get_or_insert(5);
/// assert_eq!(y, &5);
///
/// *y = 7;
/// }
///
/// assert_eq!(x, COption::Some(7));
/// ```
#[inline]
pub fn get_or_insert(&mut self, v: T) -> &mut T {
self.get_or_insert_with(|| v)
}
/// Inserts a value computed from `f` into the option if it is [`COption::None`], then
/// returns a mutable reference to the contained value.
///
/// [`COption::None`]: #variant.COption::None
///
/// # Examples
///
/// ```ignore
/// let mut x = COption::None;
///
/// {
/// let y: &mut u32 = x.get_or_insert_with(|| 5);
/// assert_eq!(y, &5);
///
/// *y = 7;
/// }
///
/// assert_eq!(x, COption::Some(7));
/// ```
#[inline]
pub fn get_or_insert_with<F: FnOnce() -> T>(&mut self, f: F) -> &mut T {
if let COption::None = *self {
*self = COption::Some(f())
}
match *self {
COption::Some(ref mut v) => v,
COption::None => unreachable!(),
}
}
/////////////////////////////////////////////////////////////////////////
// Misc
/////////////////////////////////////////////////////////////////////////
/// Replaces the actual value in the option by the value given in parameter,
/// returning the old value if present,
/// leaving a [`COption::Some`] in its place without deinitializing either one.
///
/// [`COption::Some`]: #variant.COption::Some
///
/// # Examples
///
/// ```ignore
/// let mut x = COption::Some(2);
/// let old = x.replace(5);
/// assert_eq!(x, COption::Some(5));
/// assert_eq!(old, COption::Some(2));
///
/// let mut x = COption::None;
/// let old = x.replace(3);
/// assert_eq!(x, COption::Some(3));
/// assert_eq!(old, COption::None);
/// ```
#[inline]
pub fn replace(&mut self, value: T) -> COption<T> {
mem::replace(self, COption::Some(value))
}
}
impl<T: Copy> COption<&T> {
/// Maps an `COption<&T>` to an `COption<T>` by copying the contents of the
/// option.
///
/// # Examples
///
/// ```ignore
/// let x = 12;
/// let opt_x = COption::Some(&x);
/// assert_eq!(opt_x, COption::Some(&12));
/// let copied = opt_x.copied();
/// assert_eq!(copied, COption::Some(12));
/// ```
pub fn copied(self) -> COption<T> {
self.map(|&t| t)
}
}
impl<T: Copy> COption<&mut T> {
/// Maps an `COption<&mut T>` to an `COption<T>` by copying the contents of the
/// option.
///
/// # Examples
///
/// ```ignore
/// let mut x = 12;
/// let opt_x = COption::Some(&mut x);
/// assert_eq!(opt_x, COption::Some(&mut 12));
/// let copied = opt_x.copied();
/// assert_eq!(copied, COption::Some(12));
/// ```
pub fn copied(self) -> COption<T> {
self.map(|&mut t| t)
}
}
impl<T: Clone> COption<&T> {
/// Maps an `COption<&T>` to an `COption<T>` by cloning the contents of the
/// option.
///
/// # Examples
///
/// ```ignore
/// let x = 12;
/// let opt_x = COption::Some(&x);
/// assert_eq!(opt_x, COption::Some(&12));
/// let cloned = opt_x.cloned();
/// assert_eq!(cloned, COption::Some(12));
/// ```
pub fn cloned(self) -> COption<T> {
self.map(|t| t.clone())
}
}
impl<T: Clone> COption<&mut T> {
/// Maps an `COption<&mut T>` to an `COption<T>` by cloning the contents of the
/// option.
///
/// # Examples
///
/// ```ignore
/// let mut x = 12;
/// let opt_x = COption::Some(&mut x);
/// assert_eq!(opt_x, COption::Some(&mut 12));
/// let cloned = opt_x.cloned();
/// assert_eq!(cloned, COption::Some(12));
/// ```
pub fn cloned(self) -> COption<T> {
self.map(|t| t.clone())
}
}
impl<T: Default> COption<T> {
/// Returns the contained value or a default
///
/// Consumes the `self` argument then, if [`COption::Some`], returns the contained
/// value, otherwise if [`COption::None`], returns the [default value] for that
/// type.
///
/// # Examples
///
/// Converts a string to an integer, turning poorly-formed strings
/// into 0 (the default value for integers). [`parse`] converts
/// a string to any other type that implements [`FromStr`], returning
/// [`COption::None`] on error.
///
/// ```ignore
/// let good_year_from_input = "1909";
/// let bad_year_from_input = "190blarg";
/// let good_year = good_year_from_input.parse().ok().unwrap_or_default();
/// let bad_year = bad_year_from_input.parse().ok().unwrap_or_default();
///
/// assert_eq!(1909, good_year);
/// assert_eq!(0, bad_year);
/// ```
///
/// [`COption::Some`]: #variant.COption::Some
/// [`COption::None`]: #variant.COption::None
/// [default value]: ../default/trait.Default.html#tymethod.default
/// [`parse`]: ../../std/primitive.str.html#method.parse
/// [`FromStr`]: ../../std/str/trait.FromStr.html
#[inline]
pub fn unwrap_or_default(self) -> T {
match self {
COption::Some(x) => x,
COption::None => T::default(),
}
}
}
impl<T: Deref> COption<T> {
/// Converts from `COption<T>` (or `&COption<T>`) to `COption<&T::Target>`.
///
/// Leaves the original COption in-place, creating a new one with a reference
/// to the original one, additionally coercing the contents via [`Deref`].
///
/// [`Deref`]: ../../std/ops/trait.Deref.html
///
/// # Examples
///
/// ```ignore
/// #![feature(inner_deref)]
///
/// let x: COption<String> = COption::Some("hey".to_owned());
/// assert_eq!(x.as_deref(), COption::Some("hey"));
///
/// let x: COption<String> = COption::None;
/// assert_eq!(x.as_deref(), COption::None);
/// ```
pub fn as_deref(&self) -> COption<&T::Target> {
self.as_ref().map(|t| t.deref())
}
}
impl<T: DerefMut> COption<T> {
/// Converts from `COption<T>` (or `&mut COption<T>`) to `COption<&mut T::Target>`.
///
/// Leaves the original `COption` in-place, creating a new one containing a mutable reference to
/// the inner type's `Deref::Target` type.
///
/// # Examples
///
/// ```ignore
/// #![feature(inner_deref)]
///
/// let mut x: COption<String> = COption::Some("hey".to_owned());
/// assert_eq!(x.as_deref_mut().map(|x| {
/// x.make_ascii_uppercase();
/// x
/// }), COption::Some("HEY".to_owned().as_mut_str()));
/// ```
pub fn as_deref_mut(&mut self) -> COption<&mut T::Target> {
self.as_mut().map(|t| t.deref_mut())
}
}
impl<T, E> COption<Result<T, E>> {
/// Transposes an `COption` of a [`Result`] into a [`Result`] of an `COption`.
///
/// [`COption::None`] will be mapped to [`Ok`]`(`[`COption::None`]`)`.
/// [`COption::Some`]`(`[`Ok`]`(_))` and [`COption::Some`]`(`[`Err`]`(_))` will be mapped to
/// [`Ok`]`(`[`COption::Some`]`(_))` and [`Err`]`(_)`.
///
/// [`COption::None`]: #variant.COption::None
/// [`Ok`]: ../../std/result/enum.Result.html#variant.Ok
/// [`COption::Some`]: #variant.COption::Some
/// [`Err`]: ../../std/result/enum.Result.html#variant.Err
///
/// # Examples
///
/// ```ignore
/// #[derive(Debug, Eq, PartialEq)]
/// struct COption::SomeErr;
///
/// let x: Result<COption<i32>, COption::SomeErr> = Ok(COption::Some(5));
/// let y: COption<Result<i32, COption::SomeErr>> = COption::Some(Ok(5));
/// assert_eq!(x, y.transpose());
/// ```
#[inline]
pub fn transpose(self) -> Result<COption<T>, E> {
match self {
COption::Some(Ok(x)) => Ok(COption::Some(x)),
COption::Some(Err(e)) => Err(e),
COption::None => Ok(COption::None),
}
}
}
// This is a separate function to reduce the code size of .expect() itself.
#[inline(never)]
#[cold]
fn expect_failed(msg: &str) -> ! {
panic!("{}", msg)
}
// // This is a separate function to reduce the code size of .expect_none() itself.
// #[inline(never)]
// #[cold]
// fn expect_none_failed(msg: &str, value: &dyn fmt::Debug) -> ! {
// panic!("{}: {:?}", msg, value)
// }
/////////////////////////////////////////////////////////////////////////////
// Trait implementations
/////////////////////////////////////////////////////////////////////////////
impl<T: Clone> Clone for COption<T> {
#[inline]
fn clone(&self) -> Self {
match self {
COption::Some(x) => COption::Some(x.clone()),
COption::None => COption::None,
}
}
#[inline]
fn clone_from(&mut self, source: &Self) {
match (self, source) {
(COption::Some(to), COption::Some(from)) => to.clone_from(from),
(to, from) => *to = from.clone(),
}
}
}
impl<T> Default for COption<T> {
/// Returns [`COption::None`][COption::COption::None].
///
/// # Examples
///
/// ```ignore
/// let opt: COption<u32> = COption::default();
/// assert!(opt.is_none());
/// ```
#[inline]
fn default() -> COption<T> {
COption::None
}
}
impl<T> From<T> for COption<T> {
fn from(val: T) -> COption<T> {
COption::Some(val)
}
}
impl<'a, T> From<&'a COption<T>> for COption<&'a T> {
fn from(o: &'a COption<T>) -> COption<&'a T> {
o.as_ref()
}
}
impl<'a, T> From<&'a mut COption<T>> for COption<&'a mut T> {
fn from(o: &'a mut COption<T>) -> COption<&'a mut T> {
o.as_mut()
}
}
impl<T> COption<COption<T>> {
/// Converts from `COption<COption<T>>` to `COption<T>`
///
/// # Examples
/// Basic usage:
/// ```ignore
/// #![feature(option_flattening)]
/// let x: COption<COption<u32>> = COption::Some(COption::Some(6));
/// assert_eq!(COption::Some(6), x.flatten());
///
/// let x: COption<COption<u32>> = COption::Some(COption::None);
/// assert_eq!(COption::None, x.flatten());
///
/// let x: COption<COption<u32>> = COption::None;
/// assert_eq!(COption::None, x.flatten());
/// ```
/// Flattening once only removes one level of nesting:
/// ```ignore
/// #![feature(option_flattening)]
/// let x: COption<COption<COption<u32>>> = COption::Some(COption::Some(COption::Some(6)));
/// assert_eq!(COption::Some(COption::Some(6)), x.flatten());
/// assert_eq!(COption::Some(6), x.flatten().flatten());
/// ```
#[inline]
pub fn flatten(self) -> COption<T> {
self.and_then(convert::identity)
}
}
impl<T> From<Option<T>> for COption<T> {
fn from(option: Option<T>) -> Self {
match option {
Some(value) => COption::Some(value),
None => COption::None,
}
}
}
impl<T> Into<Option<T>> for COption<T> {
fn into(self) -> Option<T> {
match self {
COption::Some(value) => Some(value),
COption::None => None,
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_from_rust_option() {
let option = Some(99u64);
let c_option: COption<u64> = option.into();
assert_eq!(c_option, COption::Some(99u64));
let expected = c_option.into();
assert_eq!(option, expected);
let option = None;
let c_option: COption<u64> = option.into();
assert_eq!(c_option, COption::None);
let expected = c_option.into();
assert_eq!(option, expected);
}
}

