Store versioned transactions in the ledger, disabled by default (#19139)

* Add support for versioned transactions, but disable by default

* merge conflicts

* trent's feedback

* bump Cargo.lock

* Fix transaction error encoding

* Rename legacy_transaction method

* cargo clippy

* Clean up casts, int arithmetic, and unused methods

* Check for duplicates in sanitized message conversion

* fix clippy

* fix new test

* Fix bpf conditional compilation for message module
This commit is contained in:
Justin Starry
2021-08-17 15:17:56 -07:00
committed by GitHub
parent 098e2b2de3
commit c50b01cb60
47 changed files with 2373 additions and 1049 deletions

View File

@ -1,13 +0,0 @@
#![feature(test)]
extern crate test;
use solana_sdk::sanitized_transaction::SanitizedTransaction;
use test::Bencher;
#[bench]
fn bench_has_duplicates(bencher: &mut Bencher) {
bencher.iter(|| {
let data = test::black_box([1, 2, 3]);
assert!(!SanitizedTransaction::has_duplicates(&data));
})
}

View File

@ -3,9 +3,10 @@
extern crate test;
use bincode::{deserialize, serialize};
use solana_sdk::instruction::{AccountMeta, Instruction};
use solana_sdk::message::Message;
use solana_sdk::pubkey;
use solana_sdk::message::{Message, SanitizedMessage};
use solana_sdk::pubkey::{self, Pubkey};
use solana_sdk::sysvar::instructions;
use std::convert::TryFrom;
use test::Bencher;
fn make_instructions() -> Vec<Instruction> {
@ -25,7 +26,9 @@ fn bench_bincode_instruction_serialize(b: &mut Bencher) {
#[bench]
fn bench_manual_instruction_serialize(b: &mut Bencher) {
let instructions = make_instructions();
let message = Message::new(&instructions, None);
let message =
SanitizedMessage::try_from(Message::new(&instructions, Some(&Pubkey::new_unique())))
.unwrap();
b.iter(|| {
test::black_box(message.serialize_instructions());
});
@ -43,7 +46,9 @@ fn bench_bincode_instruction_deserialize(b: &mut Bencher) {
#[bench]
fn bench_manual_instruction_deserialize(b: &mut Bencher) {
let instructions = make_instructions();
let message = Message::new(&instructions, None);
let message =
SanitizedMessage::try_from(Message::new(&instructions, Some(&Pubkey::new_unique())))
.unwrap();
let serialized = message.serialize_instructions();
b.iter(|| {
for i in 0..instructions.len() {
@ -55,7 +60,9 @@ fn bench_manual_instruction_deserialize(b: &mut Bencher) {
#[bench]
fn bench_manual_instruction_deserialize_single(b: &mut Bencher) {
let instructions = make_instructions();
let message = Message::new(&instructions, None);
let message =
SanitizedMessage::try_from(Message::new(&instructions, Some(&Pubkey::new_unique())))
.unwrap();
let serialized = message.serialize_instructions();
b.iter(|| {
test::black_box(instructions::load_instruction_at(3, &serialized).unwrap());

View File

@ -35,6 +35,7 @@ solana-sdk-macro = { path = "../macro", version = "=1.8.0" }
thiserror = "1.0"
[target.'cfg(not(target_arch = "bpf"))'.dependencies]
bitflags = "1.3.1"
curve25519-dalek = "3.0.0"
libsecp256k1 = "0.6.0"
rand = "0.7.0"

View File

@ -369,6 +369,7 @@ impl Message {
i < self.header.num_required_signatures as usize
}
#[deprecated]
pub fn get_account_keys_by_lock_type(&self) -> (Vec<&Pubkey>, Vec<&Pubkey>) {
let mut writable_keys = vec![];
let mut readonly_keys = vec![];
@ -395,6 +396,7 @@ impl Message {
// 35..67 - program_id
// 67..69 - data len - u16
// 69..data_len - data
#[deprecated]
pub fn serialize_instructions(&self) -> Vec<u8> {
// 64 bytes is a reasonable guess, calculating exactly is slower in benchmarks
let mut data = Vec::with_capacity(self.instructions.len() * (32 * 2));
@ -485,10 +487,25 @@ impl Message {
.min(self.header.num_required_signatures as usize);
self.account_keys[..last_key].iter().collect()
}
/// Return true if account_keys has any duplicate keys
pub fn has_duplicates(&self) -> bool {
// Note: This is an O(n^2) algorithm, but requires no heap allocations. The benchmark
// `bench_has_duplicates` in benches/message_processor.rs shows that this implementation is
// ~50 times faster than using HashSet for very short slices.
for i in 1..self.account_keys.len() {
#[allow(clippy::integer_arithmetic)]
if self.account_keys[i..].contains(&self.account_keys[i - 1]) {
return true;
}
}
false
}
}
#[cfg(test)]
mod tests {
#![allow(deprecated)]
use super::*;
use crate::{hash, instruction::AccountMeta, message::MESSAGE_HEADER_LENGTH};
use std::collections::HashSet;

