Move testnet demos into the book
Have git readme focus on fullnode development and the book focus on users.
This commit is contained in:
@@ -4,6 +4,8 @@
|
||||
|
||||
- [Terminology](terminology.md)
|
||||
|
||||
- [Getting Started](getting-started.md)
|
||||
|
||||
- [Programming Model](programs.md)
|
||||
|
||||
- [A Solana Cluster](cluster.md)
|
||||
|
223
src/getting-started.md
Normal file
223
src/getting-started.md
Normal file
@@ -0,0 +1,223 @@
|
||||
# Getting Started
|
||||
|
||||
The Solana git repository contains all the scripts you might need to spin up your
|
||||
own local testnet. Depending on what you're looking to achieve, you may want to
|
||||
run a different variation, as the full-fledged, performance-enhanced
|
||||
multinode testnet is considerably more complex to set up than a Rust-only,
|
||||
singlenode testnode. If you are looking to develop high-level features, such
|
||||
as experimenting with smart contracts, save yourself some setup headaches and
|
||||
stick to the Rust-only singlenode demo. If you're doing performance optimization
|
||||
of the transaction pipeline, consider the enhanced singlenode demo. If you're
|
||||
doing consensus work, you'll need at least a Rust-only multinode demo. If you want
|
||||
to reproduce our TPS metrics, run the enhanced multinode demo.
|
||||
|
||||
For all four variations, you'd need the latest Rust toolchain and the Solana
|
||||
source code:
|
||||
|
||||
First, install Rust's package manager Cargo.
|
||||
|
||||
```bash
|
||||
$ curl https://sh.rustup.rs -sSf | sh
|
||||
$ source $HOME/.cargo/env
|
||||
```
|
||||
|
||||
Now checkout the code from github:
|
||||
|
||||
```bash
|
||||
$ git clone https://github.com/solana-labs/solana.git
|
||||
$ cd solana
|
||||
```
|
||||
|
||||
The demo code is sometimes broken between releases as we add new low-level
|
||||
features, so if this is your first time running the demo, you'll improve
|
||||
your odds of success if you check out the
|
||||
[latest release](https://github.com/solana-labs/solana/releases)
|
||||
before proceeding:
|
||||
|
||||
```bash
|
||||
$ TAG=$(git describe --tags $(git rev-list --tags --max-count=1))
|
||||
$ git checkout $TAG
|
||||
```
|
||||
|
||||
### Configuration Setup
|
||||
|
||||
The network is initialized with a genesis ledger and leader/validator configuration files.
|
||||
These files can be generated by running the following script.
|
||||
|
||||
```bash
|
||||
$ ./multinode-demo/setup.sh
|
||||
```
|
||||
|
||||
### Drone
|
||||
|
||||
In order for the leader, client and validators to work, we'll need to
|
||||
spin up a drone to give out some test tokens. The drone delivers Milton
|
||||
Friedman-style "air drops" (free tokens to requesting clients) to be used in
|
||||
test transactions.
|
||||
|
||||
Start the drone on the leader node with:
|
||||
|
||||
```bash
|
||||
$ ./multinode-demo/drone.sh
|
||||
```
|
||||
|
||||
### Singlenode Testnet
|
||||
|
||||
Before you start a fullnode, make sure you know the IP address of the machine you
|
||||
want to be the leader for the demo, and make sure that udp ports 8000-10000 are
|
||||
open on all the machines you want to test with.
|
||||
|
||||
Now start the server in a separate shell:
|
||||
|
||||
```bash
|
||||
$ ./multinode-demo/leader.sh
|
||||
```
|
||||
|
||||
Wait a few seconds for the server to initialize. It will print "leader ready..." when it's ready to
|
||||
receive transactions. The leader will request some tokens from the drone if it doesn't have any.
|
||||
The drone does not need to be running for subsequent leader starts.
|
||||
|
||||
### Multinode Testnet
|
||||
|
||||
To run a multinode testnet, after starting a leader node, spin up some validator nodes in
|
||||
separate shells:
|
||||
|
||||
```bash
|
||||
$ ./multinode-demo/validator.sh
|
||||
```
|
||||
|
||||
To run a performance-enhanced leader or validator (on Linux),
|
||||
[CUDA 10.0](https://developer.nvidia.com/cuda-downloads) must be installed on
|
||||
your system:
|
||||
|
||||
```bash
|
||||
$ ./fetch-perf-libs.sh
|
||||
$ SOLANA_CUDA=1 ./multinode-demo/leader.sh
|
||||
$ SOLANA_CUDA=1 ./multinode-demo/validator.sh
|
||||
```
|
||||
|
||||
|
||||
### Testnet Client Demo
|
||||
|
||||
Now that your singlenode or multinode testnet is up and running let's send it
|
||||
some transactions!
