Store versioned transactions in the ledger, disabled by default (#19139)

* Add support for versioned transactions, but disable by default

* merge conflicts

* trent's feedback

* bump Cargo.lock

* Fix transaction error encoding

* Rename legacy_transaction method

* cargo clippy

* Clean up casts, int arithmetic, and unused methods

* Check for duplicates in sanitized message conversion

* fix clippy

* fix new test

* Fix bpf conditional compilation for message module
This commit is contained in:
Justin Starry
2021-08-17 15:17:56 -07:00
committed by GitHub
parent 098e2b2de3
commit c50b01cb60
47 changed files with 2373 additions and 1049 deletions

View File

@ -369,6 +369,7 @@ impl Message {
i < self.header.num_required_signatures as usize
}
#[deprecated]
pub fn get_account_keys_by_lock_type(&self) -> (Vec<&Pubkey>, Vec<&Pubkey>) {
let mut writable_keys = vec![];
let mut readonly_keys = vec![];
@ -395,6 +396,7 @@ impl Message {
// 35..67 - program_id
// 67..69 - data len - u16
// 69..data_len - data
#[deprecated]
pub fn serialize_instructions(&self) -> Vec<u8> {
// 64 bytes is a reasonable guess, calculating exactly is slower in benchmarks
let mut data = Vec::with_capacity(self.instructions.len() * (32 * 2));
@ -485,10 +487,25 @@ impl Message {
.min(self.header.num_required_signatures as usize);
self.account_keys[..last_key].iter().collect()
}
/// Return true if account_keys has any duplicate keys
pub fn has_duplicates(&self) -> bool {
// Note: This is an O(n^2) algorithm, but requires no heap allocations. The benchmark
// `bench_has_duplicates` in benches/message_processor.rs shows that this implementation is
// ~50 times faster than using HashSet for very short slices.
for i in 1..self.account_keys.len() {
#[allow(clippy::integer_arithmetic)]
if self.account_keys[i..].contains(&self.account_keys[i - 1]) {
return true;
}
}
false
}
}
#[cfg(test)]
mod tests {
#![allow(deprecated)]
use super::*;
use crate::{hash, instruction::AccountMeta, message::MESSAGE_HEADER_LENGTH};
use std::collections::HashSet;