View File

@ -0,0 +1,245 @@
use {
crate::{
message::{legacy::BUILTIN_PROGRAMS_KEYS, v0},
pubkey::Pubkey,
sysvar,
},
std::collections::HashSet,
};
/// Combination of a version #0 message and its mapped addresses
#[derive(Debug, Clone)]
pub struct MappedMessage {
/// Message which loaded a collection of mapped addresses
pub message: v0::Message,
/// Collection of mapped addresses loaded by this message
pub mapped_addresses: MappedAddresses,
}
/// Collection of mapped addresses loaded succinctly by a transaction using
/// on-chain address map accounts.
#[derive(Clone, Default, Debug, PartialEq, Serialize, Deserialize)]
pub struct MappedAddresses {
/// List of addresses for writable loaded accounts
pub writable: Vec<Pubkey>,
/// List of addresses for read-only loaded accounts
pub readonly: Vec<Pubkey>,
}
impl MappedMessage {
/// Returns an iterator of account key segments. The ordering of segments
/// affects how account indexes from compiled instructions are resolved and
/// so should not be changed.
fn account_keys_segment_iter(&self) -> impl Iterator<Item = &Vec<Pubkey>> {
vec![
&self.message.account_keys,
&self.mapped_addresses.writable,
&self.mapped_addresses.readonly,
]
.into_iter()
}
/// Returns the total length of loaded accounts for this message
pub fn account_keys_len(&self) -> usize {
let mut len = 0usize;
for key_segment in self.account_keys_segment_iter() {
len = len.saturating_add(key_segment.len());
}
len
}
/// Iterator for the addresses of the loaded accounts for this message
pub fn account_keys_iter(&self) -> impl Iterator<Item = &Pubkey> {
self.account_keys_segment_iter().flatten()
}
/// Returns true if any account keys are duplicates
pub fn has_duplicates(&self) -> bool {
let mut uniq = HashSet::new();
self.account_keys_iter().any(|x| !uniq.insert(x))
}
/// Returns the address of the account at the specified index of the list of
/// message account keys constructed from unmapped keys, followed by mapped
/// writable addresses, and lastly the list of mapped readonly addresses.
pub fn get_account_key(&self, mut index: usize) -> Option<&Pubkey> {
for key_segment in self.account_keys_segment_iter() {
if index < key_segment.len() {
return Some(&key_segment[index]);
}
index = index.saturating_sub(key_segment.len());
}
None
}
/// Returns true if the account at the specified index was requested to be
/// writable. This method should not be used directly.
fn is_writable_index(&self, key_index: usize) -> bool {
let header = &self.message.header;
let num_account_keys = self.message.account_keys.len();
let num_signed_accounts = usize::from(header.num_required_signatures);
if key_index >= num_account_keys {
let mapped_addresses_index = key_index.saturating_sub(num_account_keys);
mapped_addresses_index < self.mapped_addresses.writable.len()
} else if key_index >= num_signed_accounts {
let num_unsigned_accounts = num_account_keys.saturating_sub(num_signed_accounts);
let num_writable_unsigned_accounts = num_unsigned_accounts
.saturating_sub(usize::from(header.num_readonly_unsigned_accounts));
let unsigned_account_index = key_index.saturating_sub(num_signed_accounts);
unsigned_account_index < num_writable_unsigned_accounts
} else {
let num_writable_signed_accounts = num_signed_accounts
.saturating_sub(usize::from(header.num_readonly_signed_accounts));
key_index < num_writable_signed_accounts
}
}
/// Returns true if the account at the specified index was loaded as writable
pub fn is_writable(&self, key_index: usize) -> bool {
if self.is_writable_index(key_index) {
if let Some(key) = self.get_account_key(key_index) {
return !(sysvar::is_sysvar_id(key) || BUILTIN_PROGRAMS_KEYS.contains(key));
}
}
false
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{message::MessageHeader, system_program, sysvar};
use itertools::Itertools;
fn create_test_mapped_message() -> (MappedMessage, [Pubkey; 6]) {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
let key4 = Pubkey::new_unique();
let key5 = Pubkey::new_unique();
let message = MappedMessage {
message: v0::Message {
header: MessageHeader {
num_required_signatures: 2,
num_readonly_signed_accounts: 1,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![key0, key1, key2, key3],
..v0::Message::default()
},
mapped_addresses: MappedAddresses {
writable: vec![key4],
readonly: vec![key5],
},
};
(message, [key0, key1, key2, key3, key4, key5])
}
#[test]
fn test_account_keys_segment_iter() {
let (message, keys) = create_test_mapped_message();
let expected_segments = vec![
vec![keys[0], keys[1], keys[2], keys[3]],
vec![keys[4]],
vec![keys[5]],
];
let mut iter = message.account_keys_segment_iter();
for expected_segment in expected_segments {
assert_eq!(iter.next(), Some(&expected_segment));
}
}
#[test]
fn test_account_keys_len() {
let (message, keys) = create_test_mapped_message();
assert_eq!(message.account_keys_len(), keys.len());
}
#[test]
fn test_account_keys_iter() {
let (message, keys) = create_test_mapped_message();
let mut iter = message.account_keys_iter();
for expected_key in keys {
assert_eq!(iter.next(), Some(&expected_key));
}
}
#[test]
fn test_has_duplicates() {
let message = create_test_mapped_message().0;
assert!(!message.has_duplicates());
}
#[test]
fn test_has_duplicates_with_dupe_keys() {
let create_message_with_dupe_keys = |mut keys: Vec<Pubkey>| MappedMessage {
message: v0::Message {
account_keys: keys.split_off(2),
..v0::Message::default()
},
mapped_addresses: MappedAddresses {
writable: keys.split_off(2),
readonly: keys,
},
};
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
let dupe_key = Pubkey::new_unique();
let keys = vec![key0, key1, key2, key3, dupe_key, dupe_key];
let keys_len = keys.len();
for keys in keys.into_iter().permutations(keys_len).unique() {
let message = create_message_with_dupe_keys(keys);
assert!(message.has_duplicates());
}
}
#[test]
fn test_get_account_key() {
let (message, keys) = create_test_mapped_message();
assert_eq!(message.get_account_key(0), Some(&keys[0]));
assert_eq!(message.get_account_key(1), Some(&keys[1]));
assert_eq!(message.get_account_key(2), Some(&keys[2]));
assert_eq!(message.get_account_key(3), Some(&keys[3]));
assert_eq!(message.get_account_key(4), Some(&keys[4]));
assert_eq!(message.get_account_key(5), Some(&keys[5]));
}
#[test]
fn test_is_writable_index() {
let message = create_test_mapped_message().0;
assert!(message.is_writable_index(0));
assert!(!message.is_writable_index(1));
assert!(message.is_writable_index(2));
assert!(!message.is_writable_index(3));
assert!(message.is_writable_index(4));
assert!(!message.is_writable_index(5));
}
#[test]
fn test_is_writable() {
let mut mapped_msg = create_test_mapped_message().0;
mapped_msg.message.account_keys[0] = sysvar::clock::id();
assert!(mapped_msg.is_writable_index(0));
assert!(!mapped_msg.is_writable(0));
mapped_msg.message.account_keys[0] = system_program::id();
assert!(mapped_msg.is_writable_index(0));
assert!(!mapped_msg.is_writable(0));
}
}

View File

@ -1,12 +1,26 @@
//! A library for generating a message from a sequence of instructions
mod legacy;
mod v0;
mod versions;
pub mod legacy;
#[cfg(not(target_arch = "bpf"))]
#[path = ""]
mod non_bpf_modules {
mod mapped;
mod sanitized;
pub mod v0;
mod versions;
pub use mapped::*;
pub use sanitized::*;
pub use versions::*;
}
pub use legacy::Message;
pub use versions::MESSAGE_VERSION_PREFIX;
#[cfg(not(target_arch = "bpf"))]
pub use non_bpf_modules::*;
/// The length of a message header in bytes
pub const MESSAGE_HEADER_LENGTH: usize = 3;
#[derive(Serialize, Deserialize, Default, Debug, PartialEq, Eq, Clone, AbiExample)]

