//! The `cluster_info` module defines a data structure that is shared by all the nodes in the network over //! a gossip control plane. The goal is to share small bits of off-chain information and detect and //! repair partitions. //! //! This CRDT only supports a very limited set of types. A map of Pubkey -> Versioned Struct. //! The last version is always picked during an update. //! //! The network is arranged in layers: //! //! * layer 0 - Leader. //! * layer 1 - As many nodes as we can fit //! * layer 2 - Everyone else, if layer 1 is `2^10`, layer 2 should be able to fit `2^20` number of nodes. //! //! Bank needs to provide an interface for us to query the stake weight use crate::{ cluster_info_metrics::{submit_gossip_stats, Counter, GossipStats, ScopedTimer}, contact_info::ContactInfo, crds_gossip::CrdsGossip, crds_gossip_error::CrdsGossipError, crds_gossip_pull::{CrdsFilter, ProcessPullStats, CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS}, crds_value::{ self, CrdsData, CrdsValue, CrdsValueLabel, EpochSlotsIndex, LowestSlot, NodeInstance, SnapshotHash, Version, Vote, MAX_WALLCLOCK, }, data_budget::DataBudget, epoch_slots::EpochSlots, ping_pong::{self, PingCache, Pong}, result::{Error, Result}, weighted_shuffle::weighted_shuffle, }; use rand::{seq::SliceRandom, CryptoRng, Rng}; use solana_ledger::shred::Shred; use solana_sdk::sanitize::{Sanitize, SanitizeError}; use bincode::{serialize, serialized_size}; use itertools::Itertools; use rand::thread_rng; use rayon::prelude::*; use rayon::{ThreadPool, ThreadPoolBuilder}; use serde::ser::Serialize; use solana_measure::measure::Measure; use solana_metrics::{inc_new_counter_debug, inc_new_counter_error}; use solana_net_utils::{ bind_common, bind_common_in_range, bind_in_range, find_available_port_in_range, multi_bind_in_range, PortRange, }; use solana_perf::packet::{ limited_deserialize, to_packets_with_destination, Packet, Packets, PacketsRecycler, PACKET_DATA_SIZE, }; use solana_rayon_threadlimit::get_thread_count; use solana_runtime::bank_forks::BankForks; use solana_sdk::{ clock::{Slot, DEFAULT_MS_PER_SLOT, DEFAULT_SLOTS_PER_EPOCH}, feature_set::{self, FeatureSet}, hash::Hash, pubkey::Pubkey, signature::{Keypair, Signable, Signature, Signer}, timing::timestamp, transaction::Transaction, }; use solana_streamer::sendmmsg::multicast; use solana_streamer::streamer::{PacketReceiver, PacketSender}; use solana_vote_program::vote_state::MAX_LOCKOUT_HISTORY; use std::{ borrow::Cow, collections::{hash_map::Entry, HashMap, HashSet, VecDeque}, fmt::Debug, fs::{self, File}, io::BufReader, net::{IpAddr, Ipv4Addr, SocketAddr, TcpListener, UdpSocket}, ops::{Deref, DerefMut}, path::{Path, PathBuf}, sync::{ atomic::{AtomicBool, Ordering}, {Arc, Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard}, }, thread::{sleep, Builder, JoinHandle}, time::{Duration, Instant}, }; pub const VALIDATOR_PORT_RANGE: PortRange = (8000, 10_000); pub const MINIMUM_VALIDATOR_PORT_RANGE_WIDTH: u16 = 10; // VALIDATOR_PORT_RANGE must be at least this wide /// The Data plane fanout size, also used as the neighborhood size pub const DATA_PLANE_FANOUT: usize = 200; /// milliseconds we sleep for between gossip requests pub const GOSSIP_SLEEP_MILLIS: u64 = 100; /// The maximum size of a bloom filter pub const MAX_BLOOM_SIZE: usize = MAX_CRDS_OBJECT_SIZE; pub const MAX_CRDS_OBJECT_SIZE: usize = 928; /// A hard limit on incoming gossip messages /// Chosen to be able to handle 1Gbps of pure gossip traffic /// 128MB/PACKET_DATA_SIZE const MAX_GOSSIP_TRAFFIC: usize = 128_000_000 / PACKET_DATA_SIZE; /// Max size of serialized crds-values in a Protocol::PushMessage packet. This /// is equal to PACKET_DATA_SIZE minus serialized size of an empty push /// message: Protocol::PushMessage(Pubkey::default(), Vec::default()) const PUSH_MESSAGE_MAX_PAYLOAD_SIZE: usize = PACKET_DATA_SIZE - 44; const DUPLICATE_SHRED_MAX_PAYLOAD_SIZE: usize = PACKET_DATA_SIZE - 115; /// Maximum number of hashes in SnapshotHashes/AccountsHashes a node publishes /// such that the serialized size of the push/pull message stays below /// PACKET_DATA_SIZE. // TODO: Update this to 26 once payload sizes are upgraded across fleet. pub const MAX_SNAPSHOT_HASHES: usize = 16; /// Maximum number of origin nodes that a PruneData may contain, such that the /// serialized size of the PruneMessage stays below PACKET_DATA_SIZE. const MAX_PRUNE_DATA_NODES: usize = 32; /// Number of bytes in the randomly generated token sent with ping messages. const GOSSIP_PING_TOKEN_SIZE: usize = 32; const GOSSIP_PING_CACHE_CAPACITY: usize = 16384; const GOSSIP_PING_CACHE_TTL: Duration = Duration::from_secs(640); pub const DEFAULT_CONTACT_DEBUG_INTERVAL_MILLIS: u64 = 10_000; pub const DEFAULT_CONTACT_SAVE_INTERVAL_MILLIS: u64 = 60_000; /// Minimum serialized size of a Protocol::PullResponse packet. const PULL_RESPONSE_MIN_SERIALIZED_SIZE: usize = 161; // Limit number of unique pubkeys in the crds table. pub(crate) const CRDS_UNIQUE_PUBKEY_CAPACITY: usize = 4096; /// Minimum stake that a node should have so that its CRDS values are /// propagated through gossip (few types are exempted). const MIN_STAKE_FOR_GOSSIP: u64 = solana_sdk::native_token::LAMPORTS_PER_SOL; /// Minimum number of staked nodes for enforcing stakes in gossip. const MIN_NUM_STAKED_NODES: usize = 500; #[derive(Debug, PartialEq, Eq)] pub enum ClusterInfoError { NoPeers, NoLeader, BadContactInfo, BadGossipAddress, } struct GossipWriteLock<'a> { gossip: RwLockWriteGuard<'a, CrdsGossip>, timer: Measure, counter: &'a Counter, } impl<'a> GossipWriteLock<'a> { fn new( gossip: RwLockWriteGuard<'a, CrdsGossip>, label: &'static str, counter: &'a Counter, ) -> Self { Self { gossip, timer: Measure::start(label), counter, } } } impl<'a> Deref for GossipWriteLock<'a> { type Target = RwLockWriteGuard<'a, CrdsGossip>; fn deref(&self) -> &Self::Target { &self.gossip } } impl<'a> DerefMut for GossipWriteLock<'a> { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.gossip } } impl<'a> Drop for GossipWriteLock<'a> { fn drop(&mut self) { self.counter.add_measure(&mut self.timer); } } struct GossipReadLock<'a> { gossip: RwLockReadGuard<'a, CrdsGossip>, timer: Measure, counter: &'a Counter, } impl<'a> GossipReadLock<'a> { fn new( gossip: RwLockReadGuard<'a, CrdsGossip>, label: &'static str, counter: &'a Counter, ) -> Self { Self { gossip, timer: Measure::start(label), counter, } } } impl<'a> Deref for GossipReadLock<'a> { type Target = RwLockReadGuard<'a, CrdsGossip>; fn deref(&self) -> &Self::Target { &self.gossip } } impl<'a> Drop for GossipReadLock<'a> { fn drop(&mut self) { self.counter.add_measure(&mut self.timer); } } pub struct ClusterInfo { /// The network pub gossip: RwLock, /// set the keypair that will be used to sign crds values generated. It is unset only in tests. pub(crate) keypair: Arc, /// Network entrypoints entrypoints: RwLock>, outbound_budget: DataBudget, my_contact_info: RwLock, ping_cache: RwLock, id: Pubkey, stats: GossipStats, socket: UdpSocket, local_message_pending_push_queue: Mutex>, contact_debug_interval: u64, // milliseconds, 0 = disabled contact_save_interval: u64, // milliseconds, 0 = disabled instance: NodeInstance, contact_info_path: PathBuf, } impl Default for ClusterInfo { fn default() -> Self { Self::new_with_invalid_keypair(ContactInfo::default()) } } #[derive(Clone, Debug, Default, Deserialize, Serialize, AbiExample)] struct PruneData { /// Pubkey of the node that sent this prune data pubkey: Pubkey, /// Pubkeys of nodes that should be pruned prunes: Vec, /// Signature of this Prune Message signature: Signature, /// The Pubkey of the intended node/destination for this message destination: Pubkey, /// Wallclock of the node that generated this message wallclock: u64, } impl PruneData { /// New random PruneData for tests and benchmarks. #[cfg(test)] fn new_rand(rng: &mut R, self_keypair: &Keypair, num_nodes: Option) -> Self { let wallclock = crds_value::new_rand_timestamp(rng); let num_nodes = num_nodes.unwrap_or_else(|| rng.gen_range(0, MAX_PRUNE_DATA_NODES + 1)); let prunes = std::iter::repeat_with(Pubkey::new_unique) .take(num_nodes) .collect(); let mut prune_data = PruneData { pubkey: self_keypair.pubkey(), prunes, signature: Signature::default(), destination: Pubkey::new_unique(), wallclock, }; prune_data.sign(&self_keypair); prune_data } } impl Sanitize for PruneData { fn sanitize(&self) -> std::result::Result<(), SanitizeError> { if self.wallclock >= MAX_WALLCLOCK { return Err(SanitizeError::ValueOutOfBounds); } Ok(()) } } impl Signable for PruneData { fn pubkey(&self) -> Pubkey { self.pubkey } fn signable_data(&self) -> Cow<[u8]> { #[derive(Serialize)] struct SignData { pubkey: Pubkey, prunes: Vec, destination: Pubkey, wallclock: u64, } let data = SignData { pubkey: self.pubkey, prunes: self.prunes.clone(), destination: self.destination, wallclock: self.wallclock, }; Cow::Owned(serialize(&data).expect("serialize PruneData")) } fn get_signature(&self) -> Signature { self.signature } fn set_signature(&mut self, signature: Signature) { self.signature = signature } } struct PullData { from_addr: SocketAddr, caller: CrdsValue, filter: CrdsFilter, } pub fn make_accounts_hashes_message( keypair: &Keypair, accounts_hashes: Vec<(Slot, Hash)>, ) -> Option { let message = CrdsData::AccountsHashes(SnapshotHash::new(keypair.pubkey(), accounts_hashes)); Some(CrdsValue::new_signed(message, keypair)) } type Ping = ping_pong::Ping<[u8; GOSSIP_PING_TOKEN_SIZE]>; // TODO These messages should go through the gpu pipeline for spam filtering #[frozen_abi(digest = "CH5BWuhAyvUiUQYgu2Lcwu7eoiW6bQitvtLS1yFsdmrE")] #[derive(Serialize, Deserialize, Debug, AbiEnumVisitor, AbiExample)] #[allow(clippy::large_enum_variant)] enum Protocol { /// Gossip protocol messages PullRequest(CrdsFilter, CrdsValue), PullResponse(Pubkey, Vec), PushMessage(Pubkey, Vec), // TODO: Remove the redundant outer pubkey here, // and use the inner PruneData.pubkey instead. PruneMessage(Pubkey, PruneData), PingMessage(Ping), PongMessage(Pong), } impl Protocol { fn par_verify(self) -> Option { match self { Protocol::PullRequest(_, ref caller) => { if caller.verify() { Some(self) } else { inc_new_counter_info!("cluster_info-gossip_pull_request_verify_fail", 1); None } } Protocol::PullResponse(from, data) => { let size = data.len(); let data: Vec<_> = data.into_par_iter().filter(Signable::verify).collect(); if size != data.len() { inc_new_counter_info!( "cluster_info-gossip_pull_response_verify_fail", size - data.len() ); } if data.is_empty() { None } else { Some(Protocol::PullResponse(from, data)) } } Protocol::PushMessage(from, data) => { let size = data.len(); let data: Vec<_> = data.into_par_iter().filter(Signable::verify).collect(); if size != data.len() { inc_new_counter_info!( "cluster_info-gossip_push_msg_verify_fail", size - data.len() ); } if data.is_empty() { None } else { Some(Protocol::PushMessage(from, data)) } } Protocol::PruneMessage(_, ref data) => { if data.verify() { Some(self) } else { inc_new_counter_debug!("cluster_info-gossip_prune_msg_verify_fail", 1); None } } Protocol::PingMessage(ref ping) => { if ping.verify() { Some(self) } else { inc_new_counter_info!("cluster_info-gossip_ping_msg_verify_fail", 1); None } } Protocol::PongMessage(ref pong) => { if pong.verify() { Some(self) } else { inc_new_counter_info!("cluster_info-gossip_pong_msg_verify_fail", 1); None } } } } } impl Sanitize for Protocol { fn sanitize(&self) -> std::result::Result<(), SanitizeError> { match self { Protocol::PullRequest(filter, val) => { filter.sanitize()?; val.sanitize() } Protocol::PullResponse(_, val) => val.sanitize(), Protocol::PushMessage(_, val) => val.sanitize(), Protocol::PruneMessage(from, val) => { if *from != val.pubkey { Err(SanitizeError::InvalidValue) } else { val.sanitize() } } Protocol::PingMessage(ping) => ping.sanitize(), Protocol::PongMessage(pong) => pong.sanitize(), } } } // Rating for pull requests // A response table is generated as a // 2-d table arranged by target nodes and a // list of responses for that node, // to/responses_index is a location in that table. struct ResponseScore { to: usize, // to, index of who the response is to responses_index: usize, // index into the list of responses for a given to score: u64, // Relative score of the response } // Retains only CRDS values associated with nodes with enough stake. // (some crds types are exempted) fn retain_staked(values: &mut Vec, stakes: &HashMap) { values.retain(|value| { match value.data { CrdsData::ContactInfo(_) => true, // May Impact new validators starting up without any stake yet. CrdsData::Vote(_, _) => true, // Unstaked nodes can still help repair. CrdsData::EpochSlots(_, _) => true, // Unstaked nodes can still serve snapshots. CrdsData::SnapshotHashes(_) => true, // Otherwise unstaked voting nodes will show up with no version in // the various dashboards. CrdsData::Version(_) => true, CrdsData::LowestSlot(_, _) | CrdsData::AccountsHashes(_) | CrdsData::LegacyVersion(_) | CrdsData::NodeInstance(_) | CrdsData::DuplicateShred(_, _) => { let stake = stakes.get(&value.pubkey()).copied(); stake.unwrap_or_default() >= MIN_STAKE_FOR_GOSSIP } } }) } impl ClusterInfo { /// Without a valid keypair gossip will not function. Only useful for tests. pub fn new_with_invalid_keypair(contact_info: ContactInfo) -> Self { Self::new(contact_info, Arc::new(Keypair::new())) } pub fn new(contact_info: ContactInfo, keypair: Arc) -> Self { let id = contact_info.id; let me = Self { gossip: RwLock::new(CrdsGossip::default()), keypair, entrypoints: RwLock::new(vec![]), outbound_budget: DataBudget::default(), my_contact_info: RwLock::new(contact_info), ping_cache: RwLock::new(PingCache::new( GOSSIP_PING_CACHE_TTL, GOSSIP_PING_CACHE_CAPACITY, )), id, stats: GossipStats::default(), socket: UdpSocket::bind("0.0.0.0:0").unwrap(), local_message_pending_push_queue: Mutex::default(), contact_debug_interval: DEFAULT_CONTACT_DEBUG_INTERVAL_MILLIS, instance: NodeInstance::new(&mut thread_rng(), id, timestamp()), contact_info_path: PathBuf::default(), contact_save_interval: 0, // disabled }; { let mut gossip = me.gossip.write().unwrap(); gossip.set_self(&id); gossip.set_shred_version(me.my_shred_version()); } me.insert_self(); me.push_self(&HashMap::new(), None); me } // Should only be used by tests and simulations pub fn clone_with_id(&self, new_id: &Pubkey) -> Self { let mut gossip = self.gossip.read().unwrap().mock_clone(); gossip.id = *new_id; let mut my_contact_info = self.my_contact_info.read().unwrap().clone(); my_contact_info.id = *new_id; ClusterInfo { gossip: RwLock::new(gossip), keypair: self.keypair.clone(), entrypoints: RwLock::new(self.entrypoints.read().unwrap().clone()), outbound_budget: self.outbound_budget.clone_non_atomic(), my_contact_info: RwLock::new(my_contact_info), ping_cache: RwLock::new(self.ping_cache.read().unwrap().mock_clone()), id: *new_id, stats: GossipStats::default(), socket: UdpSocket::bind("0.0.0.0:0").unwrap(), local_message_pending_push_queue: Mutex::new( self.local_message_pending_push_queue .lock() .unwrap() .clone(), ), contact_debug_interval: self.contact_debug_interval, instance: NodeInstance::new(&mut thread_rng(), *new_id, timestamp()), contact_info_path: PathBuf::default(), contact_save_interval: 0, // disabled } } pub fn set_contact_debug_interval(&mut self, new: u64) { self.contact_debug_interval = new; } fn push_self( &self, stakes: &HashMap, gossip_validators: Option<&HashSet>, ) { let now = timestamp(); self.my_contact_info.write().unwrap().wallclock = now; let entries: Vec<_> = vec![ CrdsData::ContactInfo(self.my_contact_info()), CrdsData::NodeInstance(self.instance.with_wallclock(now)), ] .into_iter() .map(|v| CrdsValue::new_signed(v, &self.keypair)) .collect(); self.local_message_pending_push_queue .lock() .unwrap() .extend(entries); self.gossip .write() .unwrap() .refresh_push_active_set(stakes, gossip_validators); } // TODO kill insert_info, only used by tests pub fn insert_info(&self, contact_info: ContactInfo) { let value = CrdsValue::new_signed(CrdsData::ContactInfo(contact_info), &self.keypair); let _ = self.gossip.write().unwrap().crds.insert(value, timestamp()); } pub fn set_entrypoint(&self, entrypoint: ContactInfo) { self.set_entrypoints(vec![entrypoint]); } pub fn set_entrypoints(&self, entrypoints: Vec) { *self.entrypoints.write().unwrap() = entrypoints; } pub fn save_contact_info(&self) { let nodes = { let gossip = self.gossip.read().unwrap(); let entrypoint_gossip_addrs = self .entrypoints .read() .unwrap() .iter() .map(|contact_info| contact_info.gossip) .collect::>(); gossip .crds .get_nodes() .filter_map(|v| { // Don't save: // 1. Our ContactInfo. No point // 2. Entrypoint ContactInfo. This will avoid adopting the incorrect shred // version on restart if the entrypoint shred version changes. Also // there's not much point in saving entrypoint ContactInfo since by // definition that information is already available let contact_info = v.value.contact_info().unwrap(); if contact_info.id != self.id() && !entrypoint_gossip_addrs.contains(&contact_info.gossip) { return Some(v.value.clone()); } None }) .collect::>() }; if nodes.is_empty() { return; } let filename = self.contact_info_path.join("contact-info.bin"); let tmp_filename = &filename.with_extension("tmp"); match File::create(&tmp_filename) { Ok(mut file) => { if let Err(err) = bincode::serialize_into(&mut file, &nodes) { warn!( "Failed to serialize contact info info {}: {}", tmp_filename.display(), err ); return; } } Err(err) => { warn!("Failed to create {}: {}", tmp_filename.display(), err); return; } } match fs::rename(&tmp_filename, &filename) { Ok(()) => { info!( "Saved contact info for {} nodes into {}", nodes.len(), filename.display() ); } Err(err) => { warn!( "Failed to rename {} to {}: {}", tmp_filename.display(), filename.display(), err ); } } } pub fn restore_contact_info(&mut self, contact_info_path: &Path, contact_save_interval: u64) { self.contact_info_path = contact_info_path.into(); self.contact_save_interval = contact_save_interval; let filename = contact_info_path.join("contact-info.bin"); if !filename.exists() { return; } let nodes: Vec = match File::open(&filename) { Ok(file) => { bincode::deserialize_from(&mut BufReader::new(file)).unwrap_or_else(|err| { warn!("Failed to deserialize {}: {}", filename.display(), err); vec![] }) } Err(err) => { warn!("Failed to open {}: {}", filename.display(), err); vec![] } }; info!( "Loaded contact info for {} nodes from {}", nodes.len(), filename.display() ); let now = timestamp(); let mut gossip = self.gossip.write().unwrap(); for node in nodes { if let Err(err) = gossip.crds.insert(node, now) { warn!("crds insert failed {:?}", err); } } } pub fn id(&self) -> Pubkey { self.id } pub fn lookup_contact_info(&self, id: &Pubkey, map: F) -> Option where F: FnOnce(&ContactInfo) -> Y, { let entry = CrdsValueLabel::ContactInfo(*id); self.gossip .read() .unwrap() .crds .lookup(&entry) .and_then(CrdsValue::contact_info) .map(map) } pub fn lookup_contact_info_by_gossip_addr( &self, gossip_addr: &SocketAddr, ) -> Option { self.gossip .read() .unwrap() .crds .get_nodes_contact_info() .find(|peer| peer.gossip == *gossip_addr) .cloned() } pub fn my_contact_info(&self) -> ContactInfo { self.my_contact_info.read().unwrap().clone() } pub fn my_shred_version(&self) -> u16 { self.my_contact_info.read().unwrap().shred_version } pub fn lookup_epoch_slots(&self, ix: EpochSlotsIndex) -> EpochSlots { let entry = CrdsValueLabel::EpochSlots(ix, self.id()); self.gossip .read() .unwrap() .crds .lookup(&entry) .and_then(CrdsValue::epoch_slots) .cloned() .unwrap_or_else(|| EpochSlots::new(self.id(), timestamp())) } pub fn rpc_info_trace(&self) -> String { let now = timestamp(); let my_pubkey = self.id(); let my_shred_version = self.my_shred_version(); let nodes: Vec<_> = self .all_peers() .into_iter() .filter_map(|(node, last_updated)| { if !ContactInfo::is_valid_address(&node.rpc) { return None; } let node_version = self.get_node_version(&node.id); if my_shred_version != 0 && (node.shred_version != 0 && node.shred_version != my_shred_version) { return None; } fn addr_to_string(default_ip: &IpAddr, addr: &SocketAddr) -> String { if ContactInfo::is_valid_address(addr) { if &addr.ip() == default_ip { addr.port().to_string() } else { addr.to_string() } } else { "none".to_string() } } let rpc_addr = node.rpc.ip(); Some(format!( "{:15} {:2}| {:5} | {:44} |{:^9}| {:5}| {:5}| {}\n", rpc_addr.to_string(), if node.id == my_pubkey { "me" } else { "" }.to_string(), now.saturating_sub(last_updated), node.id.to_string(), if let Some(node_version) = node_version { node_version.to_string() } else { "-".to_string() }, addr_to_string(&rpc_addr, &node.rpc), addr_to_string(&rpc_addr, &node.rpc_pubsub), node.shred_version, )) }) .collect(); format!