//! The `log` crate provides the foundational data structures for Proof-of-History, //! an ordered log of events in time. /// Each log entry contains three pieces of data. The 'num_hashes' field is the number /// of hashes performed since the previous entry. The 'id' field is the result /// of hashing 'id' from the previous entry 'num_hashes' times. The 'event' /// field points to an Event that took place shortly after 'id' was generated. /// /// If you divide 'num_hashes' by the amount of time it takes to generate a new hash, you /// get a duration estimate since the last event. Since processing power increases /// over time, one should expect the duration 'num_hashes' represents to decrease proportionally. /// Though processing power varies across nodes, the network gives priority to the /// fastest processor. Duration should therefore be estimated by assuming that the hash /// was generated by the fastest processor at the time the entry was logged. use hash::Hash; use entry::{create_entry, next_tick, Entry}; use event::Event; use rayon::prelude::*; /// Verifies the hashes and counts of a slice of events are all consistent. pub fn verify_slice(entries: &[Entry], start_hash: &Hash) -> bool { let genesis = [Entry::new_tick(Default::default(), start_hash)]; let event_pairs = genesis.par_iter().chain(entries).zip(entries); event_pairs.all(|(x0, x1)| x1.verify(&x0.id)) } pub fn create_entries(start_hash: &Hash, events: Vec) -> Vec { vec![create_entry(start_hash, 0, events)] } /// Create a vector of Ticks of length 'len' from 'start_hash' hash and 'num_hashes'. pub fn next_ticks(start_hash: &Hash, num_hashes: u64, len: usize) -> Vec { let mut id = *start_hash; let mut ticks = vec![]; for _ in 0..len { let entry = next_tick(&id, num_hashes); id = entry.id; ticks.push(entry); } ticks } #[cfg(test)] mod tests { use super::*; use hash::hash; #[test] fn test_verify_slice() { let zero = Hash::default(); let one = hash(&zero); assert!(verify_slice(&vec![], &zero)); // base case assert!(verify_slice(&vec![Entry::new_tick(0, &zero)], &zero)); // singleton case 1 assert!(!verify_slice(&vec![Entry::new_tick(0, &zero)], &one)); // singleton case 2, bad assert!(verify_slice(&next_ticks(&zero, 0, 2), &zero)); // inductive step let mut bad_ticks = next_ticks(&zero, 0, 2); bad_ticks[1].id = one; assert!(!verify_slice(&bad_ticks, &zero)); // inductive step, bad } // TODO: This is no longer relevant. Instead, test for reordered ticks. //#[test] //fn test_reorder_attack() { // let zero = Hash::default(); // // First, verify entries // let keypair = KeyPair::new(); // let tr0 = Transaction::new(&keypair, keypair.pubkey(), 0, zero); // let tr1 = Transaction::new(&keypair, keypair.pubkey(), 1, zero); // let events = vec![Event::Transaction(tr0), Event::Transaction(tr1)]; // let mut entries = create_entries(&zero, events); // assert!(verify_slice(&entries, &zero)); // // Next, swap two events and ensure verification fails. // let event0 = entries[0].event.clone(); // let event1 = entries[1].event.clone(); // entries[0].event = event1; // entries[1].event = event0; // assert!(!verify_slice(&entries, &zero)); //} } #[cfg(all(feature = "unstable", test))] mod bench { extern crate test; use self::test::Bencher; use log::*; #[bench] fn event_bench(bencher: &mut Bencher) { let start_hash = Default::default(); let events = next_ticks(&start_hash, 10_000, 8); bencher.iter(|| { assert!(verify_slice(&events, &start_hash)); }); } #[bench] fn event_bench_seq(bencher: &mut Bencher) { let start_hash = Default::default(); let events = next_ticks(&start_hash, 10_000, 8); bencher.iter(|| { assert!(verify_slice_seq(&events, &start_hash)); }); } }