View File

@ -0,0 +1,599 @@
use {
crate::{
fee_calculator::FeeCalculator,
hash::Hash,
instruction::{CompiledInstruction, Instruction},
message::{MappedAddresses, MappedMessage, Message, MessageHeader},
pubkey::Pubkey,
sanitize::{Sanitize, SanitizeError},
secp256k1_program,
serialize_utils::{append_slice, append_u16, append_u8},
},
bitflags::bitflags,
std::convert::TryFrom,
thiserror::Error,
};
/// Sanitized message of a transaction which includes a set of atomic
/// instructions to be executed on-chain
#[derive(Debug, Clone)]
pub enum SanitizedMessage {
/// Sanitized legacy message
Legacy(Message),
/// Sanitized version #0 message with mapped addresses
V0(MappedMessage),
}
#[derive(PartialEq, Debug, Error, Eq, Clone)]
pub enum SanitizeMessageError {
#[error("index out of bounds")]
IndexOutOfBounds,
#[error("value out of bounds")]
ValueOutOfBounds,
#[error("invalid value")]
InvalidValue,
#[error("duplicate account key")]
DuplicateAccountKey,
}
impl From<SanitizeError> for SanitizeMessageError {
fn from(err: SanitizeError) -> Self {
match err {
SanitizeError::IndexOutOfBounds => Self::IndexOutOfBounds,
SanitizeError::ValueOutOfBounds => Self::ValueOutOfBounds,
SanitizeError::InvalidValue => Self::InvalidValue,
}
}
}
impl TryFrom<Message> for SanitizedMessage {
type Error = SanitizeMessageError;
fn try_from(message: Message) -> Result<Self, Self::Error> {
message.sanitize()?;
let sanitized_msg = Self::Legacy(message);
if sanitized_msg.has_duplicates() {
return Err(SanitizeMessageError::DuplicateAccountKey);
}
Ok(sanitized_msg)
}
}
bitflags! {
struct InstructionsSysvarAccountMeta: u8 {
const NONE = 0b00000000;
const IS_SIGNER = 0b00000001;
const IS_WRITABLE = 0b00000010;
}
}
impl SanitizedMessage {
/// Return true if this message contains duplicate account keys
pub fn has_duplicates(&self) -> bool {
match self {
SanitizedMessage::Legacy(message) => message.has_duplicates(),
SanitizedMessage::V0(message) => message.has_duplicates(),
}
}
/// Message header which identifies the number of signer and writable or
/// readonly accounts
pub fn header(&self) -> &MessageHeader {
match self {
Self::Legacy(message) => &message.header,
Self::V0(mapped_msg) => &mapped_msg.message.header,
}
}
/// Returns a legacy message if this sanitized message wraps one
pub fn legacy_message(&self) -> Option<&Message> {
if let Self::Legacy(message) = &self {
Some(message)
} else {
None
}
}
/// Returns the fee payer for the transaction
pub fn fee_payer(&self) -> &Pubkey {
self.get_account_key(0)
.expect("sanitized message always has non-program fee payer at index 0")
}
/// The hash of a recent block, used for timing out a transaction
pub fn recent_blockhash(&self) -> &Hash {
match self {
Self::Legacy(message) => &message.recent_blockhash,
Self::V0(mapped_msg) => &mapped_msg.message.recent_blockhash,
}
}
/// Program instructions that will be executed in sequence and committed in
/// one atomic transaction if all succeed.
pub fn instructions(&self) -> &[CompiledInstruction] {
match self {
Self::Legacy(message) => &message.instructions,
Self::V0(mapped_msg) => &mapped_msg.message.instructions,
}
}
/// Program instructions iterator which includes each instruction's program
/// id.
pub fn program_instructions_iter(
&self,
) -> impl Iterator<Item = (&Pubkey, &CompiledInstruction)> {
match self {
Self::Legacy(message) => message.instructions.iter(),
Self::V0(mapped_msg) => mapped_msg.message.instructions.iter(),
}
.map(move |ix| {
(
self.get_account_key(usize::from(ix.program_id_index))
.expect("program id index is sanitized"),
ix,
)
})
}
/// Iterator of all account keys referenced in this message, included mapped keys.
pub fn account_keys_iter(&self) -> Box<dyn Iterator<Item = &Pubkey> + '_> {
match self {
Self::Legacy(message) => Box::new(message.account_keys.iter()),
Self::V0(mapped_msg) => Box::new(mapped_msg.account_keys_iter()),
}
}
/// Length of all account keys referenced in this message, included mapped keys.
pub fn account_keys_len(&self) -> usize {
match self {
Self::Legacy(message) => message.account_keys.len(),
Self::V0(mapped_msg) => mapped_msg.account_keys_len(),
}
}
/// Returns the address of the account at the specified index.
pub fn get_account_key(&self, index: usize) -> Option<&Pubkey> {
match self {
Self::Legacy(message) => message.account_keys.get(index),
Self::V0(message) => message.get_account_key(index),
}
}
/// Returns true if the account at the specified index is an input to some
/// program instruction in this message.
fn is_key_passed_to_program(&self, key_index: usize) -> bool {
if let Ok(key_index) = u8::try_from(key_index) {
self.instructions()
.iter()
.any(|ix| ix.accounts.contains(&key_index))
} else {
false
}
}
/// Returns true if the account at the specified index is invoked as a
/// program in this message.
pub fn is_invoked(&self, key_index: usize) -> bool {
if let Ok(key_index) = u8::try_from(key_index) {
self.instructions()
.iter()
.any(|ix| ix.program_id_index == key_index)
} else {
false
}
}
/// Returns true if the account at the specified index is not invoked as a
/// program or, if invoked, is passed to a program.
pub fn is_non_loader_key(&self, key_index: usize) -> bool {
!self.is_invoked(key_index) || self.is_key_passed_to_program(key_index)
}
/// Returns true if the account at the specified index is writable by the
/// instructions in this message.
pub fn is_writable(&self, index: usize) -> bool {
match self {
Self::Legacy(message) => message.is_writable(index),
Self::V0(message) => message.is_writable(index),
}
}
/// Returns true if the account at the specified index signed this
/// message.
pub fn is_signer(&self, index: usize) -> bool {
index < usize::from(self.header().num_required_signatures)
}
// First encode the number of instructions:
// [0..2 - num_instructions
//
// Then a table of offsets of where to find them in the data
// 3..2 * num_instructions table of instruction offsets
//
// Each instruction is then encoded as:
// 0..2 - num_accounts
// 2 - meta_byte -> (bit 0 signer, bit 1 is_writable)
// 3..35 - pubkey - 32 bytes
// 35..67 - program_id
// 67..69 - data len - u16
// 69..data_len - data
#[allow(clippy::integer_arithmetic)]
pub fn serialize_instructions(&self) -> Vec<u8> {
// 64 bytes is a reasonable guess, calculating exactly is slower in benchmarks
let mut data = Vec::with_capacity(self.instructions().len() * (32 * 2));
append_u16(&mut data, self.instructions().len() as u16);
for _ in 0..self.instructions().len() {
append_u16(&mut data, 0);
}
for (i, (program_id, instruction)) in self.program_instructions_iter().enumerate() {
let start_instruction_offset = data.len() as u16;
let start = 2 + (2 * i);
data[start..start + 2].copy_from_slice(&start_instruction_offset.to_le_bytes());
append_u16(&mut data, instruction.accounts.len() as u16);
for account_index in &instruction.accounts {
let account_index = *account_index as usize;
let is_signer = self.is_signer(account_index);
let is_writable = self.is_writable(account_index);
let mut account_meta = InstructionsSysvarAccountMeta::NONE;
if is_signer {
account_meta |= InstructionsSysvarAccountMeta::IS_SIGNER;
}
if is_writable {
account_meta |= InstructionsSysvarAccountMeta::IS_WRITABLE;
}
append_u8(&mut data, account_meta.bits());
append_slice(
&mut data,
self.get_account_key(account_index).unwrap().as_ref(),
);
}
append_slice(&mut data, program_id.as_ref());
append_u16(&mut data, instruction.data.len() as u16);
append_slice(&mut data, &instruction.data);
}
data
}
/// Return the mapped addresses for this message if it has any.
fn mapped_addresses(&self) -> Option<&MappedAddresses> {
match &self {
SanitizedMessage::V0(message) => Some(&message.mapped_addresses),
_ => None,
}
}
/// Return the number of readonly accounts loaded by this message.
pub fn num_readonly_accounts(&self) -> usize {
let mapped_readonly_addresses = self
.mapped_addresses()
.map(|keys| keys.readonly.len())
.unwrap_or_default();
mapped_readonly_addresses
.saturating_add(usize::from(self.header().num_readonly_signed_accounts))
.saturating_add(usize::from(self.header().num_readonly_unsigned_accounts))