View File

@ -0,0 +1,245 @@
use {
crate::{
message::{legacy::BUILTIN_PROGRAMS_KEYS, v0},
pubkey::Pubkey,
sysvar,
},
std::collections::HashSet,
};
/// Combination of a version #0 message and its mapped addresses
#[derive(Debug, Clone)]
pub struct MappedMessage {
/// Message which loaded a collection of mapped addresses
pub message: v0::Message,
/// Collection of mapped addresses loaded by this message
pub mapped_addresses: MappedAddresses,
}
/// Collection of mapped addresses loaded succinctly by a transaction using
/// on-chain address map accounts.
#[derive(Clone, Default, Debug, PartialEq, Serialize, Deserialize)]
pub struct MappedAddresses {
/// List of addresses for writable loaded accounts
pub writable: Vec<Pubkey>,
/// List of addresses for read-only loaded accounts
pub readonly: Vec<Pubkey>,
}
impl MappedMessage {
/// Returns an iterator of account key segments. The ordering of segments
/// affects how account indexes from compiled instructions are resolved and
/// so should not be changed.
fn account_keys_segment_iter(&self) -> impl Iterator<Item = &Vec<Pubkey>> {
vec![
&self.message.account_keys,
&self.mapped_addresses.writable,
&self.mapped_addresses.readonly,
]
.into_iter()
}
/// Returns the total length of loaded accounts for this message
pub fn account_keys_len(&self) -> usize {
let mut len = 0usize;
for key_segment in self.account_keys_segment_iter() {
len = len.saturating_add(key_segment.len());
}
len
}
/// Iterator for the addresses of the loaded accounts for this message
pub fn account_keys_iter(&self) -> impl Iterator<Item = &Pubkey> {
self.account_keys_segment_iter().flatten()
}
/// Returns true if any account keys are duplicates
pub fn has_duplicates(&self) -> bool {
let mut uniq = HashSet::new();
self.account_keys_iter().any(|x| !uniq.insert(x))
}
/// Returns the address of the account at the specified index of the list of
/// message account keys constructed from unmapped keys, followed by mapped
/// writable addresses, and lastly the list of mapped readonly addresses.
pub fn get_account_key(&self, mut index: usize) -> Option<&Pubkey> {
for key_segment in self.account_keys_segment_iter() {
if index < key_segment.len() {
return Some(&key_segment[index]);
}
index = index.saturating_sub(key_segment.len());
}
None
}
/// Returns true if the account at the specified index was requested to be
/// writable. This method should not be used directly.
fn is_writable_index(&self, key_index: usize) -> bool {
let header = &self.message.header;
let num_account_keys = self.message.account_keys.len();
let num_signed_accounts = usize::from(header.num_required_signatures);
if key_index >= num_account_keys {
let mapped_addresses_index = key_index.saturating_sub(num_account_keys);
mapped_addresses_index < self.mapped_addresses.writable.len()
} else if key_index >= num_signed_accounts {
let num_unsigned_accounts = num_account_keys.saturating_sub(num_signed_accounts);
let num_writable_unsigned_accounts = num_unsigned_accounts
.saturating_sub(usize::from(header.num_readonly_unsigned_accounts));
let unsigned_account_index = key_index.saturating_sub(num_signed_accounts);
unsigned_account_index < num_writable_unsigned_accounts
} else {
let num_writable_signed_accounts = num_signed_accounts
.saturating_sub(usize::from(header.num_readonly_signed_accounts));
key_index < num_writable_signed_accounts
}
}
/// Returns true if the account at the specified index was loaded as writable
pub fn is_writable(&self, key_index: usize) -> bool {