View File

@ -0,0 +1,57 @@
//! State transition types
use crate::program_error::ProgramError;
/// Check if a program account state is initialized
pub trait IsInitialized {
/// Is initialized
fn is_initialized(&self) -> bool;
}
/// Depends on Sized
pub trait Sealed: Sized {}
/// Safely and efficiently (de)serialize account state
pub trait Pack: Sealed {
/// The length, in bytes, of the packed representation
const LEN: usize;
#[doc(hidden)]
fn pack_into_slice(&self, dst: &mut [u8]);
#[doc(hidden)]
fn unpack_from_slice(src: &[u8]) -> Result<Self, ProgramError>;
/// Get the packed length
fn get_packed_len() -> usize {
Self::LEN
}
/// Unpack from slice and check if initialized
fn unpack(input: &[u8]) -> Result<Self, ProgramError>
where
Self: IsInitialized,
{
let value = Self::unpack_unchecked(input)?;
if value.is_initialized() {
Ok(value)
} else {
Err(ProgramError::UninitializedAccount)
}
}
/// Unpack from slice without checking if initialized
fn unpack_unchecked(input: &[u8]) -> Result<Self, ProgramError> {
if input.len() != Self::LEN {
return Err(ProgramError::InvalidAccountData);
}
Ok(Self::unpack_from_slice(input)?)
}
/// Pack into slice
fn pack(src: Self, dst: &mut [u8]) -> Result<(), ProgramError> {
if dst.len() != Self::LEN {
return Err(ProgramError::InvalidAccountData);
}
src.pack_into_slice(dst);
Ok(())
}
}

View File

@ -0,0 +1,53 @@
//! @brief Syscall stubs when building for programs for non-BPF targets
#![cfg(not(target_arch = "bpf"))]
use crate::{account_info::AccountInfo, entrypoint::ProgramResult, instruction::Instruction};
use std::sync::{Arc, RwLock};
lazy_static::lazy_static! {
static ref SYSCALL_STUBS: Arc<RwLock<Box<dyn SyscallStubs>>> = Arc::new(RwLock::new(Box::new(DefaultSyscallStubs {})));
}
// The default syscall stubs don't do much, but `set_syscalls()` can be used to swap in
// alternatives
pub fn set_syscall_stubs(syscall_stubs: Box<dyn SyscallStubs>) -> Box<dyn SyscallStubs> {
std::mem::replace(&mut SYSCALL_STUBS.write().unwrap(), syscall_stubs)
}
pub trait SyscallStubs: Sync + Send {
fn sol_log(&self, message: &str) {
println!("{}", message);
}
fn sol_invoke_signed(
&self,
_instruction: &Instruction,
_account_infos: &[AccountInfo],
_signers_seeds: &[&[&[u8]]],
) -> ProgramResult {
sol_log("SyscallStubs: sol_invoke_signed() not available");
Ok(())
}
}
struct DefaultSyscallStubs {}
impl SyscallStubs for DefaultSyscallStubs {}
pub(crate) fn sol_log(message: &str) {
SYSCALL_STUBS.read().unwrap().sol_log(message);
}
pub(crate) fn sol_log_64(arg1: u64, arg2: u64, arg3: u64, arg4: u64, arg5: u64) {
sol_log(&format!("{} {} {} {} {}", arg1, arg2, arg3, arg4, arg5));
}
pub(crate) fn sol_invoke_signed(
instruction: &Instruction,
account_infos: &[AccountInfo],
signers_seeds: &[&[&[u8]]],
) -> ProgramResult {
SYSCALL_STUBS
.read()
.unwrap()
.sol_invoke_signed(instruction, account_infos, signers_seeds)
}

426
sdk/program/src/pubkey.rs Normal file
View File

@ -0,0 +1,426 @@
use crate::{decode_error::DecodeError, hash::hashv};
use num_derive::{FromPrimitive, ToPrimitive};
use std::{convert::TryFrom, fmt, mem, str::FromStr};
use thiserror::Error;
/// maximum length of derived pubkey seed
pub const MAX_SEED_LEN: usize = 32;
#[derive(Error, Debug, Serialize, Clone, PartialEq, FromPrimitive, ToPrimitive)]
pub enum PubkeyError {
/// Length of the seed is too long for address generation
#[error("Length of the seed is too long for address generation")]
MaxSeedLengthExceeded,
#[error("Provided seeds do not result in a valid address")]
InvalidSeeds,
}
impl<T> DecodeError<T> for PubkeyError {
fn type_of() -> &'static str {
"PubkeyError"
}
}
impl From<u64> for PubkeyError {
fn from(error: u64) -> Self {
match error {
0 => PubkeyError::MaxSeedLengthExceeded,
1 => PubkeyError::InvalidSeeds,
_ => panic!("Unsupported PubkeyError"),
}
}
}
#[repr(transparent)]
#[derive(
Serialize, Deserialize, Clone, Copy, Default, Eq, PartialEq, Ord, PartialOrd, Hash, AbiExample,
)]
pub struct Pubkey([u8; 32]);
impl crate::sanitize::Sanitize for Pubkey {}
#[derive(Error, Debug, Serialize, Clone, PartialEq, FromPrimitive, ToPrimitive)]
pub enum ParsePubkeyError {
#[error("String is the wrong size")]
WrongSize,
#[error("Invalid Base58 string")]
Invalid,
}
impl<T> DecodeError<T> for ParsePubkeyError {
fn type_of() -> &'static str {
"ParsePubkeyError"
}
}
impl FromStr for Pubkey {
type Err = ParsePubkeyError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let pubkey_vec = bs58::decode(s)
.into_vec()
.map_err(|_| ParsePubkeyError::Invalid)?;
if pubkey_vec.len() != mem::size_of::<Pubkey>() {
Err(ParsePubkeyError::WrongSize)
} else {
Ok(Pubkey::new(&pubkey_vec))
}
}
}
impl Pubkey {
pub fn new(pubkey_vec: &[u8]) -> Self {
Self(
<[u8; 32]>::try_from(<&[u8]>::clone(&pubkey_vec))
.expect("Slice must be the same length as a Pubkey"),
)
}
pub const fn new_from_array(pubkey_array: [u8; 32]) -> Self {
Self(pubkey_array)
}
#[deprecated(since = "1.3.9", note = "Please use 'Pubkey::new_unique' instead")]
#[cfg(not(target_arch = "bpf"))]
pub fn new_rand() -> Self {
// Consider removing Pubkey::new_rand() entirely in the v1.5 or v1.6 timeframe
Pubkey::new(&rand::random::<[u8; 32]>())
}
/// unique Pubkey for tests and benchmarks.
pub fn new_unique() -> Self {
use std::sync::atomic::{AtomicU64, Ordering};
static I: AtomicU64 = AtomicU64::new(1);
let mut b = [0u8; 32];
let i = I.fetch_add(1, Ordering::Relaxed);
b[0..8].copy_from_slice(&i.to_le_bytes());
Self::new(&b)
}
pub fn create_with_seed(
base: &Pubkey,
seed: &str,
owner: &Pubkey,
) -> Result<Pubkey, PubkeyError> {
if seed.len() > MAX_SEED_LEN {
return Err(PubkeyError::MaxSeedLengthExceeded);
}
Ok(Pubkey::new(
hashv(&[base.as_ref(), seed.as_ref(), owner.as_ref()]).as_ref(),
))
}
/// Create a program address
///
/// Program addresses are account keys that only the program has the
/// authority to sign. The address is of the same form as a Solana
/// `Pubkey`, except they are ensured to not be on the ed25519 curve and
/// thus have no associated private key. When performing cross-program
/// invocations the program can "sign" for the key by calling
/// `invoke_signed` and passing the same seeds used to generate the address.
/// The runtime will check that indeed the program associated with this
/// address is the caller and thus authorized to be the signer.
///
/// Because the program address cannot lie on the ed25519 curve there may be
/// seed and program id combinations that are invalid. In these cases an
/// extra seed (bump seed) can be calculated that results in a point off the
/// curve. Use `find_program_address` to calculate that bump seed.
///
/// Warning: Because of the way the seeds are hashed there is a potential
/// for program address collisions for the same program id. The seeds are
/// hashed sequentially which means that seeds {"abcdef"}, {"abc", "def"},
/// and {"ab", "cd", "ef"} will all result in the same program address given
/// the same program id. Since the change of collision is local to a given
/// program id the developer of that program must take care to choose seeds
/// that do not collide with themselves.
pub fn create_program_address(
seeds: &[&[u8]],
program_id: &Pubkey,
) -> Result<Pubkey, PubkeyError> {
// Perform the calculation inline, calling this from within a program is
// not supported
#[cfg(not(target_arch = "bpf"))]
{
let mut hasher = crate::hash::Hasher::default();
for seed in seeds.iter() {
if seed.len() > MAX_SEED_LEN {
return Err(PubkeyError::MaxSeedLengthExceeded);
}
hasher.hash(seed);
}
hasher.hashv(&[program_id.as_ref(), "ProgramDerivedAddress".as_ref()]);
let hash = hasher.result();
if curve25519_dalek::edwards::CompressedEdwardsY::from_slice(hash.as_ref())
.decompress()
.is_some()
{
return Err(PubkeyError::InvalidSeeds);
}
Ok(Pubkey::new(hash.as_ref()))
}
// Call via a system call to perform the calculation
#[cfg(target_arch = "bpf")]
{
extern "C" {
fn sol_create_program_address(
seeds_addr: *const u8,
seeds_len: u64,
program_id_addr: *const u8,
address_bytes_addr: *const u8,
) -> u64;
};
let mut bytes = [0; 32];
let result = unsafe {
sol_create_program_address(
seeds as *const _ as *const u8,
seeds.len() as u64,
program_id as *const _ as *const u8,
&mut bytes as *mut _ as *mut u8,
)
};
match result {
crate::entrypoint::SUCCESS => Ok(Pubkey::new(&bytes)),
_ => Err(result.into()),
}
}
}
/// Find a valid program address and its corresponding bump seed which must be passed
/// as an additional seed when calling `invoke_signed`
#[allow(clippy::same_item_push)]
pub fn find_program_address(seeds: &[&[u8]], program_id: &Pubkey) -> (Pubkey, u8) {
let mut bump_seed = [std::u8::MAX];
for _ in 0..std::u8::MAX {
{
let mut seeds_with_bump = seeds.to_vec();
seeds_with_bump.push(&bump_seed);
if let Ok(address) = Self::create_program_address(&seeds_with_bump, program_id) {
return (address, bump_seed[0]);
}
}
bump_seed[0] -= 1;
}
panic!("Unable to find a viable program address bump seed");
}
pub fn to_bytes(self) -> [u8; 32] {
self.0
}
/// Log a `Pubkey` from a program
pub fn log(&self) {
#[cfg(target_arch = "bpf")]
{
extern "C" {
fn sol_log_pubkey(pubkey_addr: *const u8);
};
unsafe { sol_log_pubkey(self.as_ref() as *const _ as *const u8) };
}
#[cfg(not(target_arch = "bpf"))]
crate::program_stubs::sol_log(&self.to_string());
}
}
impl AsRef<[u8]> for Pubkey {
fn as_ref(&self) -> &[u8] {
&self.0[..]
}
}
impl fmt::Debug for Pubkey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", bs58::encode(self.0).into_string())
}
}
impl fmt::Display for Pubkey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", bs58::encode(self.0).into_string())
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::str::from_utf8;
#[test]
fn test_new_unique() {
assert!(Pubkey::new_unique() != Pubkey::new_unique());
}
#[test]
fn pubkey_fromstr() {
let pubkey = Pubkey::new_unique();
let mut pubkey_base58_str = bs58::encode(pubkey.0).into_string();
assert_eq!(pubkey_base58_str.parse::<Pubkey>(), Ok(pubkey));
pubkey_base58_str.push_str(&bs58::encode(pubkey.0).into_string());
assert_eq!(
pubkey_base58_str.parse::<Pubkey>(),
Err(ParsePubkeyError::WrongSize)
);
pubkey_base58_str.truncate(pubkey_base58_str.len() / 2);
assert_eq!(pubkey_base58_str.parse::<Pubkey>(), Ok(pubkey));
pubkey_base58_str.truncate(pubkey_base58_str.len() / 2);
assert_eq!(
pubkey_base58_str.parse::<Pubkey>(),
Err(ParsePubkeyError::WrongSize)
);
let mut pubkey_base58_str = bs58::encode(pubkey.0).into_string();
assert_eq!(pubkey_base58_str.parse::<Pubkey>(), Ok(pubkey));
// throw some non-base58 stuff in there
pubkey_base58_str.replace_range(..1, "I");
assert_eq!(
pubkey_base58_str.parse::<Pubkey>(),
Err(ParsePubkeyError::Invalid)
);
}
#[test]
fn test_create_with_seed() {
assert!(
Pubkey::create_with_seed(&Pubkey::new_unique(), "", &Pubkey::new_unique()).is_ok()
);
assert_eq!(
Pubkey::create_with_seed(
&Pubkey::new_unique(),
from_utf8(&[127; MAX_SEED_LEN + 1]).unwrap(),
&Pubkey::new_unique()
),
Err(PubkeyError::MaxSeedLengthExceeded)
);
assert!(Pubkey::create_with_seed(
&Pubkey::new_unique(),
"\
\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\
",
&Pubkey::new_unique()
)
.is_ok());
// utf-8 abuse ;)
assert_eq!(
Pubkey::create_with_seed(
&Pubkey::new_unique(),
"\
x\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\u{10FFFF}\
",
&Pubkey::new_unique()
),
Err(PubkeyError::MaxSeedLengthExceeded)
);
assert!(Pubkey::create_with_seed(
&Pubkey::new_unique(),
std::str::from_utf8(&[0; MAX_SEED_LEN]).unwrap(),
&Pubkey::new_unique(),
)
.is_ok());
assert!(
Pubkey::create_with_seed(&Pubkey::new_unique(), "", &Pubkey::new_unique(),).is_ok()
);
assert_eq!(
Pubkey::create_with_seed(
&Pubkey::default(),
"limber chicken: 4/45",
&Pubkey::default(),
),
Ok("9h1HyLCW5dZnBVap8C5egQ9Z6pHyjsh5MNy83iPqqRuq"
.parse()
.unwrap())
);
}
#[test]
fn test_create_program_address() {
let exceeded_seed = &[127; MAX_SEED_LEN + 1];
let max_seed = &[0; MAX_SEED_LEN];
let program_id = Pubkey::from_str("BPFLoader1111111111111111111111111111111111").unwrap();
let public_key = Pubkey::from_str("SeedPubey1111111111111111111111111111111111").unwrap();
assert_eq!(
Pubkey::create_program_address(&[exceeded_seed], &program_id),
Err(PubkeyError::MaxSeedLengthExceeded)
);
assert_eq!(
Pubkey::create_program_address(&[b"short_seed", exceeded_seed], &program_id),
Err(PubkeyError::MaxSeedLengthExceeded)
);
assert!(Pubkey::create_program_address(&[max_seed], &program_id).is_ok());
assert_eq!(
Pubkey::create_program_address(&[b"", &[1]], &program_id),
Ok("3gF2KMe9KiC6FNVBmfg9i267aMPvK37FewCip4eGBFcT"
.parse()
.unwrap())
);
assert_eq!(
Pubkey::create_program_address(&["".as_ref()], &program_id),
Ok("7ytmC1nT1xY4RfxCV2ZgyA7UakC93do5ZdyhdF3EtPj7"
.parse()
.unwrap())
);
assert_eq!(
Pubkey::create_program_address(&[b"Talking", b"Squirrels"], &program_id),
Ok("HwRVBufQ4haG5XSgpspwKtNd3PC9GM9m1196uJW36vds"
.parse()
.unwrap())
);
assert_eq!(
Pubkey::create_program_address(&[public_key.as_ref()], &program_id),
Ok("GUs5qLUfsEHkcMB9T38vjr18ypEhRuNWiePW2LoK4E3K"
.parse()
.unwrap())
);
assert_ne!(
Pubkey::create_program_address(&[b"Talking", b"Squirrels"], &program_id).unwrap(),
Pubkey::create_program_address(&[b"Talking"], &program_id).unwrap(),
);
}
#[test]
fn test_pubkey_off_curve() {
// try a bunch of random input, all successful generated program
// addresses must land off the curve and be unique
let mut addresses = vec![];
for _ in 0..1_000 {
let program_id = Pubkey::new_unique();
let bytes1 = rand::random::<[u8; 10]>();
let bytes2 = rand::random::<[u8; 32]>();
if let Ok(program_address) =
Pubkey::create_program_address(&[&bytes1, &bytes2], &program_id)
{
let is_on_curve = curve25519_dalek::edwards::CompressedEdwardsY::from_slice(
&program_address.to_bytes(),
)
.decompress()
.is_some();
assert!(!is_on_curve);
assert!(!addresses.contains(&program_address));
addresses.push(program_address);
}
}
}
#[test]
fn test_find_program_address() {
for _ in 0..1_000 {
let program_id = Pubkey::new_unique();
let (address, bump_seed) =
Pubkey::find_program_address(&[b"Lil'", b"Bits"], &program_id);
assert_eq!(
address,
Pubkey::create_program_address(&[b"Lil'", b"Bits", &[bump_seed]], &program_id)
.unwrap()
);
}
}
}