}
fn try_position(&self, key: &Pubkey) -> Option<u8> {
u8::try_from(self.account_keys_iter().position(|k| k == key)?).ok()
}
/// Try to compile an instruction using the account keys in this message.
pub fn try_compile_instruction(&self, ix: &Instruction) -> Option<CompiledInstruction> {
let accounts: Vec<_> = ix
.accounts
.iter()
.map(|account_meta| self.try_position(&account_meta.pubkey))
.collect::<Option<_>>()?;
Some(CompiledInstruction {
program_id_index: self.try_position(&ix.program_id)?,
data: ix.data.clone(),
accounts,
})
}
/// Calculate the total fees for a transaction given a fee calculator
pub fn calculate_fee(&self, fee_calculator: &FeeCalculator) -> u64 {
let mut num_secp256k1_signatures: u64 = 0;
for (program_id, instruction) in self.program_instructions_iter() {
if secp256k1_program::check_id(program_id) {
if let Some(num_signatures) = instruction.data.get(0) {
num_secp256k1_signatures =
num_secp256k1_signatures.saturating_add(u64::from(*num_signatures));
}
}
}
fee_calculator.lamports_per_signature.saturating_mul(
u64::from(self.header().num_required_signatures)
.saturating_add(num_secp256k1_signatures),
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
instruction::{AccountMeta, Instruction},
message::v0,
secp256k1_program, system_instruction,
};
#[test]
fn test_try_from_message() {
let dupe_key = Pubkey::new_unique();
let legacy_message_with_dupes = Message {
header: MessageHeader {
num_required_signatures: 1,
..MessageHeader::default()
},
account_keys: vec![dupe_key, dupe_key],
..Message::default()
};
assert_eq!(
SanitizedMessage::try_from(legacy_message_with_dupes).err(),
Some(SanitizeMessageError::DuplicateAccountKey),
);
let legacy_message_with_no_signers = Message {
account_keys: vec![Pubkey::new_unique()],
..Message::default()
};
assert_eq!(
SanitizedMessage::try_from(legacy_message_with_no_signers).err(),
Some(SanitizeMessageError::IndexOutOfBounds),
);
}
#[test]
fn test_is_non_loader_key() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let loader_key = Pubkey::new_unique();
let instructions = vec![
CompiledInstruction::new(1, &(), vec![0]),
CompiledInstruction::new(2, &(), vec![0, 1]),
];
let message = SanitizedMessage::try_from(Message::new_with_compiled_instructions(
1,
0,
2,
vec![key0, key1, loader_key],
Hash::default(),
instructions,
))
.unwrap();
assert!(message.is_non_loader_key(0));
assert!(message.is_non_loader_key(1));
assert!(!message.is_non_loader_key(2));
}
#[test]
fn test_num_readonly_accounts() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
let key4 = Pubkey::new_unique();
let key5 = Pubkey::new_unique();
let legacy_message = SanitizedMessage::try_from(Message {
header: MessageHeader {
num_required_signatures: 2,
num_readonly_signed_accounts: 1,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![key0, key1, key2, key3],
..Message::default()
})
.unwrap();
assert_eq!(legacy_message.num_readonly_accounts(), 2);
let mapped_message = SanitizedMessage::V0(MappedMessage {
message: v0::Message {
header: MessageHeader {
num_required_signatures: 2,
num_readonly_signed_accounts: 1,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![key0, key1, key2, key3],
..v0::Message::default()
},
mapped_addresses: MappedAddresses {
writable: vec![key4],
readonly: vec![key5],
},
});
assert_eq!(mapped_message.num_readonly_accounts(), 3);
}
#[test]
#[allow(deprecated)]
fn test_serialize_instructions() {
let program_id0 = Pubkey::new_unique();
let program_id1 = Pubkey::new_unique();
let id0 = Pubkey::new_unique();
let id1 = Pubkey::new_unique();
let id2 = Pubkey::new_unique();
let id3 = Pubkey::new_unique();
let instructions = vec![
Instruction::new_with_bincode(program_id0, &0, vec![AccountMeta::new(id0, false)]),
Instruction::new_with_bincode(program_id0, &0, vec![AccountMeta::new(id1, true)]),
Instruction::new_with_bincode(
program_id1,
&0,
vec![AccountMeta::new_readonly(id2, false)],
),
Instruction::new_with_bincode(
program_id1,
&0,
vec![AccountMeta::new_readonly(id3, true)],
),
];
let message = Message::new(&instructions, Some(&id1));
let sanitized_message = SanitizedMessage::try_from(message.clone()).unwrap();
let serialized = sanitized_message.serialize_instructions();
// assert that SanitizedMessage::serialize_instructions has the same behavior as the
// deprecated Message::serialize_instructions method
assert_eq!(serialized, message.serialize_instructions());
// assert that Message::deserialize_instruction is compatible with SanitizedMessage::serialize_instructions
for (i, instruction) in instructions.iter().enumerate() {
assert_eq!(
Message::deserialize_instruction(i, &serialized).unwrap(),
*instruction
);
}
}
#[test]
fn test_calculate_fee() {
// Default: no fee.
let message =
SanitizedMessage::try_from(Message::new(&[], Some(&Pubkey::new_unique()))).unwrap();
assert_eq!(message.calculate_fee(&FeeCalculator::default()), 0);
// One signature, a fee.
assert_eq!(message.calculate_fee(&FeeCalculator::new(1)), 1);
// Two signatures, double the fee.
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let ix0 = system_instruction::transfer(&key0, &key1, 1);
let ix1 = system_instruction::transfer(&key1, &key0, 1);
let message = SanitizedMessage::try_from(Message::new(&[ix0, ix1], Some(&key0))).unwrap();
assert_eq!(message.calculate_fee(&FeeCalculator::new(2)), 4);
}
#[test]
fn test_try_compile_instruction() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let program_id = Pubkey::new_unique();
let valid_instruction = Instruction {
program_id,
accounts: vec![
AccountMeta::new_readonly(key0, false),
AccountMeta::new_readonly(key1, false),
AccountMeta::new_readonly(key2, false),
],
data: vec![],
};
let invalid_program_id_instruction = Instruction {
program_id: Pubkey::new_unique(),
accounts: vec![
AccountMeta::new_readonly(key0, false),
AccountMeta::new_readonly(key1, false),
AccountMeta::new_readonly(key2, false),
],
data: vec![],
};
let invalid_account_key_instruction = Instruction {
program_id: Pubkey::new_unique(),
accounts: vec![
AccountMeta::new_readonly(key0, false),
AccountMeta::new_readonly(key1, false),
AccountMeta::new_readonly(Pubkey::new_unique(), false),
],
data: vec![],
};
let legacy_message = SanitizedMessage::try_from(Message {
header: MessageHeader {
num_required_signatures: 1,
num_readonly_signed_accounts: 0,
num_readonly_unsigned_accounts: 0,
},
account_keys: vec![key0, key1, key2, program_id],
..Message::default()
})
.unwrap();
let mapped_message = SanitizedMessage::V0(MappedMessage {
message: v0::Message {
header: MessageHeader {
num_required_signatures: 1,
num_readonly_signed_accounts: 0,
num_readonly_unsigned_accounts: 0,
},
account_keys: vec![key0, key1],
..v0::Message::default()
},
mapped_addresses: MappedAddresses {
writable: vec![key2],
readonly: vec![program_id],
},
});
for message in vec![legacy_message, mapped_message] {
assert_eq!(
message.try_compile_instruction(&valid_instruction),
Some(CompiledInstruction {
program_id_index: 3,
accounts: vec![0, 1, 2],
data: vec![],
})
);
assert!(message
.try_compile_instruction(&invalid_program_id_instruction)
.is_none());
assert!(message
.try_compile_instruction(&invalid_account_key_instruction)
.is_none());
}
}
#[test]
fn test_calculate_fee_secp256k1() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let ix0 = system_instruction::transfer(&key0, &key1, 1);
let mut secp_instruction1 = Instruction {
program_id: secp256k1_program::id(),
accounts: vec![],
data: vec![],
};
let mut secp_instruction2 = Instruction {
program_id: secp256k1_program::id(),
accounts: vec![],
data: vec![1],
};
let message = SanitizedMessage::try_from(Message::new(
&[
ix0.clone(),
secp_instruction1.clone(),
secp_instruction2.clone(),
],
Some(&key0),
))
.unwrap();
assert_eq!(message.calculate_fee(&FeeCalculator::new(1)), 2);
secp_instruction1.data = vec![0];
secp_instruction2.data = vec![10];
let message = SanitizedMessage::try_from(Message::new(
&[ix0, secp_instruction1, secp_instruction2],
Some(&key0),
))
.unwrap();
assert_eq!(message.calculate_fee(&FeeCalculator::new(1)), 11);
}
}