if self.is_writable_index(key_index) {
if let Some(key) = self.get_account_key(key_index) {
return !(sysvar::is_sysvar_id(key) || BUILTIN_PROGRAMS_KEYS.contains(key));
}
}
false
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{message::MessageHeader, system_program, sysvar};
use itertools::Itertools;
fn create_test_mapped_message() -> (MappedMessage, [Pubkey; 6]) {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
let key4 = Pubkey::new_unique();
let key5 = Pubkey::new_unique();
let message = MappedMessage {
message: v0::Message {
header: MessageHeader {
num_required_signatures: 2,
num_readonly_signed_accounts: 1,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![key0, key1, key2, key3],
..v0::Message::default()
},
mapped_addresses: MappedAddresses {
writable: vec![key4],
readonly: vec![key5],
},
};
(message, [key0, key1, key2, key3, key4, key5])
}
#[test]
fn test_account_keys_segment_iter() {
let (message, keys) = create_test_mapped_message();
let expected_segments = vec![
vec![keys[0], keys[1], keys[2], keys[3]],
vec![keys[4]],
vec![keys[5]],
];
let mut iter = message.account_keys_segment_iter();
for expected_segment in expected_segments {
assert_eq!(iter.next(), Some(&expected_segment));
}
}
#[test]
fn test_account_keys_len() {
let (message, keys) = create_test_mapped_message();
assert_eq!(message.account_keys_len(), keys.len());
}
#[test]
fn test_account_keys_iter() {
let (message, keys) = create_test_mapped_message();
let mut iter = message.account_keys_iter();
for expected_key in keys {
assert_eq!(iter.next(), Some(&expected_key));
}
}
#[test]
fn test_has_duplicates() {
let message = create_test_mapped_message().0;
assert!(!message.has_duplicates());
}
#[test]
fn test_has_duplicates_with_dupe_keys() {
let create_message_with_dupe_keys = |mut keys: Vec<Pubkey>| MappedMessage {
message: v0::Message {
account_keys: keys.split_off(2),
..v0::Message::default()
},
mapped_addresses: MappedAddresses {
writable: keys.split_off(2),
readonly: keys,
},
};
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
let dupe_key = Pubkey::new_unique();
let keys = vec![key0, key1, key2, key3, dupe_key, dupe_key];
let keys_len = keys.len();
for keys in keys.into_iter().permutations(keys_len).unique() {
let message = create_message_with_dupe_keys(keys);
assert!(message.has_duplicates());
}
}
#[test]
fn test_get_account_key() {
let (message, keys) = create_test_mapped_message();
assert_eq!(message.get_account_key(0), Some(&keys[0]));
assert_eq!(message.get_account_key(1), Some(&keys[1]));
assert_eq!(message.get_account_key(2), Some(&keys[2]));
assert_eq!(message.get_account_key(3), Some(&keys[3]));
assert_eq!(message.get_account_key(4), Some(&keys[4]));
assert_eq!(message.get_account_key(5), Some(&keys[5]));
}
#[test]
fn test_is_writable_index() {
let message = create_test_mapped_message().0;
assert!(message.is_writable_index(0));
assert!(!message.is_writable_index(1));
assert!(message.is_writable_index(2));
assert!(!message.is_writable_index(3));
assert!(message.is_writable_index(4));
assert!(!message.is_writable_index(5));
}
#[test]
fn test_is_writable() {
let mut mapped_msg = create_test_mapped_message().0;
mapped_msg.message.account_keys[0] = sysvar::clock::id();
assert!(mapped_msg.is_writable_index(0));
assert!(!mapped_msg.is_writable(0));
mapped_msg.message.account_keys[0] = system_program::id();
assert!(mapped_msg.is_writable_index(0));
assert!(!mapped_msg.is_writable(0));
}
}