168
sdk/program/src/rent.rs Normal file
View File

@ -0,0 +1,168 @@
//! configuration for network rent
#[repr(C)]
#[derive(Serialize, Deserialize, PartialEq, Clone, Copy, Debug, AbiExample)]
pub struct Rent {
/// Rental rate
pub lamports_per_byte_year: u64,
/// exemption threshold, in years
pub exemption_threshold: f64,
// What portion of collected rent are to be destroyed, percentage-wise
pub burn_percent: u8,
}
/// default rental rate in lamports/byte-year, based on:
/// 10^9 lamports per SOL
/// $1 per SOL
/// $0.01 per megabyte day
/// $3.65 per megabyte year
pub const DEFAULT_LAMPORTS_PER_BYTE_YEAR: u64 = 1_000_000_000 / 100 * 365 / (1024 * 1024);
/// default amount of time (in years) the balance has to include rent for
pub const DEFAULT_EXEMPTION_THRESHOLD: f64 = 2.0;
/// default percentage of rent to burn (Valid values are 0 to 100)
pub const DEFAULT_BURN_PERCENT: u8 = 50;
/// account storage overhead for calculation of base rent
pub const ACCOUNT_STORAGE_OVERHEAD: u64 = 128;
impl Default for Rent {
fn default() -> Self {
Self {
lamports_per_byte_year: DEFAULT_LAMPORTS_PER_BYTE_YEAR,
exemption_threshold: DEFAULT_EXEMPTION_THRESHOLD,
burn_percent: DEFAULT_BURN_PERCENT,
}
}
}
impl Rent {
/// calculate how much rent to burn from the collected rent
pub fn calculate_burn(&self, rent_collected: u64) -> (u64, u64) {
let burned_portion = (rent_collected * u64::from(self.burn_percent)) / 100;
(burned_portion, rent_collected - burned_portion)
}
/// minimum balance due for a given size Account::data.len()
pub fn minimum_balance(&self, data_len: usize) -> u64 {
let bytes = data_len as u64;
(((ACCOUNT_STORAGE_OVERHEAD + bytes) * self.lamports_per_byte_year) as f64
* self.exemption_threshold) as u64
}
/// whether a given balance and data_len would be exempt
pub fn is_exempt(&self, balance: u64, data_len: usize) -> bool {
balance >= self.minimum_balance(data_len)
}
/// rent due on account's data_len with balance
pub fn due(&self, balance: u64, data_len: usize, years_elapsed: f64) -> (u64, bool) {
if self.is_exempt(balance, data_len) {
(0, true)
} else {
(
((self.lamports_per_byte_year * (data_len as u64 + ACCOUNT_STORAGE_OVERHEAD))
as f64
* years_elapsed) as u64,
false,
)
}
}
pub fn free() -> Self {
Self {
lamports_per_byte_year: 0,
..Rent::default()
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_due() {
let default_rent = Rent::default();
assert_eq!(
default_rent.due(0, 2, 1.2),
(
(((2 + ACCOUNT_STORAGE_OVERHEAD) * DEFAULT_LAMPORTS_PER_BYTE_YEAR) as f64 * 1.2)
as u64,
DEFAULT_LAMPORTS_PER_BYTE_YEAR == 0
)
);
assert_eq!(
default_rent.due(
(((2 + ACCOUNT_STORAGE_OVERHEAD) * DEFAULT_LAMPORTS_PER_BYTE_YEAR) as f64
* DEFAULT_EXEMPTION_THRESHOLD) as u64,
2,
1.2
),
(0, true)
);
let mut custom_rent = Rent::default();
custom_rent.lamports_per_byte_year = 5;
custom_rent.exemption_threshold = 2.5;
assert_eq!(
custom_rent.due(0, 2, 1.2),
(
(((2 + ACCOUNT_STORAGE_OVERHEAD) * custom_rent.lamports_per_byte_year) as f64 * 1.2)
as u64,
false
)
);
assert_eq!(
custom_rent.due(
(((2 + ACCOUNT_STORAGE_OVERHEAD) * custom_rent.lamports_per_byte_year) as f64
* custom_rent.exemption_threshold) as u64,
2,
1.2
),
(0, true)
);
}
#[ignore]
#[test]
#[should_panic]
fn show_rent_model() {
use crate::{clock::*, sysvar::Sysvar};
const SECONDS_PER_YEAR: f64 = 365.242_199 * 24.0 * 60.0 * 60.0;
const SLOTS_PER_YEAR: f64 =
SECONDS_PER_YEAR / (DEFAULT_TICKS_PER_SLOT as f64 / DEFAULT_TICKS_PER_SECOND as f64);
let rent = Rent::default();
panic!(
"\n\n\
==================================================\n\
empty account, no data:\n\
\t{} lamports per epoch, {} lamports to be rent_exempt\n\n\
stake_history, which is {}kB of data:\n\
\t{} lamports per epoch, {} lamports to be rent_exempt\n\
==================================================\n\n",
rent.due(
0,
0,
(1.0 / SLOTS_PER_YEAR) * DEFAULT_SLOTS_PER_EPOCH as f64,
)
.0,
rent.minimum_balance(0),
crate::sysvar::stake_history::StakeHistory::size_of() / 1024,
rent.due(
0,
crate::sysvar::stake_history::StakeHistory::size_of(),
(1.0 / SLOTS_PER_YEAR) * DEFAULT_SLOTS_PER_EPOCH as f64,
)
.0,
rent.minimum_balance(crate::sysvar::stake_history::StakeHistory::size_of()),
);
}
}