( "RPC Address |Age(ms)| Node identifier \ | Version | RPC |PubSub|ShredVer\n\ ------------------+-------+----------------------------------------------+---------+\ ------+------+--------\n\ {}\ RPC Enabled Nodes: {}", nodes.join(""), nodes.len(), ) } pub fn contact_info_trace(&self) -> String { let now = timestamp(); let mut shred_spy_nodes = 0usize; let mut total_spy_nodes = 0usize; let mut different_shred_nodes = 0usize; let my_pubkey = self.id(); let my_shred_version = self.my_shred_version(); let nodes: Vec<_> = self .all_peers() .into_iter() .filter_map(|(node, last_updated)| { let is_spy_node = Self::is_spy_node(&node); if is_spy_node { total_spy_nodes = total_spy_nodes.saturating_add(1); } let node_version = self.get_node_version(&node.id); if my_shred_version != 0 && (node.shred_version != 0 && node.shred_version != my_shred_version) { different_shred_nodes = different_shred_nodes.saturating_add(1); None } else { if is_spy_node { shred_spy_nodes = shred_spy_nodes.saturating_add(1); } fn addr_to_string(default_ip: &IpAddr, addr: &SocketAddr) -> String { if ContactInfo::is_valid_address(addr) { if &addr.ip() == default_ip { addr.port().to_string() } else { addr.to_string() } } else { "none".to_string() } } let ip_addr = node.gossip.ip(); Some(format!( "{:15} {:2}| {:5} | {:44} |{:^9}| {:5}| {:5}| {:5}| {:5}| {:5}| {:5}| {:5}| {}\n", if ContactInfo::is_valid_address(&node.gossip) { ip_addr.to_string() } else { "none".to_string() }, if node.id == my_pubkey { "me" } else { "" }.to_string(), now.saturating_sub(last_updated), node.id.to_string(), if let Some(node_version) = node_version { node_version.to_string() } else { "-".to_string() }, addr_to_string(&ip_addr, &node.gossip), addr_to_string(&ip_addr, &node.tpu), addr_to_string(&ip_addr, &node.tpu_forwards), addr_to_string(&ip_addr, &node.tvu), addr_to_string(&ip_addr, &node.tvu_forwards), addr_to_string(&ip_addr, &node.repair), addr_to_string(&ip_addr, &node.serve_repair), node.shred_version, )) } }) .collect(); format!( "IP Address |Age(ms)| Node identifier \ | Version |Gossip| TPU |TPUfwd| TVU |TVUfwd|Repair|ServeR|ShredVer\n\ ------------------+-------+----------------------------------------------+---------+\ ------+------+------+------+------+------+------+--------\n\ {}\ Nodes: {}{}{}", nodes.join(""), nodes.len().saturating_sub(shred_spy_nodes), if total_spy_nodes > 0 { format!("\nSpies: {}", total_spy_nodes) } else { "".to_string() }, if different_shred_nodes > 0 { format!( "\nNodes with different shred version: {}", different_shred_nodes ) } else { "".to_string() } ) } pub fn push_lowest_slot(&self, id: Pubkey, min: Slot) { let now = timestamp(); let last = self .gossip .read() .unwrap() .crds .lookup(&CrdsValueLabel::LowestSlot(self.id())) .and_then(|x| x.lowest_slot()) .map(|x| x.lowest) .unwrap_or(0); if min > last { let entry = CrdsValue::new_signed( CrdsData::LowestSlot(0, LowestSlot::new(id, min, now)), &self.keypair, ); self.local_message_pending_push_queue .lock() .unwrap() .push(entry); } } pub fn push_epoch_slots(&self, update: &[Slot]) { let mut num = 0; let mut current_slots: Vec<_> = (0..crds_value::MAX_EPOCH_SLOTS) .filter_map(|ix| { Some(( self.time_gossip_read_lock( "lookup_epoch_slots", &self.stats.epoch_slots_lookup, ) .crds .lookup(&CrdsValueLabel::EpochSlots(ix, self.id())) .and_then(CrdsValue::epoch_slots) .and_then(|x| Some((x.wallclock, x.first_slot()?)))?, ix, )) }) .collect(); current_slots.sort_unstable(); let min_slot: Slot = current_slots .iter() .map(|((_, s), _)| *s) .min() .unwrap_or(0); let max_slot: Slot = update.iter().max().cloned().unwrap_or(0); let total_slots = max_slot as isize - min_slot as isize; // WARN if CRDS is not storing at least a full epoch worth of slots if DEFAULT_SLOTS_PER_EPOCH as isize > total_slots && crds_value::MAX_EPOCH_SLOTS as usize <= current_slots.len() { inc_new_counter_warn!("cluster_info-epoch_slots-filled", 1); warn!( "EPOCH_SLOTS are filling up FAST {}/{}", total_slots, current_slots.len() ); } let mut reset = false; let mut epoch_slot_index = current_slots.last().map(|(_, x)| *x).unwrap_or(0); while num < update.len() { let ix = (epoch_slot_index % crds_value::MAX_EPOCH_SLOTS) as u8; let now = timestamp(); let mut slots = if !reset { self.lookup_epoch_slots(ix) } else { EpochSlots::new(self.id(), now) }; let n = slots.fill(&update[num..], now); if n > 0 { let entry = CrdsValue::new_signed(CrdsData::EpochSlots(ix, slots), &self.keypair); self.local_message_pending_push_queue .lock() .unwrap() .push(entry); } num += n; if num < update.len() { epoch_slot_index += 1; reset = true; } } } fn time_gossip_read_lock<'a>( &'a self, label: &'static str, counter: &'a Counter, ) -> GossipReadLock<'a> { GossipReadLock::new(self.gossip.read().unwrap(), label, counter) } fn time_gossip_write_lock<'a>( &'a self, label: &'static str, counter: &'a Counter, ) -> GossipWriteLock<'a> { GossipWriteLock::new(self.gossip.write().unwrap(), label, counter) } pub(crate) fn push_message(&self, message: CrdsValue) { self.local_message_pending_push_queue .lock() .unwrap() .push(message); } pub fn push_accounts_hashes(&self, accounts_hashes: Vec<(Slot, Hash)>) { if accounts_hashes.len() > MAX_SNAPSHOT_HASHES { warn!( "accounts hashes too large, ignored: {}", accounts_hashes.len(), ); return; } let message = CrdsData::AccountsHashes(SnapshotHash::new(self.id(), accounts_hashes)); self.push_message(CrdsValue::new_signed(message, &self.keypair)); } pub fn push_snapshot_hashes(&self, snapshot_hashes: Vec<(Slot, Hash)>) { if snapshot_hashes.len() > MAX_SNAPSHOT_HASHES { warn!( "snapshot hashes too large, ignored: {}", snapshot_hashes.len(), ); return; } let message = CrdsData::SnapshotHashes(SnapshotHash::new(self.id(), snapshot_hashes)); self.push_message(CrdsValue::new_signed(message, &self.keypair)); } fn push_vote_at_index(&self, vote: Transaction, vote_index: u8) { assert!((vote_index as usize) < MAX_LOCKOUT_HISTORY); let self_pubkey = self.id(); let now = timestamp(); let vote = Vote::new(self_pubkey, vote, now); let vote = CrdsData::Vote(vote_index, vote); let vote = CrdsValue::new_signed(vote, &self.keypair); self.gossip .write() .unwrap() .process_push_message(&self_pubkey, vec![vote], now); } pub fn push_vote(&self, tower: &[Slot], vote: Transaction) { debug_assert!(tower.iter().tuple_windows().all(|(a, b)| a < b)); // Find a crds vote which is evicted from the tower, and recycle its // vote-index. This can be either an old vote which is popped off the // deque, or recent vote which has expired before getting enough // confirmations. // If all votes are still in the tower, add a new vote-index. If more // than one vote is evicted, the oldest one by wallclock is returned in // order to allow more recent votes more time to propagate through // gossip. // TODO: When there are more than one vote evicted from the tower, only // one crds vote is overwritten here. Decide what to do with the rest. let mut num_crds_votes = 0; let self_pubkey = self.id(); // Returns true if the tower does not contain the vote.slot. let should_evict_vote = |vote: &Vote| -> bool { match vote.slot() { Some(slot) => !tower.contains(&slot), None => { error!("crds vote with no slots!"); true } } }; let vote_index = { let gossip = self.time_gossip_read_lock("gossip_read_push_vote", &self.stats.push_vote_read); (0..MAX_LOCKOUT_HISTORY as u8) .filter_map(|ix| { let vote = CrdsValueLabel::Vote(ix, self_pubkey); let vote = gossip.crds.lookup(&vote)?; num_crds_votes += 1; match &vote.data { CrdsData::Vote(_, vote) if should_evict_vote(vote) => { Some((vote.wallclock, ix)) } CrdsData::Vote(_, _) => None, _ => panic!