View File

@ -1,12 +1,26 @@
//! A library for generating a message from a sequence of instructions
mod legacy;
mod v0;
mod versions;
pub mod legacy;
#[cfg(not(target_arch = "bpf"))]
#[path = ""]
mod non_bpf_modules {
mod mapped;
mod sanitized;
pub mod v0;
mod versions;
pub use mapped::*;
pub use sanitized::*;
pub use versions::*;
}
pub use legacy::Message;
pub use versions::MESSAGE_VERSION_PREFIX;
#[cfg(not(target_arch = "bpf"))]
pub use non_bpf_modules::*;
/// The length of a message header in bytes
pub const MESSAGE_HEADER_LENGTH: usize = 3;
#[derive(Serialize, Deserialize, Default, Debug, PartialEq, Eq, Clone, AbiExample)]

View File

@ -0,0 +1,599 @@
use {
crate::{
fee_calculator::FeeCalculator,
hash::Hash,
instruction::{CompiledInstruction, Instruction},
message::{MappedAddresses, MappedMessage, Message, MessageHeader},
pubkey::Pubkey,
sanitize::{Sanitize, SanitizeError},
secp256k1_program,
serialize_utils::{append_slice, append_u16, append_u8},
},
bitflags::bitflags,
std::convert::TryFrom,
thiserror::Error,
};
/// Sanitized message of a transaction which includes a set of atomic
/// instructions to be executed on-chain
#[derive(Debug, Clone)]
pub enum SanitizedMessage {
/// Sanitized legacy message
Legacy(Message),
/// Sanitized version #0 message with mapped addresses
V0(MappedMessage),
}
#[derive(PartialEq, Debug, Error, Eq, Clone)]
pub enum SanitizeMessageError {
#[error("index out of bounds")]
IndexOutOfBounds,
#[error("value out of bounds")]
ValueOutOfBounds,
#[error("invalid value")]
InvalidValue,
#[error("duplicate account key")]
DuplicateAccountKey,
}
impl From<SanitizeError> for SanitizeMessageError {
fn from(err: SanitizeError) -> Self {
match err {
SanitizeError::IndexOutOfBounds => Self::IndexOutOfBounds,
SanitizeError::ValueOutOfBounds => Self::ValueOutOfBounds,
SanitizeError::InvalidValue => Self::InvalidValue,
}
}
}
impl TryFrom<Message> for SanitizedMessage {
type Error = SanitizeMessageError;
fn try_from(message: Message) -> Result<Self, Self::Error> {
message.sanitize()?;
let sanitized_msg = Self::Legacy(message);
if sanitized_msg.has_duplicates() {
return Err(SanitizeMessageError::DuplicateAccountKey);
}
Ok(sanitized_msg)
}
}
bitflags! {
struct InstructionsSysvarAccountMeta: u8 {
const NONE = 0b00000000;
const IS_SIGNER = 0b00000001;
const IS_WRITABLE = 0b00000010;
}
}
impl SanitizedMessage {
/// Return true if this message contains duplicate account keys
pub fn has_duplicates(&self) -> bool {
match self {
SanitizedMessage::Legacy(message) => message.has_duplicates(),
SanitizedMessage::V0(message) => message.has_duplicates(),
}
}
/// Message header which identifies the number of signer and writable or
/// readonly accounts
pub fn header(&self) -> &MessageHeader {
match self {
Self::Legacy(message) => &message.header,
Self::V0(mapped_msg) => &mapped_msg.message.header,
}
}
/// Returns a legacy message if this sanitized message wraps one
pub fn legacy_message(&self) -> Option<&Message> {
if let Self::Legacy(message) = &self {
Some(message)
} else {
None
}
}
/// Returns the fee payer for the transaction
pub fn fee_payer(&self) -> &Pubkey {
self.get_account_key(0)
.expect("sanitized message always has non-program fee payer at index 0")
}
/// The hash of a recent block, used for timing out a transaction
pub fn recent_blockhash(&self) -> &Hash {
match self {
Self::Legacy(message) => &message.recent_blockhash,
Self::V0(mapped_msg) => &mapped_msg.message.recent_blockhash,
}
}
/// Program instructions that will be executed in sequence and committed in
/// one atomic transaction if all succeed.
pub fn instructions(&self) -> &[CompiledInstruction] {
match self {
Self::Legacy(message) => &message.instructions,
Self::V0(mapped_msg) => &mapped_msg.message.instructions,
}
}
/// Program instructions iterator which includes each instruction's program
/// id.
pub fn program_instructions_iter(
&self,
) -> impl Iterator<Item = (&Pubkey, &CompiledInstruction)> {
match self {
Self::Legacy(message) => message.instructions.iter(),
Self::V0(mapped_msg) => mapped_msg.message.instructions.iter(),
}
.map(move |ix| {
(
self.get_account_key(usize::from(ix.program_id_index))
.expect("program id index is sanitized"),