View File

@ -0,0 +1,33 @@
use thiserror::Error;
#[derive(PartialEq, Debug, Error, Eq, Clone)]
pub enum SanitizeError {
#[error("index out of bounds")]
IndexOutOfBounds,
#[error("value out of bounds")]
ValueOutOfBounds,
#[error("invalid value")]
InvalidValue,
}
/// Trait for sanitizing values and members of over the wire messages.
/// Implementation should recursively decent through the data structure
/// and sanitize all struct members and enum clauses. Sanitize excludes
/// signature verification checks, those are handled by another pass.
/// Sanitize checks should include but are not limited too:
/// * All index values are in range
/// * All values are within their static max/min bounds
pub trait Sanitize {
fn sanitize(&self) -> Result<(), SanitizeError> {
Ok(())
}
}
impl<T: Sanitize> Sanitize for Vec<T> {
fn sanitize(&self) -> Result<(), SanitizeError> {
for x in self.iter() {
x.sanitize()?;
}
Ok(())
}
}

View File

@ -0,0 +1 @@
crate::declare_id!("KeccakSecp256k11111111111111111111111111111");

View File

@ -0,0 +1,65 @@
use crate::pubkey::Pubkey;
use crate::sanitize::SanitizeError;
pub fn append_u16(buf: &mut Vec<u8>, data: u16) {
let start = buf.len();
buf.resize(buf.len() + 2, 0);
let end = buf.len();
buf[start..end].copy_from_slice(&data.to_le_bytes());
}
pub fn append_u8(buf: &mut Vec<u8>, data: u8) {
let start = buf.len();
buf.resize(buf.len() + 1, 0);
buf[start] = data;
}
pub fn append_slice(buf: &mut Vec<u8>, data: &[u8]) {
let start = buf.len();
buf.resize(buf.len() + data.len(), 0);
let end = buf.len();
buf[start..end].copy_from_slice(data);
}
pub fn read_u8(current: &mut usize, data: &[u8]) -> Result<u8, SanitizeError> {
if data.len() < *current + 1 {
return Err(SanitizeError::IndexOutOfBounds);
}
let e = data[*current];
*current += 1;
Ok(e)
}
pub fn read_pubkey(current: &mut usize, data: &[u8]) -> Result<Pubkey, SanitizeError> {
let len = std::mem::size_of::<Pubkey>();
if data.len() < *current + len {
return Err(SanitizeError::IndexOutOfBounds);
}
let e = Pubkey::new(&data[*current..*current + len]);
*current += len;
Ok(e)
}
pub fn read_u16(current: &mut usize, data: &[u8]) -> Result<u16, SanitizeError> {
if data.len() < *current + 2 {
return Err(SanitizeError::IndexOutOfBounds);
}
let mut fixed_data = [0u8; 2];
fixed_data.copy_from_slice(&data[*current..*current + 2]);
let e = u16::from_le_bytes(fixed_data);
*current += 2;
Ok(e)
}
pub fn read_slice(
current: &mut usize,
data: &[u8],
data_len: usize,
) -> Result<Vec<u8>, SanitizeError> {
if data.len() < *current + data_len {
return Err(SanitizeError::IndexOutOfBounds);
}
let e = data[*current..*current + data_len].to_vec();
*current += data_len;
Ok(e)
}

View File

@ -0,0 +1,293 @@
use serde::{
de::{self, Deserializer, SeqAccess, Visitor},
ser::{self, SerializeTuple, Serializer},
{Deserialize, Serialize},
};
use std::{fmt, marker::PhantomData, mem::size_of};
/// Same as u16, but serialized with 1 to 3 bytes. If the value is above
/// 0x7f, the top bit is set and the remaining value is stored in the next
/// bytes. Each byte follows the same pattern until the 3rd byte. The 3rd
/// byte, if needed, uses all 8 bits to store the last byte of the original
/// value.
#[derive(AbiExample)]
pub struct ShortU16(pub u16);
impl Serialize for ShortU16 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
// Pass a non-zero value to serialize_tuple() so that serde_json will
// generate an open bracket.
let mut seq = serializer.serialize_tuple(1)?;
let mut rem_len = self.0;
loop {
let mut elem = (rem_len & 0x7f) as u8;
rem_len >>= 7;
if rem_len == 0 {
seq.serialize_element(&elem)?;
break;
} else {
elem |= 0x80;
seq.serialize_element(&elem)?;
}
}
seq.end()
}
}
enum VisitResult {
Done(usize, usize),
More(usize, usize),
Err,
}
fn visit_byte(elem: u8, len: usize, size: usize) -> VisitResult {
let len = len | (elem as usize & 0x7f) << (size * 7);
let size = size + 1;
let more = elem as usize & 0x80 == 0x80;
if size > size_of::<u16>() + 1 {
VisitResult::Err
} else if more {
VisitResult::More(len, size)
} else {
VisitResult::Done(len, size)
}
}
struct ShortLenVisitor;
impl<'de> Visitor<'de> for ShortLenVisitor {
type Value = ShortU16;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a multi-byte length")
}
fn visit_seq<A>(self, mut seq: A) -> Result<ShortU16, A::Error>
where
A: SeqAccess<'de>,
{
let mut len: usize = 0;
let mut size: usize = 0;
loop {
let elem: u8 = seq
.next_element()?
.ok_or_else(|| de::Error::invalid_length(size, &self))?;
match visit_byte(elem, len, size) {
VisitResult::Done(l, _) => {
len = l;
break;
}
VisitResult::More(l, s) => {
len = l;
size = s;
}
VisitResult::Err => return Err(de::Error::invalid_length(size + 1, &self)),
}
}
Ok(ShortU16(len as u16))
}
}
impl<'de> Deserialize<'de> for ShortU16 {
fn deserialize<D>(deserializer: D) -> Result<ShortU16, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_tuple(3, ShortLenVisitor)
}
}
/// If you don't want to use the ShortVec newtype, you can do ShortVec
/// serialization on an ordinary vector with the following field annotation:
///
/// #[serde(with = "short_vec")]
///
pub fn serialize<S: Serializer, T: Serialize>(
elements: &[T],
serializer: S,
) -> Result<S::Ok, S::Error> {
// Pass a non-zero value to serialize_tuple() so that serde_json will
// generate an open bracket.
let mut seq = serializer.serialize_tuple(1)?;
let len = elements.len();
if len > std::u16::MAX as usize {
return Err(ser::Error::custom("length larger than u16"));
}
let short_len = ShortU16(len as u16);
seq.serialize_element(&short_len)?;
for element in elements {
seq.serialize_element(element)?;
}
seq.end()
}
struct ShortVecVisitor<T> {
_t: PhantomData<T>,
}
impl<'de, T> Visitor<'de> for ShortVecVisitor<T>
where
T: Deserialize<'de>,
{
type Value = Vec<T>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a Vec with a multi-byte length")
}
fn visit_seq<A>(self, mut seq: A) -> Result<Vec<T>, A::Error>
where
A: SeqAccess<'de>,
{
let short_len: ShortU16 = seq
.next_element()?
.ok_or_else(|| de::Error::invalid_length(0, &self))?;
let len = short_len.0 as usize;
let mut result = Vec::with_capacity(len);
for i in 0..len {
let elem = seq
.next_element()?
.ok_or_else(|| de::Error::invalid_length(i, &self))?;
result.push(elem);
}
Ok(result)
}
}
/// If you don't want to use the ShortVec newtype, you can do ShortVec
/// deserialization on an ordinary vector with the following field annotation:
///
/// #[serde(with = "short_vec")]
///
pub fn deserialize<'de, D, T>(deserializer: D) -> Result<Vec<T>, D::Error>
where
D: Deserializer<'de>,
T: Deserialize<'de>,
{
let visitor = ShortVecVisitor { _t: PhantomData };
deserializer.deserialize_tuple(std::usize::MAX, visitor)
}
pub struct ShortVec<T>(pub Vec<T>);
impl<T: Serialize> Serialize for ShortVec<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serialize(&self.0, serializer)
}
}
impl<'de, T: Deserialize<'de>> Deserialize<'de> for ShortVec<T> {
fn deserialize<D>(deserializer: D) -> Result<ShortVec<T>, D::Error>
where
D: Deserializer<'de>,
{
deserialize(deserializer).map(ShortVec)
}
}
/// Return the decoded value and how many bytes it consumed.
pub fn decode_len(bytes: &[u8]) -> Result<(usize, usize), ()> {
let mut len = 0;
let mut size = 0;
for byte in bytes.iter() {
match visit_byte(*byte, len, size) {
VisitResult::More(l, s) => {
len = l;
size = s;
}
VisitResult::Done(len, size) => return Ok((len, size)),
VisitResult::Err => return Err(()),
}
}
Err(())
}
#[cfg(test)]
mod tests {
use super::*;
use assert_matches::assert_matches;
use bincode::{deserialize, serialize};
/// Return the serialized length.
fn encode_len(len: u16) -> Vec<u8> {
bincode::serialize(&ShortU16(len)).unwrap()
}
fn assert_len_encoding(len: u16, bytes: &[u8]) {
assert_eq!(encode_len(len), bytes, "unexpected usize encoding");
assert_eq!(
decode_len(bytes).unwrap(),
(len as usize, bytes.len()),
"unexpected usize decoding"
);
}
#[test]
fn test_short_vec_encode_len() {
assert_len_encoding(0x0, &[0x0]);
assert_len_encoding(0x7f, &[0x7f]);
assert_len_encoding(0x80, &[0x80, 0x01]);
assert_len_encoding(0xff, &[0xff, 0x01]);
assert_len_encoding(0x100, &[0x80, 0x02]);
assert_len_encoding(0x7fff, &[0xff, 0xff, 0x01]);
assert_len_encoding(0xffff, &[0xff, 0xff, 0x03]);
}
#[test]
#[should_panic]
fn test_short_vec_decode_zero_len() {
decode_len(&[]).unwrap();
}
#[test]
fn test_short_vec_u8() {
let vec = ShortVec(vec![4u8; 32]);
let bytes = serialize(&vec).unwrap();
assert_eq!(bytes.len(), vec.0.len() + 1);
let vec1: ShortVec<u8> = deserialize(&bytes).unwrap();
assert_eq!(vec.0, vec1.0);
}
#[test]
fn test_short_vec_u8_too_long() {
let vec = ShortVec(vec![4u8; std::u16::MAX as usize]);
assert_matches!(serialize(&vec), Ok(_));
let vec = ShortVec(vec![4u8; std::u16::MAX as usize + 1]);
assert_matches!(serialize(&vec), Err(_));
}
#[test]
fn test_short_vec_json() {
let vec = ShortVec(vec![0, 1, 2]);
let s = serde_json::to_string(&vec).unwrap();
assert_eq!(s, "[[3],0,1,2]");
}
#[test]
fn test_decode_len_aliased_values() {
let one1 = [0x01];
let one2 = [0x81, 0x00];
let one3 = [0x81, 0x80, 0x00];
let one4 = [0x81, 0x80, 0x80, 0x00];
assert_eq!(decode_len(&one1).unwrap(), (1, 1));
assert_eq!(decode_len(&one2).unwrap(), (1, 2));
assert_eq!(decode_len(&one3).unwrap(), (1, 3));
assert!(decode_len(&one4).is_err());
}
}