View File

@ -1,9 +1,7 @@
#![allow(clippy::integer_arithmetic)]
use crate::{
hash::Hash,
instruction::CompiledInstruction,
message::MessageHeader,
message::{MessageHeader, MESSAGE_VERSION_PREFIX},
pubkey::Pubkey,
sanitize::{Sanitize, SanitizeError},
short_vec,
@ -62,8 +60,8 @@ impl Sanitize for Message {
fn sanitize(&self) -> Result<(), SanitizeError> {
// signing area and read-only non-signing area should not
// overlap
if self.header.num_required_signatures as usize
+ self.header.num_readonly_unsigned_accounts as usize
if usize::from(self.header.num_required_signatures)
.saturating_add(usize::from(self.header.num_readonly_unsigned_accounts))
> self.account_keys.len()
{
return Err(SanitizeError::IndexOutOfBounds);
@ -76,7 +74,7 @@ impl Sanitize for Message {
// there cannot be more address maps than read-only unsigned accounts.
let num_address_map_indexes = self.address_map_indexes.len();
if num_address_map_indexes > self.header.num_readonly_unsigned_accounts as usize {
if num_address_map_indexes > usize::from(self.header.num_readonly_unsigned_accounts) {
return Err(SanitizeError::IndexOutOfBounds);
}
@ -102,7 +100,7 @@ impl Sanitize for Message {
}
for ci in &self.instructions {
if ci.program_id_index as usize >= num_loaded_accounts {
if usize::from(ci.program_id_index) >= num_loaded_accounts {
return Err(SanitizeError::IndexOutOfBounds);
}
// A program cannot be a payer.
@ -110,7 +108,7 @@ impl Sanitize for Message {
return Err(SanitizeError::IndexOutOfBounds);
}
for ai in &ci.accounts {
if *ai as usize >= num_loaded_accounts {
if usize::from(*ai) >= num_loaded_accounts {
return Err(SanitizeError::IndexOutOfBounds);
}
}
@ -120,9 +118,17 @@ impl Sanitize for Message {
}
}
impl Message {
/// Serialize this message with a version #0 prefix using bincode encoding.
pub fn serialize(&self) -> Vec<u8> {
bincode::serialize(&(MESSAGE_VERSION_PREFIX, self)).unwrap()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::message::VersionedMessage;
fn simple_message() -> Message {
Message {
@ -381,4 +387,11 @@ mod tests {
.sanitize()
.is_err());
}
#[test]
fn test_serialize() {
let message = simple_message();
let versioned_msg = VersionedMessage::V0(message.clone());
assert_eq!(message.serialize(), versioned_msg.serialize());
}
}

View File

@ -26,13 +26,77 @@ pub const MESSAGE_VERSION_PREFIX: u8 = 0x80;
/// which message version is serialized starting from version `0`. If the first
/// is bit is not set, all bytes are used to encode the legacy `Message`
/// format.
#[frozen_abi(digest = "C4MZ7qztFJHUp1bVcuh7Gn43PQExadzEGyEb8UMn9unz")]
#[frozen_abi(digest = "qKNCqQpsBZYQxS9P3hVcFr8hAF4VnqV6ZBdC6KoUvHJ")]
#[derive(Debug, PartialEq, Eq, Clone, AbiEnumVisitor, AbiExample)]
pub enum VersionedMessage {
Legacy(Message),
V0(v0::Message),
}
impl VersionedMessage {
pub fn header(&self) -> &MessageHeader {
match self {
Self::Legacy(message) => &message.header,
Self::V0(message) => &message.header,
}
}
pub fn unmapped_keys(self) -> Vec<Pubkey> {
match self {
Self::Legacy(message) => message.account_keys,
Self::V0(message) => message.account_keys,
}
}
pub fn unmapped_keys_iter(&self) -> impl Iterator<Item = &Pubkey> {
match self {
Self::Legacy(message) => message.account_keys.iter(),
Self::V0(message) => message.account_keys.iter(),
}
}
pub fn unmapped_keys_len(&self) -> usize {
match self {
Self::Legacy(message) => message.account_keys.len(),
Self::V0(message) => message.account_keys.len(),
}
}
pub fn recent_blockhash(&self) -> &Hash {
match self {
Self::Legacy(message) => &message.recent_blockhash,
Self::V0(message) => &message.recent_blockhash,
}
}
pub fn set_recent_blockhash(&mut self, recent_blockhash: Hash) {
match self {
Self::Legacy(message) => message.recent_blockhash = recent_blockhash,
Self::V0(message) => message.recent_blockhash = recent_blockhash,
}
}
pub fn serialize(&self) -> Vec<u8> {
bincode::serialize(self).unwrap()
}
/// Compute the blake3 hash of this transaction's message
pub fn hash(&self) -> Hash {
let message_bytes = self.serialize();
Self::hash_raw_message(&message_bytes)
}
/// Compute the blake3 hash of a raw transaction message
pub fn hash_raw_message(message_bytes: &[u8]) -> Hash {
use blake3::traits::digest::Digest;
use std::convert::TryFrom;
let mut hasher = blake3::Hasher::new();
hasher.update(b"solana-tx-message-v1");
hasher.update(message_bytes);
Hash(<[u8; crate::hash::HASH_BYTES]>::try_from(hasher.finalize().as_slice()).unwrap())
}
}
impl Default for VersionedMessage {
fn default() -> Self {
Self::Legacy(Message::default())