ix,
)
})
}
/// Iterator of all account keys referenced in this message, included mapped keys.
pub fn account_keys_iter(&self) -> Box<dyn Iterator<Item = &Pubkey> + '_> {
match self {
Self::Legacy(message) => Box::new(message.account_keys.iter()),
Self::V0(mapped_msg) => Box::new(mapped_msg.account_keys_iter()),
}
}
/// Length of all account keys referenced in this message, included mapped keys.
pub fn account_keys_len(&self) -> usize {
match self {
Self::Legacy(message) => message.account_keys.len(),
Self::V0(mapped_msg) => mapped_msg.account_keys_len(),
}
}
/// Returns the address of the account at the specified index.
pub fn get_account_key(&self, index: usize) -> Option<&Pubkey> {
match self {
Self::Legacy(message) => message.account_keys.get(index),
Self::V0(message) => message.get_account_key(index),
}
}
/// Returns true if the account at the specified index is an input to some
/// program instruction in this message.
fn is_key_passed_to_program(&self, key_index: usize) -> bool {
if let Ok(key_index) = u8::try_from(key_index) {
self.instructions()
.iter()
.any(|ix| ix.accounts.contains(&key_index))
} else {
false
}
}
/// Returns true if the account at the specified index is invoked as a
/// program in this message.
pub fn is_invoked(&self, key_index: usize) -> bool {
if let Ok(key_index) = u8::try_from(key_index) {
self.instructions()
.iter()
.any(|ix| ix.program_id_index == key_index)
} else {
false
}
}
/// Returns true if the account at the specified index is not invoked as a
/// program or, if invoked, is passed to a program.
pub fn is_non_loader_key(&self, key_index: usize) -> bool {
!self.is_invoked(key_index) || self.is_key_passed_to_program(key_index)
}
/// Returns true if the account at the specified index is writable by the
/// instructions in this message.
pub fn is_writable(&self, index: usize) -> bool {
match self {
Self::Legacy(message) => message.is_writable(index),
Self::V0(message) => message.is_writable(index),
}
}
/// Returns true if the account at the specified index signed this
/// message.
pub fn is_signer(&self, index: usize) -> bool {
index < usize::from(self.header().num_required_signatures)
}
// First encode the number of instructions:
// [0..2 - num_instructions
//
// Then a table of offsets of where to find them in the data
// 3..2 * num_instructions table of instruction offsets
//
// Each instruction is then encoded as:
// 0..2 - num_accounts
// 2 - meta_byte -> (bit 0 signer, bit 1 is_writable)
// 3..35 - pubkey - 32 bytes
// 35..67 - program_id
// 67..69 - data len - u16
// 69..data_len - data
#[allow(clippy::integer_arithmetic)]
pub fn serialize_instructions(&self) -> Vec<u8> {
// 64 bytes is a reasonable guess, calculating exactly is slower in benchmarks
let mut data = Vec::with_capacity(self.instructions().len() * (32 * 2));
append_u16(&mut data, self.instructions().len() as u16);
for _ in 0..self.instructions().len() {
append_u16(&mut data, 0);
}
for (i, (program_id, instruction)) in self.program_instructions_iter().enumerate() {
let start_instruction_offset = data.len() as u16;
let start = 2 + (2 * i);
data[start..start + 2].copy_from_slice(&start_instruction_offset.to_le_bytes());
append_u16(&mut data, instruction.accounts.len() as u16);
for account_index in &instruction.accounts {
let account_index = *account_index as usize;
let is_signer = self.is_signer(account_index);
let is_writable = self.is_writable(account_index);
let mut account_meta = InstructionsSysvarAccountMeta::NONE;
if is_signer {
account_meta |= InstructionsSysvarAccountMeta::IS_SIGNER;
}
if is_writable {
account_meta |= InstructionsSysvarAccountMeta::IS_WRITABLE;
}
append_u8(&mut data, account_meta.bits());
append_slice(
&mut data,
self.get_account_key(account_index).unwrap().as_ref(),
);
}
append_slice(&mut data, program_id.as_ref());
append_u16(&mut data, instruction.data.len() as u16);
append_slice(&mut data, &instruction.data);
}
data
}
/// Return the mapped addresses for this message if it has any.
fn mapped_addresses(&self) -> Option<&MappedAddresses> {
match &self {
SanitizedMessage::V0(message) => Some(&message.mapped_addresses),
_ => None,
}
}
/// Return the number of readonly accounts loaded by this message.