View File

@ -0,0 +1,83 @@
//! named accounts for synthesized data accounts for bank state, etc.
//!
//! this account carries the Bank's most recent bank hashes for some N parents
//!
use crate::hash::Hash;
use std::{iter::FromIterator, ops::Deref};
pub const MAX_ENTRIES: usize = 512; // about 2.5 minutes to get your vote in
pub use crate::clock::Slot;
pub type SlotHash = (Slot, Hash);
#[repr(C)]
#[derive(Serialize, Deserialize, PartialEq, Debug, Default)]
pub struct SlotHashes(Vec<SlotHash>);
impl SlotHashes {
pub fn add(&mut self, slot: Slot, hash: Hash) {
match self.binary_search_by(|(probe, _)| slot.cmp(&probe)) {
Ok(index) => (self.0)[index] = (slot, hash),
Err(index) => (self.0).insert(index, (slot, hash)),
}
(self.0).truncate(MAX_ENTRIES);
}
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn get(&self, slot: &Slot) -> Option<&Hash> {
self.binary_search_by(|(probe, _)| slot.cmp(&probe))
.ok()
.map(|index| &self[index].1)
}
pub fn new(slot_hashes: &[SlotHash]) -> Self {
let mut slot_hashes = slot_hashes.to_vec();
slot_hashes.sort_by(|(a, _), (b, _)| b.cmp(a));
Self(slot_hashes)
}
}
impl FromIterator<(Slot, Hash)> for SlotHashes {
fn from_iter<I: IntoIterator<Item = (Slot, Hash)>>(iter: I) -> Self {
Self(iter.into_iter().collect())
}
}
impl Deref for SlotHashes {
type Target = Vec<SlotHash>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::hash::hash;
#[test]
fn test() {
let mut slot_hashes = SlotHashes::new(&[(1, Hash::default()), (3, Hash::default())]);
slot_hashes.add(2, Hash::default());
assert_eq!(
slot_hashes,
SlotHashes(vec![
(3, Hash::default()),
(2, Hash::default()),
(1, Hash::default()),
])
);
let mut slot_hashes = SlotHashes::new(&[]);
for i in 0..MAX_ENTRIES + 1 {
slot_hashes.add(
i as u64,
hash(&[(i >> 24) as u8, (i >> 16) as u8, (i >> 8) as u8, i as u8]),
);
}
for i in 0..MAX_ENTRIES {
assert_eq!(slot_hashes[i].0, (MAX_ENTRIES - i) as u64);
}
assert_eq!(slot_hashes.len(), MAX_ENTRIES);
}
}

View File

@ -0,0 +1,206 @@
//!
//! slot history
//!
pub use crate::clock::Slot;
use bv::BitVec;
use bv::BitsMut;
#[repr(C)]
#[derive(Serialize, Deserialize, PartialEq)]
pub struct SlotHistory {
pub bits: BitVec<u64>,
pub next_slot: Slot,
}
impl Default for SlotHistory {
fn default() -> Self {
let mut bits = BitVec::new_fill(false, MAX_ENTRIES);
bits.set(0, true);
Self { bits, next_slot: 1 }
}
}
impl std::fmt::Debug for SlotHistory {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "SlotHistory {{ slot: {} bits:", self.next_slot)?;
for i in 0..MAX_ENTRIES {
if self.bits.get(i) {
write!(f, "1")?;
} else {
write!(f, "0")?;
}
}
Ok(())
}
}
pub const MAX_ENTRIES: u64 = 1024 * 1024; // 1 million slots is about 5 days
#[derive(PartialEq, Debug)]
pub enum Check {
Future,
TooOld,
Found,
NotFound,
}
impl SlotHistory {
pub fn add(&mut self, slot: Slot) {
if slot > self.next_slot && slot - self.next_slot >= MAX_ENTRIES {
// Wrapped past current history,
// clear entire bitvec.
let full_blocks = (MAX_ENTRIES as usize) / 64;
for i in 0..full_blocks {
self.bits.set_block(i, 0);
}
} else {
for skipped in self.next_slot..slot {
self.bits.set(skipped % MAX_ENTRIES, false);
}
}
self.bits.set(slot % MAX_ENTRIES, true);
self.next_slot = slot + 1;
}
pub fn check(&self, slot: Slot) -> Check {
if slot > self.newest() {
Check::Future
} else if slot < self.oldest() {
Check::TooOld
} else if self.bits.get(slot % MAX_ENTRIES) {
Check::Found
} else {
Check::NotFound
}
}
pub fn oldest(&self) -> Slot {
self.next_slot.saturating_sub(MAX_ENTRIES)
}
pub fn newest(&self) -> Slot {
self.next_slot - 1
}
}
#[cfg(test)]
mod tests {
use super::*;
use log::*;
#[test]
fn slot_history_test1() {
solana_logger::setup();
// should be divisible by 64 since the clear logic works on blocks
assert_eq!(MAX_ENTRIES % 64, 0);
let mut slot_history = SlotHistory::default();
info!("add 2");
slot_history.add(2);
assert_eq!(slot_history.check(0), Check::Found);
assert_eq!(slot_history.check(1), Check::NotFound);
for i in 3..MAX_ENTRIES {
assert_eq!(slot_history.check(i), Check::Future);
}
info!("add 20");
slot_history.add(20);
info!("add max_entries");
slot_history.add(MAX_ENTRIES);
assert_eq!(slot_history.check(0), Check::TooOld);
assert_eq!(slot_history.check(1), Check::NotFound);
for i in &[2, 20, MAX_ENTRIES] {
assert_eq!(slot_history.check(*i), Check::Found);
}
for i in 3..20 {
assert_eq!(slot_history.check(i), Check::NotFound, "i: {}", i);
}
for i in 21..MAX_ENTRIES {
assert_eq!(slot_history.check(i), Check::NotFound, "i: {}", i);
}
assert_eq!(slot_history.check(MAX_ENTRIES + 1), Check::Future);
info!("add max_entries + 3");
let slot = 3 * MAX_ENTRIES + 3;
slot_history.add(slot);
for i in &[0, 1, 2, 20, 21, MAX_ENTRIES] {
assert_eq!(slot_history.check(*i), Check::TooOld);
}
let start = slot - MAX_ENTRIES + 1;
let end = slot;
for i in start..end {
assert_eq!(slot_history.check(i), Check::NotFound, "i: {}", i);
}
assert_eq!(slot_history.check(slot), Check::Found);
}
#[test]
fn slot_history_test_wrap() {
solana_logger::setup();
let mut slot_history = SlotHistory::default();
info!("add 2");
slot_history.add(2);
assert_eq!(slot_history.check(0), Check::Found);
assert_eq!(slot_history.check(1), Check::NotFound);
for i in 3..MAX_ENTRIES {
assert_eq!(slot_history.check(i), Check::Future);
}
info!("add 20");
slot_history.add(20);
info!("add max_entries + 19");
slot_history.add(MAX_ENTRIES + 19);
for i in 0..19 {
assert_eq!(slot_history.check(i), Check::TooOld);
}
assert_eq!(slot_history.check(MAX_ENTRIES), Check::NotFound);
assert_eq!(slot_history.check(20), Check::Found);
assert_eq!(slot_history.check(MAX_ENTRIES + 19), Check::Found);
assert_eq!(slot_history.check(20), Check::Found);
for i in 21..MAX_ENTRIES + 19 {
assert_eq!(slot_history.check(i), Check::NotFound, "found: {}", i);
}
assert_eq!(slot_history.check(MAX_ENTRIES + 20), Check::Future);
}
#[test]
fn slot_history_test_same_index() {
solana_logger::setup();
let mut slot_history = SlotHistory::default();
info!("add 3,4");
slot_history.add(3);
slot_history.add(4);
assert_eq!(slot_history.check(1), Check::NotFound);
assert_eq!(slot_history.check(2), Check::NotFound);
assert_eq!(slot_history.check(3), Check::Found);
assert_eq!(slot_history.check(4), Check::Found);
slot_history.add(MAX_ENTRIES + 5);
assert_eq!(slot_history.check(5), Check::TooOld);
for i in 6..MAX_ENTRIES + 5 {
assert_eq!(slot_history.check(i), Check::NotFound, "i: {}", i);
}
assert_eq!(slot_history.check(MAX_ENTRIES + 5), Check::Found);
}
#[test]
fn test_older_slot() {
let mut slot_history = SlotHistory::default();
slot_history.add(10);
slot_history.add(5);
assert_eq!(slot_history.check(0), Check::Found);
assert_eq!(slot_history.check(5), Check::Found);
// If we go backwards we reset?
assert_eq!(slot_history.check(10), Check::Future);
assert_eq!(slot_history.check(6), Check::Future);
assert_eq!(slot_history.check(11), Check::Future);
}
#[test]
fn test_oldest() {
let mut slot_history = SlotHistory::default();
assert_eq!(slot_history.oldest(), 0);
slot_history.add(10);
assert_eq!(slot_history.oldest(), 0);
slot_history.add(MAX_ENTRIES - 1);
assert_eq!(slot_history.oldest(), 0);
slot_history.add(MAX_ENTRIES);
assert_eq!(slot_history.oldest(), 1);
}
}

View File

@ -0,0 +1,74 @@
//! named accounts for synthesized data accounts for bank state, etc.
//!
//! this account carries history about stake activations and de-activations
//!
pub use crate::clock::Epoch;
use std::ops::Deref;
pub const MAX_ENTRIES: usize = 512; // it should never take as many as 512 epochs to warm up or cool down
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq, Default, Clone, AbiExample)]
pub struct StakeHistoryEntry {
pub effective: u64, // effective stake at this epoch
pub activating: u64, // sum of portion of stakes not fully warmed up
pub deactivating: u64, // requested to be cooled down, not fully deactivated yet
}
#[repr(C)]
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq, Default, Clone, AbiExample)]
pub struct StakeHistory(Vec<(Epoch, StakeHistoryEntry)>);
impl StakeHistory {
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn get(&self, epoch: &Epoch) -> Option<&StakeHistoryEntry> {
self.binary_search_by(|probe| epoch.cmp(&probe.0))
.ok()
.map(|index| &self[index].1)
}
pub fn add(&mut self, epoch: Epoch, entry: StakeHistoryEntry) {
match self.binary_search_by(|probe| epoch.cmp(&probe.0)) {
Ok(index) => (self.0)[index] = (epoch, entry),
Err(index) => (self.0).insert(index, (epoch, entry)),
}
(self.0).truncate(MAX_ENTRIES);
}
}
impl Deref for StakeHistory {
type Target = Vec<(Epoch, StakeHistoryEntry)>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_stake_history() {
let mut stake_history = StakeHistory::default();
for i in 0..MAX_ENTRIES as u64 + 1 {
stake_history.add(
i,
StakeHistoryEntry {
activating: i,
..StakeHistoryEntry::default()
},
);
}
assert_eq!(stake_history.len(), MAX_ENTRIES);
assert_eq!(stake_history.iter().map(|entry| entry.0).min().unwrap(), 1);
assert_eq!(stake_history.get(&0), None);
assert_eq!(
stake_history.get(&1),
Some(&StakeHistoryEntry {
activating: 1,
..StakeHistoryEntry::default()
})
);
}
}