View File

@ -1,10 +1,12 @@
#![cfg(feature = "full")]
use crate::transaction::{Transaction, TransactionError};
use borsh::{BorshDeserialize, BorshSchema, BorshSerialize};
use solana_sdk::{
borsh::try_from_slice_unchecked,
instruction::{Instruction, InstructionError},
use {
crate::{
borsh::try_from_slice_unchecked,
instruction::{Instruction, InstructionError},
transaction::{SanitizedTransaction, TransactionError},
},
borsh::{BorshDeserialize, BorshSchema, BorshSerialize},
};
crate::declare_id!("ComputeBudget111111111111111111111111111111");
@ -96,11 +98,14 @@ impl ComputeBudget {
heap_size: None,
}
}
pub fn process_transaction(&mut self, tx: &Transaction) -> Result<(), TransactionError> {
pub fn process_transaction(
&mut self,
tx: &SanitizedTransaction,
) -> Result<(), TransactionError> {
let error = TransactionError::InstructionError(0, InstructionError::InvalidInstructionData);
// Compute budget instruction must be in 1st or 2nd instruction (avoid nonce marker)
for instruction in tx.message().instructions.iter().take(2) {
if check_id(instruction.program_id(&tx.message().account_keys)) {
for (program_id, instruction) in tx.message().program_instructions_iter().take(2) {
if check_id(program_id) {
let ComputeBudgetInstruction::RequestUnits(units) =
try_from_slice_unchecked::<ComputeBudgetInstruction>(&instruction.data)
.map_err(|_| error.clone())?;
@ -117,22 +122,30 @@ impl ComputeBudget {
#[cfg(test)]
mod tests {
use super::*;
use crate::{hash::Hash, message::Message, pubkey::Pubkey, signature::Keypair, signer::Signer};
use crate::{
hash::Hash, message::Message, pubkey::Pubkey, signature::Keypair, signer::Signer,
transaction::Transaction,
};
use std::convert::TryInto;
fn sanitize_tx(tx: Transaction) -> SanitizedTransaction {
tx.try_into().unwrap()
}
#[test]
fn test_process_transaction() {
let payer_keypair = Keypair::new();
let mut compute_budget = ComputeBudget::default();
let tx = Transaction::new(
let tx = sanitize_tx(Transaction::new(
&[&payer_keypair],
Message::new(&[], Some(&payer_keypair.pubkey())),
Hash::default(),
);
));
compute_budget.process_transaction(&tx).unwrap();
assert_eq!(compute_budget, ComputeBudget::default());
let tx = Transaction::new(
let tx = sanitize_tx(Transaction::new(
&[&payer_keypair],
Message::new(
&[
@ -142,7 +155,7 @@ mod tests {
Some(&payer_keypair.pubkey()),
),
Hash::default(),
);
));
compute_budget.process_transaction(&tx).unwrap();
assert_eq!(
compute_budget,
@ -152,7 +165,7 @@ mod tests {
}
);
let tx = Transaction::new(
let tx = sanitize_tx(Transaction::new(
&[&payer_keypair],
Message::new(
&[
@ -162,7 +175,7 @@ mod tests {
Some(&payer_keypair.pubkey()),
),
Hash::default(),
);
));
let result = compute_budget.process_transaction(&tx);
assert_eq!(
result,
@ -172,7 +185,7 @@ mod tests {
))
);
let tx = Transaction::new(
let tx = sanitize_tx(Transaction::new(
&[&payer_keypair],
Message::new(
&[
@ -182,7 +195,7 @@ mod tests {
Some(&payer_keypair.pubkey()),
),
Hash::default(),
);
));
compute_budget.process_transaction(&tx).unwrap();
assert_eq!(
compute_budget,

View File

@ -195,6 +195,10 @@ pub mod mem_overlap_fix {
solana_sdk::declare_id!("vXDCFK7gphrEmyf5VnKgLmqbdJ4UxD2eZH1qbdouYKF");
}
pub mod versioned_tx_message_enabled {
solana_sdk::declare_id!("3KZZ6Ks1885aGBQ45fwRcPXVBCtzUvxhUTkwKMR41Tca");
}
lazy_static! {
/// Map of feature identifiers to user-visible description
pub static ref FEATURE_NAMES: HashMap<Pubkey, &'static str> = [
@ -238,6 +242,7 @@ lazy_static! {
(stake_merge_with_unmatched_credits_observed::id(), "allow merging active stakes with unmatched credits_observed #18985"),
(gate_large_block::id(), "validator checks block cost against max limit in realtime, reject if exceeds."),
(mem_overlap_fix::id(), "Memory overlap fix"),
(versioned_tx_message_enabled::id(), "enable versioned transaction message processing"),
/*************** ADD NEW FEATURES HERE ***************/
]
.iter()

View File

@ -40,7 +40,6 @@ pub mod program_utils;
pub mod pubkey;
pub mod recent_blockhashes_account;
pub mod rpc_port;
pub mod sanitized_transaction;
pub mod secp256k1_instruction;
pub mod shred_version;
pub mod signature;