pub fn num_readonly_accounts(&self) -> usize {
let mapped_readonly_addresses = self
.mapped_addresses()
.map(|keys| keys.readonly.len())
.unwrap_or_default();
mapped_readonly_addresses
.saturating_add(usize::from(self.header().num_readonly_signed_accounts))
.saturating_add(usize::from(self.header().num_readonly_unsigned_accounts))
}
fn try_position(&self, key: &Pubkey) -> Option<u8> {
u8::try_from(self.account_keys_iter().position(|k| k == key)?).ok()
}
/// Try to compile an instruction using the account keys in this message.
pub fn try_compile_instruction(&self, ix: &Instruction) -> Option<CompiledInstruction> {
let accounts: Vec<_> = ix
.accounts
.iter()
.map(|account_meta| self.try_position(&account_meta.pubkey))
.collect::<Option<_>>()?;
Some(CompiledInstruction {
program_id_index: self.try_position(&ix.program_id)?,
data: ix.data.clone(),
accounts,
})
}
/// Calculate the total fees for a transaction given a fee calculator
pub fn calculate_fee(&self, fee_calculator: &FeeCalculator) -> u64 {
let mut num_secp256k1_signatures: u64 = 0;
for (program_id, instruction) in self.program_instructions_iter() {
if secp256k1_program::check_id(program_id) {
if let Some(num_signatures) = instruction.data.get(0) {
num_secp256k1_signatures =
num_secp256k1_signatures.saturating_add(u64::from(*num_signatures));
}
}
}
fee_calculator.lamports_per_signature.saturating_mul(
u64::from(self.header().num_required_signatures)
.saturating_add(num_secp256k1_signatures),
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
instruction::{AccountMeta, Instruction},
message::v0,
secp256k1_program, system_instruction,
};
#[test]
fn test_try_from_message() {
let dupe_key = Pubkey::new_unique();
let legacy_message_with_dupes = Message {
header: MessageHeader {
num_required_signatures: 1,
..MessageHeader::default()
},
account_keys: vec![dupe_key, dupe_key],
..Message::default()
};
assert_eq!(
SanitizedMessage::try_from(legacy_message_with_dupes).err(),
Some(SanitizeMessageError::DuplicateAccountKey),
);
let legacy_message_with_no_signers = Message {
account_keys: vec![Pubkey::new_unique()],
..Message::default()
};
assert_eq!(
SanitizedMessage::try_from(legacy_message_with_no_signers).err(),
Some(SanitizeMessageError::IndexOutOfBounds),
);
}
#[test]
fn test_is_non_loader_key() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let loader_key = Pubkey::new_unique();
let instructions = vec![
CompiledInstruction::new(1, &(), vec![0]),
CompiledInstruction::new(2, &(), vec![0, 1]),
];
let message = SanitizedMessage::try_from(Message::new_with_compiled_instructions(
1,
0,
2,
vec![key0, key1, loader_key],
Hash::default(),
instructions,
))
.unwrap();
assert!(message.is_non_loader_key(0));
assert!(message.is_non_loader_key(1));
assert!(!message.is_non_loader_key(2));
}
#[test]
fn test_num_readonly_accounts() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
let key4 = Pubkey::new_unique();
let key5 = Pubkey::new_unique();
let legacy_message = SanitizedMessage::try_from(Message {
header: MessageHeader {
num_required_signatures: 2,
num_readonly_signed_accounts: 1,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![key0, key1, key2, key3],
..Message::default()
})
.unwrap();
assert_eq!(legacy_message.num_readonly_accounts(), 2);
let mapped_message = SanitizedMessage::V0(MappedMessage {
message: v0::Message {
header: MessageHeader {
num_required_signatures: 2,
num_readonly_signed_accounts: 1,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![key0, key1, key2, key3],
..v0::Message::default()
},
mapped_addresses: MappedAddresses {
writable: vec![key4],
readonly: vec![key5],
},
});
assert_eq!(mapped_message.num_readonly_accounts(), 3);
}
#[test]
#[allow(deprecated)]
fn test_serialize_instructions() {
let program_id0 = Pubkey::new_unique();
let program_id1 = Pubkey::new_unique();
let id0 = Pubkey::new_unique();
let id1 = Pubkey::new_unique();
let id2 = Pubkey::new_unique();
let id3 = Pubkey::new_unique();
let instructions = vec![
Instruction::new_with_bincode(program_id0, &0, vec![AccountMeta::new(id0, false)]),
Instruction::new_with_bincode(program_id0, &0, vec![AccountMeta::new(id1, true)]),
Instruction::new_with_bincode(