View File

@ -0,0 +1,556 @@
use crate::{
decode_error::DecodeError,
instruction::{AccountMeta, Instruction},
nonce,
pubkey::Pubkey,
system_program,
sysvar::{recent_blockhashes, rent},
};
use num_derive::{FromPrimitive, ToPrimitive};
use thiserror::Error;
#[derive(Error, Debug, Serialize, Clone, PartialEq, FromPrimitive, ToPrimitive)]
pub enum SystemError {
#[error("an account with the same address already exists")]
AccountAlreadyInUse,
#[error("account does not have enough SOL to perform the operation")]
ResultWithNegativeLamports,
#[error("cannot assign account to this program id")]
InvalidProgramId,
#[error("cannot allocate account data of this length")]
InvalidAccountDataLength,
#[error("length of requested seed is too long")]
MaxSeedLengthExceeded,
#[error("provided address does not match addressed derived from seed")]
AddressWithSeedMismatch,
}
impl<T> DecodeError<T> for SystemError {
fn type_of() -> &'static str {
"SystemError"
}
}
#[derive(Error, Debug, Clone, PartialEq, FromPrimitive, ToPrimitive)]
pub enum NonceError {
#[error("recent blockhash list is empty")]
NoRecentBlockhashes,
#[error("stored nonce is still in recent_blockhashes")]
NotExpired,
#[error("specified nonce does not match stored nonce")]
UnexpectedValue,
#[error("cannot handle request in current account state")]
BadAccountState,
}
impl<E> DecodeError<E> for NonceError {
fn type_of() -> &'static str {
"NonceError"
}
}
/// maximum permitted size of data: 10 MB
pub const MAX_PERMITTED_DATA_LENGTH: u64 = 10 * 1024 * 1024;
#[frozen_abi(digest = "EpsptsKTYzMoQGSdoWRfPbwT3odGNfK3imEUTrxpLF1i")]
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, AbiExample, AbiEnumVisitor)]
pub enum SystemInstruction {
/// Create a new account
///
/// # Account references
/// 0. [WRITE, SIGNER] Funding account
/// 1. [WRITE, SIGNER] New account
CreateAccount {
/// Number of lamports to transfer to the new account
lamports: u64,
/// Number of bytes of memory to allocate
space: u64,
/// Address of program that will own the new account
owner: Pubkey,
},
/// Assign account to a program
///
/// # Account references
/// 0. [WRITE, SIGNER] Assigned account public key
Assign {
/// Owner program account
owner: Pubkey,
},
/// Transfer lamports
///
/// # Account references
/// 0. [WRITE, SIGNER] Funding account
/// 1. [WRITE] Recipient account
Transfer { lamports: u64 },
/// Create a new account at an address derived from a base pubkey and a seed
///
/// # Account references
/// 0. [WRITE, SIGNER] Funding account
/// 1. [WRITE] Created account
/// 2. [SIGNER] Base account
CreateAccountWithSeed {
/// Base public key
base: Pubkey,
/// String of ASCII chars, no longer than `Pubkey::MAX_SEED_LEN`
seed: String,
/// Number of lamports to transfer to the new account
lamports: u64,
/// Number of bytes of memory to allocate
space: u64,
/// Owner program account address
owner: Pubkey,
},
/// Consumes a stored nonce, replacing it with a successor
///
/// # Account references
/// 0. [WRITE, SIGNER] Nonce account
/// 1. [] RecentBlockhashes sysvar
/// 2. [SIGNER] Nonce authority
AdvanceNonceAccount,
/// Withdraw funds from a nonce account
///
/// # Account references
/// 0. [WRITE] Nonce account
/// 1. [WRITE] Recipient account
/// 2. [] RecentBlockhashes sysvar
/// 3. [] Rent sysvar
/// 4. [SIGNER] Nonce authority
///
/// The `u64` parameter is the lamports to withdraw, which must leave the
/// account balance above the rent exempt reserve or at zero.
WithdrawNonceAccount(u64),
/// Drive state of Uninitalized nonce account to Initialized, setting the nonce value
///
/// # Account references
/// 0. [WRITE] Nonce account
/// 1. [] RecentBlockhashes sysvar
/// 2. [] Rent sysvar
///
/// The `Pubkey` parameter specifies the entity authorized to execute nonce
/// instruction on the account
///
/// No signatures are required to execute this instruction, enabling derived
/// nonce account addresses
InitializeNonceAccount(Pubkey),
/// Change the entity authorized to execute nonce instructions on the account
///
/// # Account references
/// 0. [WRITE] Nonce account
/// 1. [SIGNER] Nonce authority
///
/// The `Pubkey` parameter identifies the entity to authorize
AuthorizeNonceAccount(Pubkey),
/// Allocate space in a (possibly new) account without funding
///
/// # Account references
/// 0. [WRITE, SIGNER] New account
Allocate {
/// Number of bytes of memory to allocate
space: u64,
},
/// Allocate space for and assign an account at an address
/// derived from a base public key and a seed
///
/// # Account references
/// 0. [WRITE] Allocated account
/// 1. [SIGNER] Base account
AllocateWithSeed {
/// Base public key
base: Pubkey,
/// String of ASCII chars, no longer than `pubkey::MAX_SEED_LEN`
seed: String,
/// Number of bytes of memory to allocate
space: u64,
/// Owner program account
owner: Pubkey,
},
/// Assign account to a program based on a seed
///
/// # Account references
/// 0. [WRITE] Assigned account
/// 1. [SIGNER] Base account
AssignWithSeed {
/// Base public key
base: Pubkey,
/// String of ASCII chars, no longer than `pubkey::MAX_SEED_LEN`
seed: String,
/// Owner program account
owner: Pubkey,
},
/// Transfer lamports from a derived address
///
/// # Account references
/// 0. [WRITE] Funding account
/// 1. [SIGNER] Base for funding account
/// 2. [WRITE] Recipient account
TransferWithSeed {
/// Amount to transfer
lamports: u64,
/// Seed to use to derive the funding account address
from_seed: String,
/// Owner to use to derive the funding account address
from_owner: Pubkey,
},
}
pub fn create_account(
from_pubkey: &Pubkey,
to_pubkey: &Pubkey,
lamports: u64,
space: u64,
owner: &Pubkey,
) -> Instruction {
let account_metas = vec![
AccountMeta::new(*from_pubkey, true),
AccountMeta::new(*to_pubkey, true),
];
Instruction::new(
system_program::id(),
&SystemInstruction::CreateAccount {
lamports,
space,
owner: *owner,
},
account_metas,
)
}
// we accept `to` as a parameter so that callers do their own error handling when
// calling create_address_with_seed()
pub fn create_account_with_seed(
from_pubkey: &Pubkey,
to_pubkey: &Pubkey, // must match create_address_with_seed(base, seed, owner)
base: &Pubkey,
seed: &str,
lamports: u64,
space: u64,
owner: &Pubkey,
) -> Instruction {
let account_metas = vec![
AccountMeta::new(*from_pubkey, true),
AccountMeta::new(*to_pubkey, false),
AccountMeta::new_readonly(*base, true),
];
Instruction::new(
system_program::id(),
&SystemInstruction::CreateAccountWithSeed {
base: *base,
seed: seed.to_string(),
lamports,
space,
owner: *owner,
},
account_metas,
)
}
pub fn assign(pubkey: &Pubkey, owner: &Pubkey) -> Instruction {
let account_metas = vec![AccountMeta::new(*pubkey, true)];
Instruction::new(
system_program::id(),
&SystemInstruction::Assign { owner: *owner },
account_metas,
)
}
pub fn assign_with_seed(
address: &Pubkey, // must match create_address_with_seed(base, seed, owner)
base: &Pubkey,
seed: &str,
owner: &Pubkey,
) -> Instruction {
let account_metas = vec![
AccountMeta::new(*address, false),
AccountMeta::new_readonly(*base, true),
];
Instruction::new(
system_program::id(),
&SystemInstruction::AssignWithSeed {
base: *base,
seed: seed.to_string(),
owner: *owner,
},
account_metas,
)
}
pub fn transfer(from_pubkey: &Pubkey, to_pubkey: &Pubkey, lamports: u64) -> Instruction {
let account_metas = vec![
AccountMeta::new(*from_pubkey, true),
AccountMeta::new(*to_pubkey, false),
];
Instruction::new(
system_program::id(),
&SystemInstruction::Transfer { lamports },
account_metas,
)
}
pub fn transfer_with_seed(
from_pubkey: &Pubkey, // must match create_address_with_seed(base, seed, owner)
from_base: &Pubkey,
from_seed: String,
from_owner: &Pubkey,
to_pubkey: &Pubkey,
lamports: u64,
) -> Instruction {
let account_metas = vec![
AccountMeta::new(*from_pubkey, false),
AccountMeta::new_readonly(*from_base, true),
AccountMeta::new(*to_pubkey, false),
];
Instruction::new(
system_program::id(),
&SystemInstruction::TransferWithSeed {
lamports,
from_seed,
from_owner: *from_owner,
},
account_metas,
)
}
pub fn allocate(pubkey: &Pubkey, space: u64) -> Instruction {
let account_metas = vec![AccountMeta::new(*pubkey, true)];
Instruction::new(
system_program::id(),
&SystemInstruction::Allocate { space },
account_metas,
)
}
pub fn allocate_with_seed(
address: &Pubkey, // must match create_address_with_seed(base, seed, owner)
base: &Pubkey,
seed: &str,
space: u64,
owner: &Pubkey,
) -> Instruction {
let account_metas = vec![
AccountMeta::new(*address, false),
AccountMeta::new_readonly(*base, true),
];
Instruction::new(
system_program::id(),
&SystemInstruction::AllocateWithSeed {
base: *base,
seed: seed.to_string(),
space,
owner: *owner,
},
account_metas,
)
}
/// Create and sign new SystemInstruction::Transfer transaction to many destinations
pub fn transfer_many(from_pubkey: &Pubkey, to_lamports: &[(Pubkey, u64)]) -> Vec<Instruction> {
to_lamports
.iter()
.map(|(to_pubkey, lamports)| transfer(from_pubkey, to_pubkey, *lamports))
.collect()
}
pub fn create_nonce_account_with_seed(
from_pubkey: &Pubkey,
nonce_pubkey: &Pubkey,
base: &Pubkey,
seed: &str,
authority: &Pubkey,
lamports: u64,
) -> Vec<Instruction> {
vec![
create_account_with_seed(
from_pubkey,
nonce_pubkey,
base,
seed,
lamports,
nonce::State::size() as u64,
&system_program::id(),
),
Instruction::new(
system_program::id(),
&SystemInstruction::InitializeNonceAccount(*authority),
vec![
AccountMeta::new(*nonce_pubkey, false),
AccountMeta::new_readonly(recent_blockhashes::id(), false),
AccountMeta::new_readonly(rent::id(), false),
],
),
]
}
pub fn create_nonce_account(
from_pubkey: &Pubkey,
nonce_pubkey: &Pubkey,
authority: &Pubkey,
lamports: u64,
) -> Vec<Instruction> {
vec![
create_account(
from_pubkey,
nonce_pubkey,
lamports,
nonce::State::size() as u64,
&system_program::id(),
),
Instruction::new(
system_program::id(),
&SystemInstruction::InitializeNonceAccount(*authority),
vec![
AccountMeta::new(*nonce_pubkey, false),
AccountMeta::new_readonly(recent_blockhashes::id(), false),
AccountMeta::new_readonly(rent::id(), false),
],
),
]
}
pub fn advance_nonce_account(nonce_pubkey: &Pubkey, authorized_pubkey: &Pubkey) -> Instruction {
let account_metas = vec![
AccountMeta::new(*nonce_pubkey, false),
AccountMeta::new_readonly(recent_blockhashes::id(), false),
AccountMeta::new_readonly(*authorized_pubkey, true),
];
Instruction::new(
system_program::id(),
&SystemInstruction::AdvanceNonceAccount,
account_metas,
)
}
pub fn withdraw_nonce_account(
nonce_pubkey: &Pubkey,
authorized_pubkey: &Pubkey,
to_pubkey: &Pubkey,
lamports: u64,
) -> Instruction {
let account_metas = vec![
AccountMeta::new(*nonce_pubkey, false),
AccountMeta::new(*to_pubkey, false),
AccountMeta::new_readonly(recent_blockhashes::id(), false),
AccountMeta::new_readonly(rent::id(), false),
AccountMeta::new_readonly(*authorized_pubkey, true),
];
Instruction::new(
system_program::id(),
&SystemInstruction::WithdrawNonceAccount(lamports),
account_metas,
)
}
pub fn authorize_nonce_account(
nonce_pubkey: &Pubkey,
authorized_pubkey: &Pubkey,
new_authority: &Pubkey,
) -> Instruction {
let account_metas = vec![
AccountMeta::new(*nonce_pubkey, false),
AccountMeta::new_readonly(*authorized_pubkey, true),
];
Instruction::new(
system_program::id(),
&SystemInstruction::AuthorizeNonceAccount(*new_authority),
account_metas,
)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::instruction::{Instruction, InstructionError};
fn get_keys(instruction: &Instruction) -> Vec<Pubkey> {
instruction.accounts.iter().map(|x| x.pubkey).collect()
}
#[test]
fn test_move_many() {
let alice_pubkey = Pubkey::new_unique();
let bob_pubkey = Pubkey::new_unique();
let carol_pubkey = Pubkey::new_unique();
let to_lamports = vec![(bob_pubkey, 1), (carol_pubkey, 2)];
let instructions = transfer_many(&alice_pubkey, &to_lamports);
assert_eq!(instructions.len(), 2);
assert_eq!(get_keys(&instructions[0]), vec![alice_pubkey, bob_pubkey]);
assert_eq!(get_keys(&instructions[1]), vec![alice_pubkey, carol_pubkey]);
}
#[test]
fn test_create_nonce_account() {
let from_pubkey = Pubkey::new_unique();
let nonce_pubkey = Pubkey::new_unique();
let authorized = nonce_pubkey;
let ixs = create_nonce_account(&from_pubkey, &nonce_pubkey, &authorized, 42);
assert_eq!(ixs.len(), 2);
let ix = &ixs[0];
assert_eq!(ix.program_id, system_program::id());
let pubkeys: Vec<_> = ix.accounts.iter().map(|am| am.pubkey).collect();
assert!(pubkeys.contains(&from_pubkey));
assert!(pubkeys.contains(&nonce_pubkey));
}
#[test]
fn test_nonce_error_decode() {
use num_traits::FromPrimitive;
fn pretty_err<T>(err: InstructionError) -> String
where
T: 'static + std::error::Error + DecodeError<T> + FromPrimitive,
{
if let InstructionError::Custom(code) = err {
let specific_error: T = T::decode_custom_error_to_enum(code).unwrap();
format!(
"{:?}: {}::{:?} - {}",
err,
T::type_of(),
specific_error,
specific_error,
)
} else {
"".to_string()
}
}
assert_eq!(
"Custom(0): NonceError::NoRecentBlockhashes - recent blockhash list is empty",
pretty_err::<NonceError>(NonceError::NoRecentBlockhashes.into())
);
assert_eq!(
"Custom(1): NonceError::NotExpired - stored nonce is still in recent_blockhashes",
pretty_err::<NonceError>(NonceError::NotExpired.into())
);
assert_eq!(
"Custom(2): NonceError::UnexpectedValue - specified nonce does not match stored nonce",
pretty_err::<NonceError>(NonceError::UnexpectedValue.into())
);
assert_eq!(
"Custom(3): NonceError::BadAccountState - cannot handle request in current account state",
pretty_err::<NonceError>(NonceError::BadAccountState.into())
);
}
}