("this should not happen!"), } }) .min() // Boot the oldest evicted vote by wallclock. .map(|(_ /*wallclock*/, ix)| ix) }; let vote_index = vote_index.unwrap_or(num_crds_votes); self.push_vote_at_index(vote, vote_index); } pub fn refresh_vote(&self, vote: Transaction, vote_slot: Slot) { let vote_index = { let gossip = self.time_gossip_read_lock("gossip_read_push_vote", &self.stats.push_vote_read); (0..MAX_LOCKOUT_HISTORY as u8).find(|ix| { let vote = CrdsValueLabel::Vote(*ix, self.id()); if let Some(vote) = gossip.crds.lookup(&vote) { match &vote.data { CrdsData::Vote(_, prev_vote) => match prev_vote.slot() { Some(prev_vote_slot) => prev_vote_slot == vote_slot, None => { error!("crds vote with no slots!"); false } }, _ => panic!("this should not happen!"), } } else { false } }) }; // If you don't see a vote with the same slot yet, this means you probably // restarted, and need to wait for your oldest vote to propagate back to you. // // We don't write to an arbitrary index, because it may replace one of this validator's // existing votes on the network. if let Some(vote_index) = vote_index { self.push_vote_at_index(vote, vote_index); } } pub fn send_vote(&self, vote: &Transaction, tpu: Option) -> Result<()> { let tpu = tpu.unwrap_or_else(|| self.my_contact_info().tpu); let buf = serialize(vote)?; self.socket.send_to(&buf, &tpu)?; Ok(()) } /// Get votes in the crds /// * since - The timestamp of when the vote inserted must be greater than /// since. This allows the bank to query for new votes only. /// /// * return - The votes, and the max timestamp from the new set. pub fn get_votes(&self, since: u64) -> (Vec, Vec, u64) { let mut max_ts = since; let (labels, txs): (Vec, Vec) = self .time_gossip_read_lock("get_votes", &self.stats.get_votes) .crds .get_votes() .filter(|vote| vote.insert_timestamp > since) .map(|vote| { max_ts = std::cmp::max(vote.insert_timestamp, max_ts); let transaction = match &vote.value.data { CrdsData::Vote(_, vote) => vote.transaction().clone(), _ => panic!("this should not happen!"), }; (vote.value.label(), transaction) }) .unzip(); inc_new_counter_info!("cluster_info-get_votes-count", txs.len()); (labels, txs, max_ts) } pub(crate) fn push_duplicate_shred(&self, shred: &Shred, other_payload: &[u8]) -> Result<()> { self.gossip.write().unwrap().push_duplicate_shred( &self.keypair, shred, other_payload, None:: Option>, // Leader schedule DUPLICATE_SHRED_MAX_PAYLOAD_SIZE, )?; Ok(()) } pub fn get_accounts_hash_for_node(&self, pubkey: &Pubkey, map: F) -> Option where F: FnOnce(&Vec<(Slot, Hash)>) -> Y, { self.time_gossip_read_lock("get_accounts_hash", &self.stats.get_accounts_hash) .crds .get(&CrdsValueLabel::AccountsHashes(*pubkey)) .map(|x| &x.value.accounts_hash().unwrap().hashes) .map(map) } pub fn get_snapshot_hash_for_node(&self, pubkey: &Pubkey, map: F) -> Option where F: FnOnce(&Vec<(Slot, Hash)>) -> Y, { self.gossip .read() .unwrap() .crds .get(&CrdsValueLabel::SnapshotHashes(*pubkey)) .map(|x| &x.value.snapshot_hash().unwrap().hashes) .map(map) } pub fn get_lowest_slot_for_node( &self, pubkey: &Pubkey, since: Option, map: F, ) -> Option where F: FnOnce(&LowestSlot, u64) -> Y, { self.gossip .read() .unwrap() .crds .get(&CrdsValueLabel::LowestSlot(*pubkey)) .filter(|x| { since .map(|since| x.insert_timestamp > since) .unwrap_or(true) }) .map(|x| map(x.value.lowest_slot().unwrap(), x.insert_timestamp)) } pub fn get_epoch_slots_since( &self, timestamp: u64, ) -> ( Vec, Option, // Most recent insert timestmap. ) { let mut max_ts = 0; let vals: Vec<_> = self .gossip .read() .unwrap() .crds .get_epoch_slots_since(timestamp) .map(|value| { max_ts = std::cmp::max(max_ts, value.insert_timestamp); match &value.value.data { CrdsData::EpochSlots(_, slots) => slots.clone(), _ => panic!("this should not happen!"), } }) .collect(); let max_ts = if vals.is_empty() { None } else { Some(max_ts) }; (vals, max_ts) } pub fn get_node_version(&self, pubkey: &Pubkey) -> Option { let version = self .gossip .read() .unwrap() .crds .get(&CrdsValueLabel::Version(*pubkey)) .map(|x| x.value.version()) .flatten() .map(|version| version.version.clone()); if version.is_none() { self.gossip .read() .unwrap() .crds .get(&CrdsValueLabel::LegacyVersion(*pubkey)) .map(|x| x.value.legacy_version()) .flatten() .map(|version| version.version.clone().into()) } else { version } } /// all validators that have a valid rpc port regardless of `shred_version`. pub fn all_rpc_peers(&self) -> Vec { self.gossip .read() .unwrap() .crds .get_nodes_contact_info() .filter(|x| x.id != self.id() && ContactInfo::is_valid_address(&x.rpc)) .cloned() .collect() } // All nodes in gossip (including spy nodes) and the last time we heard about them pub(crate) fn all_peers(&self) -> Vec<(ContactInfo, u64)> { self.gossip .read() .unwrap() .crds .get_nodes() .map(|x| (x.value.contact_info().unwrap().clone(), x.local_timestamp)) .collect() } pub fn gossip_peers(&self) -> Vec { let me = self.id(); self.gossip .read() .unwrap() .crds .get_nodes_contact_info() // shred_version not considered for gossip peers (ie, spy nodes do not set shred_version) .filter(|x| x.id != me && ContactInfo::is_valid_address(&x.gossip)) .cloned() .collect() } /// all validators that have a valid tvu port regardless of `shred_version`. pub fn all_tvu_peers(&self) -> Vec { self.time_gossip_read_lock("all_tvu_peers", &self.stats.all_tvu_peers) .crds .get_nodes_contact_info() .filter(|x| ContactInfo::is_valid_address(&x.tvu) && x.id != self.id()) .cloned() .collect() } /// all validators that have a valid tvu port and are on the same `shred_version`. pub fn tvu_peers(&self) -> Vec { let self_pubkey = self.id(); let self_shred_version = self.my_shred_version(); self.time_gossip_read_lock("tvu_peers", &self.stats.tvu_peers) .crds .get_nodes_contact_info() .filter(|node| { node.id != self_pubkey && node.shred_version == self_shred_version && ContactInfo::is_valid_address(&node.tvu) }) .cloned() .collect() } /// all tvu peers with valid gossip addrs that likely have the slot being requested pub fn repair_peers(&self, slot: Slot) -> Vec { let mut time = Measure::start("repair_peers"); // self.tvu_peers() already filters on: // node.id != self.id() && // node.shred_verion == self.my_shred_version() let nodes = self.tvu_peers(); let nodes = { let gossip = self.gossip.read().unwrap(); nodes .into_iter() .filter(|node| { ContactInfo::is_valid_address(&node.serve_repair) && match gossip.crds.get_lowest_slot(node.id) { None => true, // fallback to legacy behavior Some(lowest_slot) => lowest_slot.lowest <= slot, } }) .collect() }; self.stats.repair_peers.add_measure(&mut time); nodes } fn is_spy_node(contact_info: &ContactInfo) -> bool { !ContactInfo::is_valid_address(&contact_info.tpu) || !ContactInfo::is_valid_address(&contact_info.gossip) || !ContactInfo::is_valid_address(&contact_info.tvu) } fn sorted_stakes_with_index( peers: &[ContactInfo], stakes: Option<&HashMap>, ) -> Vec<(u64, usize)> { let stakes_and_index: Vec<_> = peers .iter() .enumerate() .map(|(i, c)| { // For stake weighted shuffle a valid weight is atleast 1. Weight 0 is // assumed to be missing entry. So let's make sure stake weights are atleast 1 let stake = 1.max( stakes .as_ref() .map_or(1, |stakes| *stakes.get(&c.id).unwrap_or(&1)), ); (stake, i) }) .sorted_by(|(l_stake, l_info), (r_stake, r_info)| { if r_stake == l_stake { peers[*r_info].id.cmp(&peers[*l_info].id) } else { r_stake.cmp(&l_stake) } }) .collect(); stakes_and_index } fn stake_weighted_shuffle( stakes_and_index: &[(u64, usize)], seed: [u8; 32], ) -> Vec<(u64, usize)> { let stake_weights: Vec<_> = stakes_and_index.iter().map(|(w, _)| *w).collect(); let shuffle = weighted_shuffle(&stake_weights, seed); shuffle.iter().map(|x| stakes_and_index[*x]).collect() } // Return sorted_retransmit_peers(including self) and their stakes pub fn sorted_retransmit_peers_and_stakes( &self, stakes: Option<&HashMap>, ) -> (Vec, Vec<(u64, usize)>) { let mut peers = self.tvu_peers(); // insert "self" into this list for the layer and neighborhood computation peers.push(self.my_contact_info()); let stakes_and_index = ClusterInfo::sorted_stakes_with_index(&peers, stakes); (peers, stakes_and_index) } /// Return sorted Retransmit peers and index of `Self.id()` as if it were in that list pub fn shuffle_peers_and_index( id: &Pubkey, peers: &[ContactInfo], stakes_and_index: &[(u64, usize)], seed: [u8; 32], ) -> (usize, Vec<(u64, usize)>) { let shuffled_stakes_and_index = ClusterInfo::stake_weighted_shuffle(stakes_and_index, seed); let self_index = shuffled_stakes_and_index .iter() .enumerate() .find_map(|(i, (_stake, index))| { if peers[*index].id == *id { Some(i) } else { None } }) .unwrap(); (self_index, shuffled_stakes_and_index) } /// compute broadcast table pub fn tpu_peers(&self) -> Vec { self.gossip .read() .unwrap() .crds .get_nodes_contact_info() .filter(|x| x.id != self.id() && ContactInfo::is_valid_address(&x.tpu)) .cloned() .collect() } /// retransmit messages to a list of nodes /// # Remarks /// We need to avoid having obj locked while doing a io, such as the `send_to` pub fn retransmit_to( peers: &[&ContactInfo], packet: &mut Packet, s: &UdpSocket, forwarded: bool, ) -> Result<()> { trace!("retransmit orders {}", peers.len()); let dests: Vec<_> = if forwarded { peers .iter() .map(|peer| &peer.tvu_forwards) .filter(|addr| ContactInfo::is_valid_address(addr)) .collect() } else { peers.iter().map(|peer| &peer.tvu).collect() }; let mut sent = 0; while sent < dests.len() { match multicast(s, &packet.data[..packet.meta.size], &dests[sent..]) { Ok(n) => sent += n, Err(e) => { inc_new_counter_error!( "cluster_info-retransmit-send_to_error", dests.len() - sent, 1 ); error!("retransmit result {:?}", e); return Err(Error::Io(e)); } } } Ok(()) } fn insert_self(&self) { let value = CrdsValue::new_signed(CrdsData::ContactInfo(self.my_contact_info()), &self.keypair); let _ = self.gossip.write().unwrap().crds.insert(value, timestamp()); } // If the network entrypoint hasn't been discovered yet, add it to the crds table fn append_entrypoint_to_pulls( &self, thread_pool: &ThreadPool, pulls: &mut Vec<(ContactInfo, Vec)>, ) { const THROTTLE_DELAY: u64 = CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS / 2; let entrypoint = { let mut entrypoints = self.entrypoints.write().unwrap(); let entrypoint = match entrypoints.choose_mut(&mut rand::thread_rng()) { Some(entrypoint) => entrypoint, None => return, }; if !pulls.is_empty() { let now = timestamp(); if now <= entrypoint.wallclock.saturating_add(THROTTLE_DELAY) { return; } entrypoint.wallclock = now; if self .time_gossip_read_lock("entrypoint", &self.stats.entrypoint) .crds .get_nodes_contact_info() .any(|node| node.gossip == entrypoint.gossip) { return; // Found the entrypoint, no need to pull from it } } entrypoint.clone() }; let filters = match pulls.first() { Some((_, filters)) => filters.clone(), None => { let gossip = self.time_gossip_read_lock("entrypoint", &self.stats.entrypoint2); gossip .pull .build_crds_filters(thread_pool, &gossip.crds, MAX_BLOOM_SIZE) } }; self.stats.pull_from_entrypoint_count.add_relaxed(1); pulls.push((entrypoint, filters)); } /// Splits an input feed of serializable data into chunks where the sum of /// serialized size of values within each chunk is no larger than /// max_chunk_size. /// Note: some messages cannot be contained within that size so in the worst case this returns /// N nested Vecs with 1 item each. fn split_gossip_messages( max_chunk_size: usize, data_feed: I, ) -> impl Iterator> where T: Serialize + Debug, I: IntoIterator, { let mut data_feed = data_feed.into_iter().fuse(); let mut buffer = vec![]; let mut buffer_size = 0; // Serialized size of buffered values. std::iter::from_fn(move || loop { match data_feed.next() { None => { return if buffer.is_empty() { None } else { Some(std::mem::take(&mut buffer)) }; } Some(data) => { let data_size = match serialized_size(&data) { Ok(size) => size as usize, Err(err) => { error!("serialized_size failed: {}", err); continue; } }; if buffer_size + data_size <= max_chunk_size { buffer_size += data_size; buffer.push(data); } else if data_size <= max_chunk_size { buffer_size = data_size; return Some(std::mem::replace(&mut buffer, vec![data])); } else { error!( "dropping data larger than the maximum chunk size {:?}", data ); } } } }) } fn new_pull_requests( &self, thread_pool: &ThreadPool, gossip_validators: Option<&HashSet>, stakes: &HashMap, ) -> Vec<(SocketAddr, Protocol)> { let now = timestamp(); let mut pulls: Vec<_> = { let gossip = self.time_gossip_read_lock("new_pull_reqs", &self.stats.new_pull_requests); match gossip.new_pull_request( thread_pool, now, gossip_validators, stakes, MAX_BLOOM_SIZE, ) { Err(_) => Vec::default(), Ok((peer, filters)) => vec![(peer, filters)], } }; self.append_entrypoint_to_pulls(thread_pool, &mut pulls); let num_requests = pulls.iter().map(|(_, filters)| filters.len() as u64).sum(); self.stats.new_pull_requests_count.add_relaxed(num_requests); { let mut gossip = self.time_gossip_write_lock("mark_pull", &self.stats.mark_pull_request); for (peer, _) in &pulls { gossip.mark_pull_request_creation_time(peer.id, now); } } let self_info = CrdsData::ContactInfo(self.my_contact_info()); let self_info = CrdsValue::new_signed(self_info, &self.keypair); pulls .into_iter() .flat_map(|(peer, filters)| std::iter::repeat(peer.gossip).zip(filters)) .map(|(gossip_addr, filter)| { let request = Protocol::PullRequest(filter, self_info.clone()); (gossip_addr, request) }) .collect() } fn drain_push_queue(&self) -> Vec { let mut push_queue = self.local_message_pending_push_queue.lock().unwrap(); std::mem::take(&mut *push_queue) } #[cfg(test)] pub fn flush_push_queue(&self) { let pending_push_messages = self.drain_push_queue(); let mut gossip = self.gossip.write().unwrap(); gossip.process_push_message(&self.id, pending_push_messages, timestamp()); } fn new_push_requests( &self, stakes: &HashMap, require_stake_for_gossip: bool, ) -> Vec<(SocketAddr, Protocol)> { let self_id = self.id(); let mut push_messages = self .time_gossip_write_lock("new_push_requests", &self.stats.new_push_requests) .new_push_messages(self.drain_push_queue(), timestamp()); if require_stake_for_gossip { push_messages.retain(|_, data| { retain_staked(data, stakes); !data.is_empty() }) } let push_messages: Vec<_> = { let gossip = self.time_gossip_read_lock("push_req_lookup", &self.stats.new_push_requests2); push_messages .into_iter() .filter_map(|(pubkey, messages)| { let peer = gossip.crds.get_contact_info(pubkey)?; Some((peer.gossip, messages)) }) .collect() }; let messages: Vec<_> = push_messages .into_iter() .flat_map(|(peer, msgs)| { Self::split_gossip_messages(PUSH_MESSAGE_MAX_PAYLOAD_SIZE, msgs) .map(move |payload| (peer, Protocol::PushMessage(self_id, payload))) }) .collect(); self.stats .new_push_requests_num .add_relaxed(messages.len() as u64); messages } // Generate new push and pull requests fn generate_new_gossip_requests( &self, thread_pool: &ThreadPool, gossip_validators: Option<&HashSet>, stakes: &HashMap, generate_pull_requests: bool, require_stake_for_gossip: bool, ) -> Vec<(SocketAddr, Protocol)> { self.trim_crds_table(CRDS_UNIQUE_PUBKEY_CAPACITY, &stakes); // This will flush local pending push messages before generating // pull-request bloom filters, preventing pull responses to return the // same values back to the node itself. Note that packets will arrive // and are processed out of order. let mut out: Vec<_> = self.new_push_requests(stakes, require_stake_for_gossip); self.stats .packets_sent_push_messages_count .add_relaxed(out.len() as u64); if generate_pull_requests { let pull_requests = self.new_pull_requests(&thread_pool, gossip_validators, stakes); self.stats .packets_sent_pull_requests_count .add_relaxed(pull_requests.len() as u64); out.extend(pull_requests); } out } /// At random pick a node and try to get updated changes from them fn run_gossip( &self, thread_pool: &ThreadPool, gossip_validators: Option<&HashSet>, recycler: &PacketsRecycler, stakes: &HashMap, sender: &PacketSender, generate_pull_requests: bool, require_stake_for_gossip: bool, ) -> Result<()> { let reqs = self.generate_new_gossip_requests( thread_pool, gossip_validators, stakes, generate_pull_requests, require_stake_for_gossip, ); if !reqs.is_empty() { let packets = to_packets_with_destination(recycler.clone(), &reqs); self.stats .packets_sent_gossip_requests_count .add_relaxed(packets.packets.len() as u64); sender.send(packets)?; } Ok(()) } fn process_entrypoints(&self, entrypoints_processed: &mut bool) { if *entrypoints_processed { return; } let mut entrypoints = self.entrypoints.write().unwrap(); if entrypoints.is_empty() { // No entrypoint specified. Nothing more to process *entrypoints_processed = true; return; } for entrypoint in entrypoints.iter_mut() { if entrypoint.id == Pubkey::default() { // If a pull from the entrypoint was successful it should exist in the CRDS table if let Some(entrypoint_from_gossip) = self.lookup_contact_info_by_gossip_addr(&entrypoint.gossip) { // Update the entrypoint's id so future entrypoint pulls correctly reference it *entrypoint = entrypoint_from_gossip; } } } // Adopt an entrypoint's `shred_version` if ours is unset if self.my_shred_version() == 0 { if let Some(entrypoint) = entrypoints .iter() .find(|entrypoint| entrypoint.shred_version != 0) { info!( "Setting shred version to {:?} from entrypoint {:?}", entrypoint.shred_version, entrypoint.id ); self.my_contact_info.write().unwrap().shred_version = entrypoint.shred_version; self.gossip .write() .unwrap() .set_shred_version(entrypoint.shred_version); } } *entrypoints_processed = self.my_shred_version() != 0 && entrypoints .iter() .all(|entrypoint| entrypoint.id != Pubkey::default()); } fn handle_purge( &self, thread_pool: &ThreadPool, bank_forks: &Option>>, stakes: &HashMap, ) { let timeout = { if let Some(ref bank_forks) = bank_forks { let bank = bank_forks.read().unwrap().working_bank(); let epoch = bank.epoch(); let epoch_schedule = bank.epoch_schedule(); epoch_schedule.get_slots_in_epoch(epoch) * DEFAULT_MS_PER_SLOT } else { inc_new_counter_info!("cluster_info-purge-no_working_bank", 1); CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS } }; let timeouts = self.gossip.read().unwrap().make_timeouts(stakes, timeout); let num_purged = self .time_gossip_write_lock("purge", &self.stats.purge) .purge(thread_pool, timestamp(), &timeouts); inc_new_counter_info!("cluster_info-purge-count", num_purged); } // Trims the CRDS table by dropping all values associated with the pubkeys // with the lowest stake, so that the number of unique pubkeys are bounded. fn trim_crds_table(&self, cap: usize, stakes: &HashMap) { if !self.gossip.read().unwrap().crds.should_trim(cap) { return; } let keep: Vec<_> = self .entrypoints .read() .unwrap() .iter() .map(|k| k.id) .chain(std::iter::once(self.id)) .collect(); let mut gossip = self.gossip.write().unwrap(); match gossip.crds.trim(cap, &keep, stakes) { Err(err) => { self.stats.trim_crds_table_failed.add_relaxed(1); error!("crds table trim failed: {:?}", err); } Ok(purged_values) => { let now = timestamp(); self.stats .trim_crds_table_purged_values_count .add_relaxed(purged_values.len() as u64); let purged_values = purged_values.into_iter().map(|v| (v.value_hash, now)); gossip.pull.purged_values.extend(purged_values); } } } /// randomly pick a node and ask them for updates asynchronously pub fn gossip( self: Arc, bank_forks: Option>>, sender: PacketSender, gossip_validators: Option>, exit: &Arc, ) -> JoinHandle<()> { let exit = exit.clone(); let thread_pool = ThreadPoolBuilder::new() .num_threads(std::cmp::min(get_thread_count(), 8)) .thread_name(|i| format!("ClusterInfo::gossip-{}", i)) .build() .unwrap(); Builder::new() .name("solana-gossip".to_string()) .spawn(move || { let mut last_push = timestamp(); let mut last_contact_info_trace = timestamp(); let mut last_contact_info_save = timestamp(); let mut entrypoints_processed = false; let recycler = PacketsRecycler::default(); let crds_data = vec![ CrdsData::Version(Version::new(self.id())), CrdsData::NodeInstance(self.instance.with_wallclock(timestamp())), ]; for value in crds_data { let value = CrdsValue::new_signed(value, &self.keypair); self.push_message(value); } let mut generate_pull_requests = true; loop { let start = timestamp(); if self.contact_debug_interval != 0 && start - last_contact_info_trace > self.contact_debug_interval { // Log contact info info!