parent
e8583f5cfe
commit
acf096c5f7
@ -59,6 +59,7 @@
|
||||
- [Validator](validator-proposal.md)
|
||||
- [Simple Payment and State Verification](simple-payment-and-state-verification.md)
|
||||
- [Embedding the Move Langauge](embedding-move.md)
|
||||
- [Cross-Program Invocation](cross-program-invocation.md)
|
||||
|
||||
- [Implemented Design Proposals](implemented-proposals.md)
|
||||
- [Blocktree](blocktree.md)
|
||||
|
111
book/src/cross-program-invocation.md
Normal file
111
book/src/cross-program-invocation.md
Normal file
@ -0,0 +1,111 @@
|
||||
# Cross-Program Invocation
|
||||
|
||||
## Problem
|
||||
|
||||
In today's implementation a client can create a transaction that modifies two
|
||||
accounts, each owned by a separate on-chain program:
|
||||
|
||||
```rust,ignore
|
||||
let message = Message::new(vec![
|
||||
token_instruction::pay(&alice_pubkey),
|
||||
acme_instruction::launch_missiles(&bob_pubkey),
|
||||
]);
|
||||
client.send_message(&[&alice_keypair, &bob_keypair], &message);
|
||||
```
|
||||
|
||||
The current implementation does not, however, allow the `acme` program to
|
||||
conveniently invoke `token` instructions on the client's behalf:
|
||||
|
||||
```rust,ignore
|
||||
let message = Message::new(vec![
|
||||
acme_instruction::pay_and_launch_missiles(&alice_pubkey, &bob_pubkey),
|
||||
]);
|
||||
client.send_message(&[&alice_keypair, &bob_keypair], &message);
|
||||
```
|
||||
|
||||
Currently, there is no way to create instruction `pay_and_launch_missiles` that executes
|
||||
`token_instruction::pay` from the `acme` program. The workaround is to extend the
|
||||
`acme` program with the implementation of the `token` program, and create `token`
|
||||
accounts with `ACME_PROGRAM_ID`, which the `acme` program is permitted to modify.
|
||||
With that workaround, `acme` can modify token-like accounts created by the `acme`
|
||||
program, but not token accounts created by the `token` program.
|
||||
|
||||
|
||||
## Proposed Solution
|
||||
|
||||
The goal of this design is to modify Solana's runtime such that an on-chain
|
||||
program can invoke an instruction from another program.
|
||||
|
||||
Given two on-chain programs `token` and `acme`, each implementing instructions
|
||||
`pay()` and `launch_missiles()` respectively, we would ideally like to implement
|
||||
the `acme` module with a call to a function defined in the `token` module:
|
||||
|
||||
```rust,ignore
|
||||
use token;
|
||||
|
||||
fn launch_missiles(keyed_accounts: &[KeyedAccount]) -> Result<()> {
|
||||
...
|
||||
}
|
||||
|
||||
fn pay_and_launch_missiles(keyed_accounts: &[KeyedAccount]) -> Result<()> {
|
||||
token::pay(&keyed_accounts[1..])?;
|
||||
|
||||
launch_missiles(keyed_accounts)?;
|
||||
}
|
||||
```
|
||||
|
||||
The above code would require that the `token` crate be dynamically linked,
|
||||
so that a custom linker could intercept calls and validate accesses to
|
||||
`keyed_accounts`. That is, even though the client intends to modify both
|
||||
`token` and `acme` accounts, only `token` program is permitted to modify
|
||||
the `token` account, and only the `acme` program is permitted to modify
|
||||
the `acme` account.
|
||||
|
||||
Backing off from that ideal cross-program call, a slightly more
|
||||
verbose solution is to expose token's existing `process_instruction()`
|
||||
entrypoint to the acme program:
|
||||
|
||||
```rust,ignore
|
||||
use token_instruction;
|
||||
|
||||
fn launch_missiles(keyed_accounts: &[KeyedAccount]) -> Result<()> {
|
||||
...
|
||||
}
|
||||
|
||||
fn pay_and_launch_missiles(keyed_accounts: &[KeyedAccount]) -> Result<()> {
|
||||
let alice_pubkey = keyed_accounts[1].key;
|
||||
let instruction = token_instruction::pay(&alice_pubkey);
|
||||
process_instruction(&instruction)?;
|
||||
|
||||
launch_missiles(keyed_accounts)?;
|
||||
}
|
||||
```
|
||||
|
||||
where `process_instruction()` is built into Solana's runtime and responsible
|
||||
for routing the given instruction to the `token` program via the instruction's
|
||||
`program_id` field. Before invoking `pay()`, the runtime must also ensure that
|
||||
`acme` didn't modify any accounts owned by `token`. It does this by calling
|
||||
`runtime::verify_instruction()` and then afterward updating all the `pre_*`
|
||||
variables to tentatively commit `acme`'s account modifications. After `pay()`
|
||||
completes, the runtime must again ensure that `token` didn't modify any
|
||||
accounts owned by `acme`. It should call `verify_instruction()` again, but this
|
||||
time with the `token` program ID. Lastly, after `pay_and_launch_missiles()`
|
||||
completes, the runtime must call `verify_instruction()` one more time, where it
|
||||
normally would, but using all updated `pre_*` variables. If executing
|
||||
`pay_and_launch_missiles()` up to `pay()` made no invalid account changes,
|
||||
`pay()` made no invalid changes, and executing from `pay()` until
|
||||
`pay_and_launch_missiles()` returns made no invalid changes, then the runtime
|
||||
can transitively assume `pay_and_launch_missiles()` as whole made no invalid
|
||||
account changes, and therefore commit all account modifications.
|
||||
|
||||
### Setting `KeyedAccount.is_signer`
|
||||
|
||||
When `process_instruction()` is invoked, the runtime must create a new
|
||||
`KeyedAccounts` parameter using the signatures from the *original* transaction
|
||||
data. Since the `token` program is immutable and existed on-chain prior to the
|
||||
`acme` program, the runtime can safely treat the transaction signature as a
|
||||
signature of a transaction with a `token` instruction. When the runtime sees
|
||||
the given instruction references `alice_pubkey`, it looks up the key in the
|
||||
transaction to see if that key corresponds to a transaction signature. In this
|
||||
case it does and so sets `KeyedAccount.is_signer`, thereby authorizing the
|
||||
`token` program to modify Alice's account.
|
Loading…
x
Reference in New Issue
Block a user