View File

@ -0,0 +1 @@
crate::declare_id!("11111111111111111111111111111111");

View File

@ -0,0 +1,9 @@
//! This account contains the clock slot, epoch, and leader_schedule_epoch
//!
pub use crate::clock::Clock;
use crate::sysvar::Sysvar;
crate::declare_sysvar_id!("SysvarC1ock11111111111111111111111111111111", Clock);
impl Sysvar for Clock {}

View File

@ -0,0 +1,24 @@
//! This account contains the current cluster rent
//!
pub use crate::epoch_schedule::EpochSchedule;
use crate::{account::Account, sysvar::Sysvar};
crate::declare_sysvar_id!("SysvarEpochSchedu1e111111111111111111111111", EpochSchedule);
impl Sysvar for EpochSchedule {}
pub fn create_account(lamports: u64, epoch_schedule: &EpochSchedule) -> Account {
epoch_schedule.create_account(lamports)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_create_account() {
let account = create_account(42, &EpochSchedule::default());
let epoch_schedule = EpochSchedule::from_account(&account).unwrap();
assert_eq!(epoch_schedule, EpochSchedule::default());
}
}

View File

@ -0,0 +1,33 @@
//! This account contains the current cluster fees
//!
use crate::{account::Account, fee_calculator::FeeCalculator, sysvar::Sysvar};
crate::declare_sysvar_id!("SysvarFees111111111111111111111111111111111", Fees);
#[repr(C)]
#[derive(Serialize, Deserialize, Debug, Default)]
pub struct Fees {
pub fee_calculator: FeeCalculator,
}
impl Sysvar for Fees {}
pub fn create_account(lamports: u64, fee_calculator: &FeeCalculator) -> Account {
Fees {
fee_calculator: fee_calculator.clone(),
}
.create_account(lamports)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_fees_create_account() {
let lamports = 42;
let account = create_account(lamports, &FeeCalculator::default());
let fees = Fees::from_account(&account).unwrap();
assert_eq!(fees.fee_calculator, FeeCalculator::default());
}
}

View File

@ -0,0 +1,38 @@
//! This account contains the serialized transaction instructions
use crate::{instruction::Instruction, sanitize::SanitizeError, sysvar::Sysvar};
pub type Instructions = Vec<Instruction>;
crate::declare_sysvar_id!("Sysvar1nstructions1111111111111111111111111", Instructions);
impl Sysvar for Instructions {}
pub fn load_current_index(data: &[u8]) -> u16 {
let mut instr_fixed_data = [0u8; 2];
let len = data.len();
instr_fixed_data.copy_from_slice(&data[len - 2..len]);
u16::from_le_bytes(instr_fixed_data)
}
pub fn store_current_index(data: &mut [u8], instruction_index: u16) {
let last_index = data.len() - 2;
data[last_index..last_index + 2].copy_from_slice(&instruction_index.to_le_bytes());
}
pub fn load_instruction_at(index: usize, data: &[u8]) -> Result<Instruction, SanitizeError> {
crate::message::Message::deserialize_instruction(index, data)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_load_store_instruction() {
let mut data = [4u8; 10];
store_current_index(&mut data, 3);
assert_eq!(load_current_index(&data), 3);
assert_eq!([4u8; 8], data[0..8]);
}
}

View File

@ -0,0 +1,95 @@
//! named accounts for synthesized data accounts for bank state, etc.
//!
use crate::{
account::{Account, KeyedAccount},
account_info::AccountInfo,
instruction::InstructionError,
program_error::ProgramError,
pubkey::Pubkey,
};
pub mod clock;
pub mod epoch_schedule;
pub mod fees;
pub mod instructions;
pub mod recent_blockhashes;
pub mod rent;
pub mod rewards;
pub mod slot_hashes;
pub mod slot_history;
pub mod stake_history;
pub fn is_sysvar_id(id: &Pubkey) -> bool {
clock::check_id(id)
|| epoch_schedule::check_id(id)
|| fees::check_id(id)
|| recent_blockhashes::check_id(id)
|| rent::check_id(id)
|| rewards::check_id(id)
|| slot_hashes::check_id(id)
|| slot_history::check_id(id)
|| stake_history::check_id(id)
|| instructions::check_id(id)
}
#[macro_export]
macro_rules! declare_sysvar_id(
($name:expr, $type:ty) => (
$crate::declare_id!($name);
impl $crate::sysvar::SysvarId for $type {
fn check_id(pubkey: &$crate::pubkey::Pubkey) -> bool {
check_id(pubkey)
}
}
#[cfg(test)]
#[test]
fn test_sysvar_id() {
if !$crate::sysvar::is_sysvar_id(&id()) {
panic!("sysvar::is_sysvar_id() doesn't know about {}", $name);
}
}
)
);
// owner pubkey for sysvar accounts
crate::declare_id!("Sysvar1111111111111111111111111111111111111");
pub trait SysvarId {
fn check_id(pubkey: &Pubkey) -> bool;
}
// utilities for moving into and out of Accounts
pub trait Sysvar:
SysvarId + Default + Sized + serde::Serialize + serde::de::DeserializeOwned
{
fn size_of() -> usize {
bincode::serialized_size(&Self::default()).unwrap() as usize
}
fn from_account(account: &Account) -> Option<Self> {
bincode::deserialize(&account.data).ok()
}
fn to_account(&self, account: &mut Account) -> Option<()> {
bincode::serialize_into(&mut account.data[..], self).ok()
}
fn from_account_info(account_info: &AccountInfo) -> Result<Self, ProgramError> {
bincode::deserialize(&account_info.data.borrow()).map_err(|_| ProgramError::InvalidArgument)
}
fn to_account_info(&self, account_info: &mut AccountInfo) -> Option<()> {
bincode::serialize_into(&mut account_info.data.borrow_mut()[..], self).ok()
}
fn from_keyed_account(keyed_account: &KeyedAccount) -> Result<Self, InstructionError> {
if !Self::check_id(keyed_account.unsigned_key()) {
return Err(InstructionError::InvalidArgument);
}
Self::from_account(&*keyed_account.try_account_ref()?)
.ok_or(InstructionError::InvalidArgument)
}
fn create_account(&self, lamports: u64) -> Account {
let data_len = Self::size_of().max(bincode::serialized_size(self).unwrap() as usize);
let mut account = Account::new(lamports, data_len, &id());
self.to_account(&mut account).unwrap();
account
}
}