program_id1,
&0,
vec![AccountMeta::new_readonly(id2, false)],
),
Instruction::new_with_bincode(
program_id1,
&0,
vec![AccountMeta::new_readonly(id3, true)],
),
];
let message = Message::new(&instructions, Some(&id1));
let sanitized_message = SanitizedMessage::try_from(message.clone()).unwrap();
let serialized = sanitized_message.serialize_instructions();
// assert that SanitizedMessage::serialize_instructions has the same behavior as the
// deprecated Message::serialize_instructions method
assert_eq!(serialized, message.serialize_instructions());
// assert that Message::deserialize_instruction is compatible with SanitizedMessage::serialize_instructions
for (i, instruction) in instructions.iter().enumerate() {
assert_eq!(
Message::deserialize_instruction(i, &serialized).unwrap(),
*instruction
);
}
}
#[test]
fn test_calculate_fee() {
// Default: no fee.
let message =
SanitizedMessage::try_from(Message::new(&[], Some(&Pubkey::new_unique()))).unwrap();
assert_eq!(message.calculate_fee(&FeeCalculator::default()), 0);
// One signature, a fee.
assert_eq!(message.calculate_fee(&FeeCalculator::new(1)), 1);
// Two signatures, double the fee.
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let ix0 = system_instruction::transfer(&key0, &key1, 1);
let ix1 = system_instruction::transfer(&key1, &key0, 1);
let message = SanitizedMessage::try_from(Message::new(&[ix0, ix1], Some(&key0))).unwrap();
assert_eq!(message.calculate_fee(&FeeCalculator::new(2)), 4);
}
#[test]
fn test_try_compile_instruction() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let program_id = Pubkey::new_unique();
let valid_instruction = Instruction {
program_id,
accounts: vec![
AccountMeta::new_readonly(key0, false),
AccountMeta::new_readonly(key1, false),
AccountMeta::new_readonly(key2, false),
],
data: vec![],
};
let invalid_program_id_instruction = Instruction {
program_id: Pubkey::new_unique(),
accounts: vec![
AccountMeta::new_readonly(key0, false),
AccountMeta::new_readonly(key1, false),
AccountMeta::new_readonly(key2, false),
],
data: vec![],
};
let invalid_account_key_instruction = Instruction {
program_id: Pubkey::new_unique(),
accounts: vec![
AccountMeta::new_readonly(key0, false),
AccountMeta::new_readonly(key1, false),
AccountMeta::new_readonly(Pubkey::new_unique(), false),
],
data: vec![],
};
let legacy_message = SanitizedMessage::try_from(Message {
header: MessageHeader {
num_required_signatures: 1,
num_readonly_signed_accounts: 0,
num_readonly_unsigned_accounts: 0,
},
account_keys: vec![key0, key1, key2, program_id],
..Message::default()
})
.unwrap();
let mapped_message = SanitizedMessage::V0(MappedMessage {
message: v0::Message {
header: MessageHeader {
num_required_signatures: 1,
num_readonly_signed_accounts: 0,
num_readonly_unsigned_accounts: 0,
},
account_keys: vec![key0, key1],
..v0::Message::default()
},
mapped_addresses: MappedAddresses {
writable: vec![key2],
readonly: vec![program_id],
},
});
for message in vec![legacy_message, mapped_message] {
assert_eq!(
message.try_compile_instruction(&valid_instruction),
Some(CompiledInstruction {
program_id_index: 3,
accounts: vec![0, 1, 2],
data: vec![],
})
);
assert!(message
.try_compile_instruction(&invalid_program_id_instruction)
.is_none());
assert!(message
.try_compile_instruction(&invalid_account_key_instruction)
.is_none());
}
}
#[test]
fn test_calculate_fee_secp256k1() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let ix0 = system_instruction::transfer(&key0, &key1, 1);
let mut secp_instruction1 = Instruction {
program_id: secp256k1_program::id(),
accounts: vec![],
data: vec![],
};
let mut secp_instruction2 = Instruction {
program_id: secp256k1_program::id(),
accounts: vec![],
data: vec![1],
};
let message = SanitizedMessage::try_from(Message::new(
&[
ix0.clone(),
secp_instruction1.clone(),
secp_instruction2.clone(),
],
Some(&key0),
))
.unwrap();
assert_eq!(message.calculate_fee(&FeeCalculator::new(1)), 2);
secp_instruction1.data = vec![0];
secp_instruction2.data = vec![10];
let message = SanitizedMessage::try_from(Message::new(
&[ix0, secp_instruction1, secp_instruction2],
Some(&key0),
))
.unwrap();
assert_eq!(message.calculate_fee(&FeeCalculator::new(1)), 11);
}
}