View File

@ -1,87 +0,0 @@
#![cfg(feature = "full")]
use crate::{
hash::Hash,
sanitize::Sanitize,
transaction::{Result, Transaction, TransactionError},
};
use std::{borrow::Cow, convert::TryFrom, ops::Deref};
/// Sanitized transaction and the hash of its message
#[derive(Debug, Clone)]
pub struct SanitizedTransaction<'a> {
transaction: Cow<'a, Transaction>,
pub message_hash: Hash,
}
impl<'a> SanitizedTransaction<'a> {
pub fn try_create(transaction: Cow<'a, Transaction>, message_hash: Hash) -> Result<Self> {
transaction.sanitize()?;
if Self::has_duplicates(&transaction.message.account_keys) {
return Err(TransactionError::AccountLoadedTwice);
}
Ok(Self {
transaction,
message_hash,
})
}
/// Return true if the slice has any duplicate elements
pub fn has_duplicates<T: PartialEq>(xs: &[T]) -> bool {
// Note: This is an O(n^2) algorithm, but requires no heap allocations. The benchmark
// `bench_has_duplicates` in benches/message_processor.rs shows that this implementation is
// ~50 times faster than using HashSet for very short slices.
for i in 1..xs.len() {
#[allow(clippy::integer_arithmetic)]
if xs[i..].contains(&xs[i - 1]) {
return true;
}
}
false
}
}
impl Deref for SanitizedTransaction<'_> {
type Target = Transaction;
fn deref(&self) -> &Self::Target {
&self.transaction
}
}
impl<'a> TryFrom<Transaction> for SanitizedTransaction<'_> {
type Error = TransactionError;
fn try_from(transaction: Transaction) -> Result<Self> {
let message_hash = transaction.message().hash();
Self::try_create(Cow::Owned(transaction), message_hash)
}
}
impl<'a> TryFrom<&'a Transaction> for SanitizedTransaction<'a> {
type Error = TransactionError;
fn try_from(transaction: &'a Transaction) -> Result<Self> {
let message_hash = transaction.message().hash();
Self::try_create(Cow::Borrowed(transaction), message_hash)
}
}
pub trait SanitizedTransactionSlice<'a> {
fn as_transactions_iter(&'a self) -> Box<dyn Iterator<Item = &'a Transaction> + '_>;
}
impl<'a> SanitizedTransactionSlice<'a> for [SanitizedTransaction<'a>] {
fn as_transactions_iter(&'a self) -> Box<dyn Iterator<Item = &'a Transaction> + '_> {
Box::new(self.iter().map(Deref::deref))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_has_duplicates() {
assert!(!SanitizedTransaction::has_duplicates(&[1, 2]));
assert!(SanitizedTransaction::has_duplicates(&[1, 2, 1]));
}
}

View File

@ -2,23 +2,31 @@
#![cfg(feature = "full")]
use crate::sanitize::{Sanitize, SanitizeError};
use crate::secp256k1_instruction::verify_eth_addresses;
use crate::{
hash::Hash,
instruction::{CompiledInstruction, Instruction, InstructionError},
message::Message,
nonce::NONCED_TX_MARKER_IX_INDEX,
program_utils::limited_deserialize,
pubkey::Pubkey,
short_vec,
signature::{Signature, SignerError},
signers::Signers,
system_instruction::SystemInstruction,
system_program,
use {
crate::{
hash::Hash,
instruction::{CompiledInstruction, Instruction, InstructionError},
message::{Message, SanitizeMessageError},
nonce::NONCED_TX_MARKER_IX_INDEX,
program_utils::limited_deserialize,
pubkey::Pubkey,
sanitize::{Sanitize, SanitizeError},
secp256k1_instruction::verify_eth_addresses,
short_vec,
signature::{Signature, SignerError},
signers::Signers,
},
serde::Serialize,
solana_program::{system_instruction::SystemInstruction, system_program},
std::result,
thiserror::Error,
};
use std::result;
use thiserror::Error;
mod sanitized;
mod versioned;
pub use sanitized::*;
pub use versioned::*;
/// Reasons a transaction might be rejected.
#[derive(
@ -104,6 +112,10 @@ pub enum TransactionError {
"Transaction could not fit into current block without exceeding the Max Block Cost Limit"
)]
WouldExceedMaxBlockCostLimit,
/// Transaction version is unsupported
#[error("Transaction version is unsupported")]
UnsupportedVersion,
}
pub type Result<T> = result::Result<T, TransactionError>;
@ -114,6 +126,17 @@ impl From<SanitizeError> for TransactionError {
}
}
impl From<SanitizeMessageError> for TransactionError {
fn from(err: SanitizeMessageError) -> Self {
match err {
SanitizeMessageError::IndexOutOfBounds
| SanitizeMessageError::ValueOutOfBounds
| SanitizeMessageError::InvalidValue => Self::SanitizeFailure,
SanitizeMessageError::DuplicateAccountKey => Self::AccountLoadedTwice,
}
}
}
/// An atomic transaction
#[frozen_abi(digest = "FZtncnS1Xk8ghHfKiXE5oGiUbw2wJhmfXQuNgQR3K6Mc")]
#[derive(Debug, PartialEq, Default, Eq, Clone, Serialize, Deserialize, AbiExample)]
@ -230,10 +253,12 @@ impl Transaction {
.and_then(|instruction| instruction.accounts.get(accounts_index))
.map(|&account_keys_index| account_keys_index as usize)
}
pub fn key(&self, instruction_index: usize, accounts_index: usize) -> Option<&Pubkey> {
self.key_index(instruction_index, accounts_index)
.and_then(|account_keys_index| self.message.account_keys.get(account_keys_index))
}
pub fn signer_key(&self, instruction_index: usize, accounts_index: usize) -> Option<&Pubkey> {
match self.key_index(instruction_index, accounts_index) {
None => None,
@ -484,6 +509,7 @@ pub fn uses_durable_nonce(tx: &Transaction) -> Option<&CompiledInstruction> {
)
}
#[deprecated]
pub fn get_nonce_pubkey_from_instruction<'a>(
ix: &CompiledInstruction,
tx: &'a Transaction,
@ -496,6 +522,8 @@ pub fn get_nonce_pubkey_from_instruction<'a>(
#[cfg(test)]
mod tests {
#![allow(deprecated)]
use super::*;
use crate::{
hash::hash,
@ -553,6 +581,7 @@ mod tests {
assert_eq!(*get_program_id(&tx, 0), prog1);
assert_eq!(*get_program_id(&tx, 1), prog2);
}
#[test]
fn test_refs_invalid_program_id() {
let key = Keypair::new();