View File

@ -0,0 +1,253 @@
use crate::{
account::Account,
declare_sysvar_id,
fee_calculator::FeeCalculator,
hash::{hash, Hash},
sysvar::Sysvar,
};
use std::{cmp::Ordering, collections::BinaryHeap, iter::FromIterator, ops::Deref};
pub const MAX_ENTRIES: usize = 150;
declare_sysvar_id!(
"SysvarRecentB1ockHashes11111111111111111111",
RecentBlockhashes
);
#[repr(C)]
#[derive(Serialize, Deserialize, Clone, Debug, Default, PartialEq)]
pub struct Entry {
pub blockhash: Hash,
pub fee_calculator: FeeCalculator,
}
impl Entry {
pub fn new(blockhash: &Hash, fee_calculator: &FeeCalculator) -> Self {
Self {
blockhash: *blockhash,
fee_calculator: fee_calculator.clone(),
}
}
}
#[derive(Clone, Debug)]
pub struct IterItem<'a>(pub u64, pub &'a Hash, pub &'a FeeCalculator);
impl<'a> Eq for IterItem<'a> {}
impl<'a> PartialEq for IterItem<'a> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<'a> Ord for IterItem<'a> {
fn cmp(&self, other: &Self) -> Ordering {
self.0.cmp(&other.0)
}
}
impl<'a> PartialOrd for IterItem<'a> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[repr(C)]
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
pub struct RecentBlockhashes(Vec<Entry>);
impl Default for RecentBlockhashes {
fn default() -> Self {
Self(Vec::with_capacity(MAX_ENTRIES))
}
}
impl<'a> FromIterator<IterItem<'a>> for RecentBlockhashes {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = IterItem<'a>>,
{
let mut new = Self::default();
for i in iter {
new.0.push(Entry::new(i.1, i.2))
}
new
}
}
// This is cherry-picked from HEAD of rust-lang's master (ref1) because it's
// a nightly-only experimental API.
// (binary_heap_into_iter_sorted [rustc issue #59278])
// Remove this and use the standard API once BinaryHeap::into_iter_sorted (ref2)
// is stabilized.
// ref1: https://github.com/rust-lang/rust/blob/2f688ac602d50129388bb2a5519942049096cbff/src/liballoc/collections/binary_heap.rs#L1149
// ref2: https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html#into_iter_sorted.v
#[derive(Clone, Debug)]
pub struct IntoIterSorted<T> {
inner: BinaryHeap<T>,
}
impl<T: Ord> Iterator for IntoIterSorted<T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
self.inner.pop()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let exact = self.inner.len();
(exact, Some(exact))
}
}
impl Sysvar for RecentBlockhashes {
fn size_of() -> usize {
// hard-coded so that we don't have to construct an empty
6008 // golden, update if MAX_ENTRIES changes
}
}
impl Deref for RecentBlockhashes {
type Target = Vec<Entry>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
pub fn create_account(lamports: u64) -> Account {
RecentBlockhashes::default().create_account(lamports)
}
pub fn update_account<'a, I>(account: &mut Account, recent_blockhash_iter: I) -> Option<()>
where
I: IntoIterator<Item = IterItem<'a>>,
{
let sorted = BinaryHeap::from_iter(recent_blockhash_iter);
let sorted_iter = IntoIterSorted { inner: sorted };
let recent_blockhash_iter = sorted_iter.take(MAX_ENTRIES);
let recent_blockhashes = RecentBlockhashes::from_iter(recent_blockhash_iter);
recent_blockhashes.to_account(account)
}
pub fn create_account_with_data<'a, I>(lamports: u64, recent_blockhash_iter: I) -> Account
where
I: IntoIterator<Item = IterItem<'a>>,
{
let mut account = create_account(lamports);
update_account(&mut account, recent_blockhash_iter).unwrap();
account
}
pub fn create_test_recent_blockhashes(start: usize) -> RecentBlockhashes {
let blocks: Vec<_> = (start..start + MAX_ENTRIES)
.map(|i| {
(
i as u64,
hash(&bincode::serialize(&i).unwrap()),
FeeCalculator::new(i as u64 * 100),
)
})
.collect();
let bhq: Vec<_> = blocks
.iter()
.map(|(i, hash, fee_calc)| IterItem(*i, hash, fee_calc))
.collect();
RecentBlockhashes::from_iter(bhq.into_iter())
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{clock::MAX_PROCESSING_AGE, hash::HASH_BYTES};
use rand::seq::SliceRandom;
use rand::thread_rng;
#[test]
#[allow(clippy::assertions_on_constants)]
fn test_sysvar_can_hold_all_active_blockhashes() {
// Ensure we can still hold all of the active entries in `BlockhashQueue`
assert!(MAX_PROCESSING_AGE <= MAX_ENTRIES);
}
#[test]
fn test_size_of() {
let entry = Entry::new(&Hash::default(), &FeeCalculator::default());
assert_eq!(
bincode::serialized_size(&RecentBlockhashes(vec![entry; MAX_ENTRIES])).unwrap()
as usize,
RecentBlockhashes::size_of()
);
}
#[test]
fn test_create_account_empty() {
let account = create_account_with_data(42, vec![].into_iter());
let recent_blockhashes = RecentBlockhashes::from_account(&account).unwrap();
assert_eq!(recent_blockhashes, RecentBlockhashes::default());
}
#[test]
fn test_create_account_full() {
let def_hash = Hash::default();
let def_fees = FeeCalculator::default();
let account = create_account_with_data(
42,
vec![IterItem(0u64, &def_hash, &def_fees); MAX_ENTRIES].into_iter(),
);
let recent_blockhashes = RecentBlockhashes::from_account(&account).unwrap();
assert_eq!(recent_blockhashes.len(), MAX_ENTRIES);
}
#[test]
fn test_create_account_truncate() {
let def_hash = Hash::default();
let def_fees = FeeCalculator::default();
let account = create_account_with_data(
42,
vec![IterItem(0u64, &def_hash, &def_fees); MAX_ENTRIES + 1].into_iter(),
);
let recent_blockhashes = RecentBlockhashes::from_account(&account).unwrap();
assert_eq!(recent_blockhashes.len(), MAX_ENTRIES);
}
#[test]
fn test_create_account_unsorted() {
let def_fees = FeeCalculator::default();
let mut unsorted_blocks: Vec<_> = (0..MAX_ENTRIES)
.map(|i| {
(i as u64, {
// create hash with visibly recognizable ordering
let mut h = [0; HASH_BYTES];
h[HASH_BYTES - 1] = i as u8;
Hash::new(&h)
})
})
.collect();
unsorted_blocks.shuffle(&mut thread_rng());
let account = create_account_with_data(
42,
unsorted_blocks
.iter()
.map(|(i, hash)| IterItem(*i, hash, &def_fees)),
);
let recent_blockhashes = RecentBlockhashes::from_account(&account).unwrap();
let mut unsorted_recent_blockhashes: Vec<_> = unsorted_blocks
.iter()
.map(|(i, hash)| IterItem(*i, hash, &def_fees))
.collect();
unsorted_recent_blockhashes.sort();
unsorted_recent_blockhashes.reverse();
let expected_recent_blockhashes: Vec<_> = (unsorted_recent_blockhashes
.into_iter()
.map(|IterItem(_, b, f)| Entry::new(b, f)))
.collect();
assert_eq!(*recent_blockhashes, expected_recent_blockhashes);
}
}

View File

@ -0,0 +1,42 @@
//! This account contains the current cluster rent
//!
pub use crate::rent::Rent;
use crate::{
account::{Account, KeyedAccount},
instruction::InstructionError,
sysvar::Sysvar,
};
crate::declare_sysvar_id!("SysvarRent111111111111111111111111111111111", Rent);
impl Sysvar for Rent {}
pub fn create_account(lamports: u64, rent: &Rent) -> Account {
rent.create_account(lamports)
}
pub fn verify_rent_exemption(
keyed_account: &KeyedAccount,
rent_sysvar_account: &KeyedAccount,
) -> Result<(), InstructionError> {
let rent = Rent::from_keyed_account(rent_sysvar_account)?;
if !rent.is_exempt(keyed_account.lamports()?, keyed_account.data_len()?) {
Err(InstructionError::InsufficientFunds)
} else {
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_rent_create_account() {
let lamports = 42;
let account = create_account(lamports, &Rent::default());
let rent = Rent::from_account(&account).unwrap();
assert_eq!(rent, Rent::default());
}
}

View File

@ -0,0 +1,34 @@
//! DEPRECATED: This sysvar can be removed once the pico-inflation feature is enabled
//!
use crate::{account::Account, sysvar::Sysvar};
crate::declare_sysvar_id!("SysvarRewards111111111111111111111111111111", Rewards);
#[repr(C)]
#[derive(Serialize, Deserialize, Debug, Default, PartialEq)]
pub struct Rewards {
pub validator_point_value: f64,
pub unused: f64,
}
impl Sysvar for Rewards {}
pub fn create_account(lamports: u64, validator_point_value: f64) -> Account {
Rewards {
validator_point_value,
unused: 0.0,
}
.create_account(lamports)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_create_account() {
let account = create_account(1, 0.0);
let rewards = Rewards::from_account(&account).unwrap();
assert_eq!(rewards, Rewards::default());
}
}

View File

@ -0,0 +1,45 @@
//! named accounts for synthesized data accounts for bank state, etc.
//!
//! this account carries the Bank's most recent bank hashes for some N parents
//!
pub use crate::slot_hashes::SlotHashes;
use crate::sysvar::Sysvar;
crate::declare_sysvar_id!("SysvarS1otHashes111111111111111111111111111", SlotHashes);
impl Sysvar for SlotHashes {
// override
fn size_of() -> usize {
// hard-coded so that we don't have to construct an empty
20_488 // golden, update if MAX_ENTRIES changes
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{clock::Slot, hash::Hash, slot_hashes::MAX_ENTRIES};
#[test]
fn test_size_of() {
assert_eq!(
SlotHashes::size_of(),
bincode::serialized_size(
&(0..MAX_ENTRIES)
.map(|slot| (slot as Slot, Hash::default()))
.collect::<SlotHashes>()
)
.unwrap() as usize
);
}
#[test]
fn test_create_account() {
let lamports = 42;
let account = SlotHashes::new(&[]).create_account(lamports);
assert_eq!(account.data.len(), SlotHashes::size_of());
let slot_hashes = SlotHashes::from_account(&account);
assert_eq!(slot_hashes, Some(SlotHashes::default()));
}
}

View File

@ -0,0 +1,30 @@
//! named accounts for synthesized data accounts for bank state, etc.
//!
//! this account carries a bitvector of slots present over the past
//! epoch
//!
pub use crate::slot_history::SlotHistory;
use crate::sysvar::Sysvar;
crate::declare_sysvar_id!("SysvarS1otHistory11111111111111111111111111", SlotHistory);
impl Sysvar for SlotHistory {
// override
fn size_of() -> usize {
// hard-coded so that we don't have to construct an empty
131_097 // golden, update if MAX_ENTRIES changes
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_size_of() {
assert_eq!(
SlotHistory::size_of(),
bincode::serialized_size(&SlotHistory::default()).unwrap() as usize
);
}
}

View File

@ -0,0 +1,82 @@
//! named accounts for synthesized data accounts for bank state, etc.
//!
//! this account carries history about stake activations and de-activations
//!
pub use crate::stake_history::StakeHistory;
use crate::{account::Account, sysvar::Sysvar};
crate::declare_sysvar_id!("SysvarStakeHistory1111111111111111111111111", StakeHistory);
impl Sysvar for StakeHistory {
// override
fn size_of() -> usize {
// hard-coded so that we don't have to construct an empty
16392 // golden, update if MAX_ENTRIES changes
}
}
pub fn create_account(lamports: u64, stake_history: &StakeHistory) -> Account {
stake_history.create_account(lamports)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::stake_history::*;
#[test]
fn test_size_of() {
let mut stake_history = StakeHistory::default();
for i in 0..MAX_ENTRIES as u64 {
stake_history.add(
i,
StakeHistoryEntry {
activating: i,
..StakeHistoryEntry::default()
},
);
}
assert_eq!(
bincode::serialized_size(&stake_history).unwrap() as usize,
StakeHistory::size_of()
);
}
#[test]
fn test_create_account() {
let lamports = 42;
let account = StakeHistory::default().create_account(lamports);
assert_eq!(account.data.len(), StakeHistory::size_of());
let stake_history = StakeHistory::from_account(&account);
assert_eq!(stake_history, Some(StakeHistory::default()));
let mut stake_history = stake_history.unwrap();
for i in 0..MAX_ENTRIES as u64 + 1 {
stake_history.add(
i,
StakeHistoryEntry {
activating: i,
..StakeHistoryEntry::default()
},
);
}
assert_eq!(stake_history.len(), MAX_ENTRIES);
assert_eq!(stake_history.iter().map(|entry| entry.0).min().unwrap(), 1);
assert_eq!(stake_history.get(&0), None);
assert_eq!(
stake_history.get(&1),
Some(&StakeHistoryEntry {
activating: 1,
..StakeHistoryEntry::default()
})
);
// verify the account can hold a full instance
assert_eq!(
StakeHistory::from_account(&stake_history.create_account(lamports)),
Some(stake_history)
);
}
}