|
||||
|
||||
In a separate shell start the client:
|
||||
|
||||
```bash
|
||||
$ ./multinode-demo/client.sh # runs against localhost by default
|
||||
```
|
||||
|
||||
What just happened? The client demo spins up several threads to send 500,000 transactions
|
||||
to the testnet as quickly as it can. The client then pings the testnet periodically to see
|
||||
how many transactions it processed in that time. Take note that the demo intentionally
|
||||
floods the network with UDP packets, such that the network will almost certainly drop a
|
||||
bunch of them. This ensures the testnet has an opportunity to reach 710k TPS. The client
|
||||
demo completes after it has convinced itself the testnet won't process any additional
|
||||
transactions. You should see several TPS measurements printed to the screen. In the
|
||||
multinode variation, you'll see TPS measurements for each validator node as well.
|
||||
|
||||
## Public Testnet
|
||||
|
||||
In this example the client connects to our public testnet. To run validators on the testnet you would need to open udp ports `8000-10000`.
|
||||
|
||||
```bash
|
||||
$ ./multinode-demo/client.sh --network $(dig +short testnet.solana.com):8001 --identity config-private/client-id.json --duration 60
|
||||
```
|
||||
|
||||
You can observe the effects of your client's transactions on our [dashboard](https://metrics.solana.com:3000/d/testnet/testnet-hud?orgId=2&from=now-30m&to=now&refresh=5s&var-testnet=testnet)
|
||||
|
||||
|
||||
## Linux Snap
|
||||
|
||||
A Linux [Snap](https://snapcraft.io/) is available, which can be used to easily
|
||||
get Solana running on supported Linux systems without building anything from
|
||||
source for evaluation. Note that CUDA is not supported by the Snap so
|
||||
performance will be limited.
|
||||
|
||||
The `edge` Snap channel is updated daily with the latest
|
||||
development from the `master` branch. To install:
|
||||
|
||||
```bash
|
||||
$ sudo snap install solana --edge --devmode
|
||||
```
|
||||
|
||||
Once installed the usual Solana programs will be available as `solona.*` instead
|
||||
of `solana-*`. For example, `solana.fullnode` instead of `solana-fullnode`.
|
||||
|
||||
Update to the latest version at any time with:
|
||||
|
||||
```bash
|
||||
$ snap info solana
|
||||
$ sudo snap refresh solana --devmode
|
||||
```
|
||||
|
||||
### Daemon support
|
||||
The snap supports running a leader, validator or leader+drone node as a system
|
||||
daemon.
|
||||
|
||||
Run `sudo snap get solana` to view the current daemon configuration. To view
|
||||
daemon logs:
|
||||
1. Run `sudo snap logs -n=all solana` to view the daemon initialization log
|
||||
2. Runtime logging can be found under `/var/snap/solana/current/leader/`,
|
||||
`/var/snap/solana/current/validator/`, or `/var/snap/solana/current/drone/` depending
|
||||
on which `mode=` was selected. Within each log directory the file `current`
|
||||
contains the latest log, and the files `*.s` (if present) contain older rotated
|
||||
logs.
|
||||
|
||||
Disable the daemon at any time by running:
|
||||
|
||||
```bash
|
||||
$ sudo snap set solana mode=
|
||||
```
|
||||
|
||||
Runtime configuration files for the daemon can be found in
|
||||
`/var/snap/solana/current/config`.
|
||||
|
||||
#### Leader daemon
|
||||
|
||||
```bash
|
||||
$ sudo snap set solana mode=leader
|
||||
```
|
||||
|
||||
`rsync` must be configured and running on the leader.
|
||||
|
||||
1. Ensure rsync is installed with `sudo apt-get -y install rsync`
|
||||
2. Edit `/etc/rsyncd.conf` to include the following
|
||||
```
|
||||
[config]
|
||||
path = /var/snap/solana/current/config
|
||||
hosts allow = *
|
||||
read only = true
|
||||
```
|
||||
3. Run `sudo systemctl enable rsync; sudo systemctl start rsync`
|
||||
4. Test by running `rsync -Pzravv rsync://<ip-address-of-leader>/config
|
||||
solana-config` from another machine. **If the leader is running on a cloud
|
||||
provider it may be necessary to configure the Firewall rules to permit ingress
|
||||
to port tcp:873, tcp:9900 and the port range udp:8000-udp:10000**
|
||||
|
||||
|
||||
To run both the Leader and Drone:
|
||||
|
||||
```bash
|
||||
$ sudo snap set solana mode=leader+drone
|
||||
|
||||
```
|
||||
|
||||
#### Validator daemon
|
||||
|
||||
```bash
|
||||
$ sudo snap set solana mode=validator
|
||||
|
||||
```
|
||||
|
||||
By default the validator will connect to **testnet.solana.com**, override
|
||||
the leader IP address by running:
|
||||
|
||||
```bash
|
||||
$ sudo snap set solana mode=validator leader-address=127.0.0.1 #<-- change IP address
|
||||
```
|
||||
|
||||
It's assumed that the leader will be running `rsync` configured as described in
|
||||
the previous **Leader daemon** section.
|
||||
|
Reference in New Issue
Block a user