View File

@ -0,0 +1,226 @@
#![cfg(feature = "full")]
use {
crate::{
hash::Hash,
message::{v0, MappedAddresses, MappedMessage, SanitizedMessage, VersionedMessage},
nonce::NONCED_TX_MARKER_IX_INDEX,
program_utils::limited_deserialize,
pubkey::Pubkey,
sanitize::Sanitize,
secp256k1_instruction::verify_eth_addresses,
secp256k1_program,
signature::Signature,
transaction::{Result, Transaction, TransactionError, VersionedTransaction},
},
solana_program::{system_instruction::SystemInstruction, system_program},
std::convert::TryFrom,
};
/// Sanitized transaction and the hash of its message
#[derive(Debug, Clone)]
pub struct SanitizedTransaction {
message: SanitizedMessage,
message_hash: Hash,
signatures: Vec<Signature>,
}
/// Set of accounts that must be locked for safe transaction processing
#[derive(Debug, Clone, Default)]
pub struct TransactionAccountLocks<'a> {
/// List of readonly account key locks
pub readonly: Vec<&'a Pubkey>,
/// List of writable account key locks
pub writable: Vec<&'a Pubkey>,
}
impl TryFrom<Transaction> for SanitizedTransaction {
type Error = TransactionError;
fn try_from(tx: Transaction) -> Result<Self> {
tx.sanitize()?;
if tx.message.has_duplicates() {
return Err(TransactionError::AccountLoadedTwice);
}
Ok(Self {
message_hash: tx.message.hash(),
message: SanitizedMessage::Legacy(tx.message),
signatures: tx.signatures,
})
}
}
impl SanitizedTransaction {
/// Create a sanitized transaction from an unsanitized transaction.
/// If the input transaction uses address maps, attempt to map the
/// transaction keys to full addresses.
pub fn try_create(
tx: VersionedTransaction,
message_hash: Hash,
address_mapper: impl Fn(&v0::Message) -> Result<MappedAddresses>,
) -> Result<Self> {
tx.sanitize()?;
let signatures = tx.signatures;
let message = match tx.message {
VersionedMessage::Legacy(message) => SanitizedMessage::Legacy(message),
VersionedMessage::V0(message) => SanitizedMessage::V0(MappedMessage {
mapped_addresses: address_mapper(&message)?,
message,
}),
};
if message.has_duplicates() {
return Err(TransactionError::AccountLoadedTwice);
}
Ok(Self {
message,
message_hash,
signatures,
})
}
/// Return the first signature for this transaction.
///
/// Notes:
///
/// Sanitized transactions must have at least one signature because the
/// number of signatures must be greater than or equal to the message header
/// value `num_required_signatures` which must be greater than 0 itself.
pub fn signature(&self) -> &Signature {
&self.signatures[0]
}
/// Return the list of signatures for this transaction
pub fn signatures(&self) -> &[Signature] {
&self.signatures
}
/// Return the signed message
pub fn message(&self) -> &SanitizedMessage {
&self.message
}
/// Return the hash of the signed message
pub fn message_hash(&self) -> &Hash {
&self.message_hash
}
/// Convert this sanitized transaction into a versioned transaction for
/// recording in the ledger.
pub fn to_versioned_transaction(&self) -> VersionedTransaction {
let signatures = self.signatures.clone();
match &self.message {
SanitizedMessage::V0(mapped_msg) => VersionedTransaction {
signatures,
message: VersionedMessage::V0(mapped_msg.message.clone()),
},
SanitizedMessage::Legacy(message) => VersionedTransaction {
signatures,
message: VersionedMessage::Legacy(message.clone()),
},
}
}
/// Return the list of accounts that must be locked during processing this transaction.
pub fn get_account_locks(&self) -> TransactionAccountLocks {
let message = &self.message;
let num_readonly_accounts = message.num_readonly_accounts();
let num_writable_accounts = message
.account_keys_len()
.saturating_sub(num_readonly_accounts);
let mut account_locks = TransactionAccountLocks {
writable: Vec::with_capacity(num_writable_accounts),
readonly: Vec::with_capacity(num_readonly_accounts),
};
for (i, key) in message.account_keys_iter().enumerate() {
if message.is_writable(i) {
account_locks.writable.push(key);
} else {
account_locks.readonly.push(key);
}
}
account_locks
}
/// If the transaction uses a durable nonce, return the pubkey of the nonce account
pub fn get_durable_nonce(&self) -> Option<&Pubkey> {
self.message
.instructions()
.get(NONCED_TX_MARKER_IX_INDEX as usize)
.filter(
|ix| match self.message.get_account_key(ix.program_id_index as usize) {
Some(program_id) => system_program::check_id(program_id),
_ => false,
},
)
.filter(|ix| {
matches!(
limited_deserialize(&ix.data),
Ok(SystemInstruction::AdvanceNonceAccount)
)
})
.and_then(|ix| {
ix.accounts.get(0).and_then(|idx| {
let idx = *idx as usize;
self.message.get_account_key(idx)
})
})
}
/// Return the serialized message data to sign.
fn message_data(&self) -> Vec<u8> {
match &self.message {
SanitizedMessage::Legacy(message) => message.serialize(),
SanitizedMessage::V0(mapped_msg) => mapped_msg.message.serialize(),
}
}
/// Verify the length of signatures matches the value in the message header
pub fn verify_signatures_len(&self) -> bool {
self.signatures.len() == self.message.header().num_required_signatures as usize
}
/// Verify the transaction signatures
pub fn verify(&self) -> Result<()> {
let message_bytes = self.message_data();
if self
.signatures
.iter()
.zip(self.message.account_keys_iter())
.map(|(signature, pubkey)| signature.verify(pubkey.as_ref(), &message_bytes))
.any(|verified| !verified)
{
Err(TransactionError::SignatureFailure)
} else {
Ok(())
}
}
/// Verify the encoded secp256k1 signatures in this transaction
pub fn verify_precompiles(&self, libsecp256k1_0_5_upgrade_enabled: bool) -> Result<()> {
for (program_id, instruction) in self.message.program_instructions_iter() {
if secp256k1_program::check_id(program_id) {
let instruction_datas: Vec<_> = self
.message
.instructions()
.iter()
.map(|instruction| instruction.data.as_ref())
.collect();
let data = &instruction.data;
let e = verify_eth_addresses(
data,
&instruction_datas,
libsecp256k1_0_5_upgrade_enabled,
);
e.map_err(|_| TransactionError::InvalidAccountIndex)?;
}
}
Ok(())
}
}

View File

@ -0,0 +1,84 @@
//! Defines a transaction which supports multiple versions of messages.
#![cfg(feature = "full")]
use {
crate::{
hash::Hash,
message::VersionedMessage,
sanitize::{Sanitize, SanitizeError},
short_vec,
signature::Signature,
transaction::{Result, Transaction, TransactionError},
},
serde::Serialize,
};
// NOTE: Serialization-related changes must be paired with the direct read at sigverify.
/// An atomic transaction
#[derive(Debug, PartialEq, Default, Eq, Clone, Serialize, Deserialize, AbiExample)]
pub struct VersionedTransaction {
/// List of signatures
#[serde(with = "short_vec")]
pub signatures: Vec<Signature>,
/// Message to sign.
pub message: VersionedMessage,
}
impl Sanitize for VersionedTransaction {
fn sanitize(&self) -> std::result::Result<(), SanitizeError> {
self.message.sanitize()?;
// Once the "verify_tx_signatures_len" feature is enabled, this may be
// updated to an equality check.
if usize::from(self.message.header().num_required_signatures) > self.signatures.len() {
return Err(SanitizeError::IndexOutOfBounds);
}
// Signatures are verified before message keys are mapped so all signers
// must correspond to unmapped keys.
if self.signatures.len() > self.message.unmapped_keys_len() {
return Err(SanitizeError::IndexOutOfBounds);
}
Ok(())
}
}
impl From<Transaction> for VersionedTransaction {
fn from(transaction: Transaction) -> Self {
Self {
signatures: transaction.signatures,
message: VersionedMessage::Legacy(transaction.message),
}
}
}
impl VersionedTransaction {
/// Returns a legacy transaction if the transaction message is legacy.
pub fn into_legacy_transaction(self) -> Option<Transaction> {
match self.message {
VersionedMessage::Legacy(message) => Some(Transaction {
signatures: self.signatures,
message,
}),
_ => None,
}
}
/// Verify the transaction and hash its message
pub fn verify_and_hash_message(&self) -> Result<Hash> {
let message_bytes = self.message.serialize();
if self
.signatures
.iter()
.zip(self.message.unmapped_keys_iter())
.map(|(signature, pubkey)| signature.verify(pubkey.as_ref(), &message_bytes))
.any(|verified| !verified)
{
Err(TransactionError::SignatureFailure)
} else {
Ok(VersionedMessage::hash_raw_message(&message_bytes))
}
}
}