View File

@ -1,9 +1,7 @@
#![allow(clippy::integer_arithmetic)]
use crate::{
hash::Hash,
instruction::CompiledInstruction,
message::MessageHeader,
message::{MessageHeader, MESSAGE_VERSION_PREFIX},
pubkey::Pubkey,
sanitize::{Sanitize, SanitizeError},
short_vec,
@ -62,8 +60,8 @@ impl Sanitize for Message {
fn sanitize(&self) -> Result<(), SanitizeError> {
// signing area and read-only non-signing area should not
// overlap
if self.header.num_required_signatures as usize
+ self.header.num_readonly_unsigned_accounts as usize
if usize::from(self.header.num_required_signatures)
.saturating_add(usize::from(self.header.num_readonly_unsigned_accounts))
> self.account_keys.len()
{
return Err(SanitizeError::IndexOutOfBounds);
@ -76,7 +74,7 @@ impl Sanitize for Message {
// there cannot be more address maps than read-only unsigned accounts.
let num_address_map_indexes = self.address_map_indexes.len();
if num_address_map_indexes > self.header.num_readonly_unsigned_accounts as usize {
if num_address_map_indexes > usize::from(self.header.num_readonly_unsigned_accounts) {
return Err(SanitizeError::IndexOutOfBounds);
}
@ -102,7 +100,7 @@ impl Sanitize for Message {
}
for ci in &self.instructions {
if ci.program_id_index as usize >= num_loaded_accounts {
if usize::from(ci.program_id_index) >= num_loaded_accounts {
return Err(SanitizeError::IndexOutOfBounds);
}
// A program cannot be a payer.
@ -110,7 +108,7 @@ impl Sanitize for Message {
return Err(SanitizeError::IndexOutOfBounds);
}
for ai in &ci.accounts {
if *ai as usize >= num_loaded_accounts {
if usize::from(*ai) >= num_loaded_accounts {
return Err(SanitizeError::IndexOutOfBounds);
}
}
@ -120,9 +118,17 @@ impl Sanitize for Message {
}
}
impl Message {
/// Serialize this message with a version #0 prefix using bincode encoding.
pub fn serialize(&self) -> Vec<u8> {
bincode::serialize(&(MESSAGE_VERSION_PREFIX, self)).unwrap()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::message::VersionedMessage;
fn simple_message() -> Message {
Message {
@ -381,4 +387,11 @@ mod tests {
.sanitize()
.is_err());
}
#[test]
fn test_serialize() {
let message = simple_message();
let versioned_msg = VersionedMessage::V0(message.clone());
assert_eq!(message.serialize(), versioned_msg.serialize());
}
}

View File

@ -26,13 +26,77 @@ pub const MESSAGE_VERSION_PREFIX: u8 = 0x80;
/// which message version is serialized starting from version `0`. If the first
/// is bit is not set, all bytes are used to encode the legacy `Message`
/// format.
#[frozen_abi(digest = "C4MZ7qztFJHUp1bVcuh7Gn43PQExadzEGyEb8UMn9unz")]
#[frozen_abi(digest = "qKNCqQpsBZYQxS9P3hVcFr8hAF4VnqV6ZBdC6KoUvHJ")]
#[derive(Debug, PartialEq, Eq, Clone, AbiEnumVisitor, AbiExample)]
pub enum VersionedMessage {
Legacy(Message),
V0(v0::Message),
}
impl VersionedMessage {
pub fn header(&self) -> &MessageHeader {
match self {
Self::Legacy(message) => &message.header,
Self::V0(message) => &message.header,
}
}
pub fn unmapped_keys(self) -> Vec<Pubkey> {
match self {
Self::Legacy(message) => message.account_keys,
Self::V0(message) => message.account_keys,
}
}
pub fn unmapped_keys_iter(&self) -> impl Iterator<Item = &Pubkey> {
match self {
Self::Legacy(message) => message.account_keys.iter(),
Self::V0(message) => message.account_keys.iter(),
}
}
pub fn unmapped_keys_len(&self) -> usize {
match self {
Self::Legacy(message) => message.account_keys.len(),
Self::V0(message) => message.account_keys.len(),
}
}
pub fn recent_blockhash(&self) -> &Hash {
match self {
Self::Legacy(message) => &message.recent_blockhash,
Self::V0(message) => &message.recent_blockhash,
}
}
pub fn set_recent_blockhash(&mut self, recent_blockhash: Hash) {
match self {
Self::Legacy(message) => message.recent_blockhash = recent_blockhash,
Self::V0(message) => message.recent_blockhash = recent_blockhash,
}
}
pub fn serialize(&self) -> Vec<u8> {
bincode::serialize(self).unwrap()
}
/// Compute the blake3 hash of this transaction's message
pub fn hash(&self) -> Hash {
let message_bytes = self.serialize();
Self::hash_raw_message(&message_bytes)
}
/// Compute the blake3 hash of a raw transaction message
pub fn hash_raw_message(message_bytes: &[u8]) -> Hash {
use blake3::traits::digest::Digest;
use std::convert::TryFrom;
let mut hasher = blake3::Hasher::new();
hasher.update(b"solana-tx-message-v1");
hasher.update(message_bytes);
Hash(<[u8; crate::hash::HASH_BYTES]>::try_from(hasher.finalize().as_slice()).unwrap())
}
}
impl Default for VersionedMessage {
fn default() -> Self {
Self::Legacy(Message::default())