( "\n{}\n\n{}", self.contact_info_trace(), self.rpc_info_trace() ); last_contact_info_trace = start; } if self.contact_save_interval != 0 && start - last_contact_info_save > self.contact_save_interval { self.save_contact_info(); last_contact_info_save = start; } let (stakes, feature_set) = match bank_forks { Some(ref bank_forks) => { let root_bank = bank_forks.read().unwrap().root_bank(); ( root_bank.staked_nodes(), Some(root_bank.feature_set.clone()), ) } None => (HashMap::new(), None), }; let require_stake_for_gossip = self.require_stake_for_gossip(feature_set.as_deref(), &stakes); let _ = self.run_gossip( &thread_pool, gossip_validators.as_ref(), &recycler, &stakes, &sender, generate_pull_requests, require_stake_for_gossip, ); if exit.load(Ordering::Relaxed) { return; } self.handle_purge(&thread_pool, &bank_forks, &stakes); self.process_entrypoints(&mut entrypoints_processed); //TODO: possibly tune this parameter //we saw a deadlock passing an self.read().unwrap().timeout into sleep if start - last_push > CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS / 2 { self.push_self(&stakes, gossip_validators.as_ref()); last_push = timestamp(); } let elapsed = timestamp() - start; if GOSSIP_SLEEP_MILLIS > elapsed { let time_left = GOSSIP_SLEEP_MILLIS - elapsed; sleep(Duration::from_millis(time_left)); } generate_pull_requests = !generate_pull_requests; } }) .unwrap() } fn handle_batch_prune_messages(&self, messages: Vec<(Pubkey, PruneData)>) { let _st = ScopedTimer::from(&self.stats.handle_batch_prune_messages_time); if messages.is_empty() { return; } self.stats .prune_message_count .add_relaxed(messages.len() as u64); self.stats.prune_message_len.add_relaxed( messages .iter() .map(|(_, data)| data.prunes.len() as u64) .sum(), ); let mut prune_message_timeout = 0; let mut bad_prune_destination = 0; { let gossip = self.time_gossip_read_lock("process_prune", &self.stats.process_prune); let now = timestamp(); for (from, data) in messages { match gossip.process_prune_msg( &from, &data.destination, &data.prunes, data.wallclock, now, ) { Err(CrdsGossipError::PruneMessageTimeout) => { prune_message_timeout += 1; } Err(CrdsGossipError::BadPruneDestination) => { bad_prune_destination += 1; } _ => (), } } } if prune_message_timeout != 0 { inc_new_counter_debug!("cluster_info-prune_message_timeout", prune_message_timeout); } if bad_prune_destination != 0 { inc_new_counter_debug!("cluster_info-bad_prune_destination", bad_prune_destination); } } fn handle_batch_pull_requests( &self, // from address, crds filter, caller contact info requests: Vec<(SocketAddr, CrdsFilter, CrdsValue)>, thread_pool: &ThreadPool, recycler: &PacketsRecycler, stakes: &HashMap, response_sender: &PacketSender, require_stake_for_gossip: bool, ) { let _st = ScopedTimer::from(&self.stats.handle_batch_pull_requests_time); if requests.is_empty() { return; } let self_pubkey = self.id(); let self_shred_version = self.my_shred_version(); let requests: Vec<_> = thread_pool.install(|| { requests .into_par_iter() .with_min_len(1024) .filter(|(_, _, caller)| match caller.contact_info() { None => false, Some(caller) if caller.id == self_pubkey => { warn!("PullRequest ignored, I'm talking to myself"); inc_new_counter_debug!("cluster_info-window-request-loopback", 1); false } Some(caller) => { if self_shred_version != 0 && caller.shred_version != 0 && caller.shred_version != self_shred_version { self.stats.skip_pull_shred_version.add_relaxed(1); false } else { true } } }) .map(|(from_addr, filter, caller)| PullData { from_addr, caller, filter, }) .collect() }); if !requests.is_empty() { self.stats .pull_requests_count .add_relaxed(requests.len() as u64); let response = self.handle_pull_requests(recycler, requests, stakes, require_stake_for_gossip); if !response.is_empty() { self.stats .packets_sent_pull_responses_count .add_relaxed(response.packets.len() as u64); let _ = response_sender.send(response); } } } fn update_data_budget(&self, num_staked: usize) -> usize { const INTERVAL_MS: u64 = 100; // allow 50kBps per staked validator, epoch slots + votes ~= 1.5kB/slot ~= 4kB/s const BYTES_PER_INTERVAL: usize = 5000; const MAX_BUDGET_MULTIPLE: usize = 5; // allow budget build-up to 5x the interval default let num_staked = num_staked.max(2); self.outbound_budget.update(INTERVAL_MS, |bytes| { std::cmp::min( bytes + num_staked * BYTES_PER_INTERVAL, MAX_BUDGET_MULTIPLE * num_staked * BYTES_PER_INTERVAL, ) }) } // Returns a predicate checking if the pull request is from a valid // address, and if the address have responded to a ping request. Also // appends ping packets for the addresses which need to be (re)verified. fn check_pull_request<'a, R>( &'a self, now: Instant, mut rng: &'a mut R, packets: &'a mut Packets, ) -> impl FnMut(&PullData) -> bool + 'a where R: Rng + CryptoRng, { let mut cache = HashMap::<(Pubkey, SocketAddr), bool>::new(); let mut pingf = move || Ping::new_rand(&mut rng, &self.keypair).ok(); let mut ping_cache = self.ping_cache.write().unwrap(); let mut hard_check = move |node| { let (check, ping) = ping_cache.check(now, node, &mut pingf); if let Some(ping) = ping { let ping = Protocol::PingMessage(ping); match Packet::from_data(Some(&node.1), ping) { Ok(packet) => packets.packets.push(packet), Err(err) => error!("failed to write ping packet: {:?}", err), }; } if !check { self.stats .pull_request_ping_pong_check_failed_count .add_relaxed(1) } check }; // Because pull-responses are sent back to packet.meta.addr() of // incoming pull-requests, pings are also sent to request.from_addr (as // opposed to caller.gossip address). move |request| { ContactInfo::is_valid_address(&request.from_addr) && { let node = (request.caller.pubkey(), request.from_addr); *cache.entry(node).or_insert_with(|| hard_check(node)) } } } // Pull requests take an incoming bloom filter of contained entries from a node // and tries to send back to them the values it detects are missing. fn handle_pull_requests( &self, recycler: &PacketsRecycler, requests: Vec, stakes: &HashMap, require_stake_for_gossip: bool, ) -> Packets { let mut time = Measure::start("handle_pull_requests"); let callers = crds_value::filter_current(requests.iter().map(|r| &r.caller)); self.time_gossip_write_lock("process_pull_reqs", &self.stats.process_pull_requests) .process_pull_requests(callers.cloned(), timestamp()); let output_size_limit = self.update_data_budget(stakes.len()) / PULL_RESPONSE_MIN_SERIALIZED_SIZE; let mut packets = Packets::new_with_recycler(recycler.clone(), 64, "handle_pull_requests"); let (caller_and_filters, addrs): (Vec<_>, Vec<_>) = { let mut rng = rand::thread_rng(); let check_pull_request = self.check_pull_request(Instant::now(), &mut rng, &mut packets); requests .into_iter() .filter(check_pull_request) .map(|r| ((r.caller, r.filter), r.from_addr)) .unzip() }; let now = timestamp(); let self_id = self.id(); let mut pull_responses = self .time_gossip_read_lock( "generate_pull_responses", &self.stats.generate_pull_responses, ) .generate_pull_responses(&caller_and_filters, output_size_limit, now); if require_stake_for_gossip { for resp in &mut pull_responses { retain_staked(resp, stakes); } } let pull_responses: Vec<_> = pull_responses .into_iter() .zip(addrs.into_iter()) .filter(|(response, _)| !response.is_empty()) .collect(); if pull_responses.is_empty() { return packets; } let stats: Vec<_> = pull_responses .iter() .enumerate() .map(|(i, (responses, _from_addr))| { responses .iter() .enumerate() .map(|(j, response)| { let score = if stakes.contains_key(&response.pubkey()) { 2 } else { 1 }; let score = match response.data { CrdsData::ContactInfo(_) => 2 * score, _ => score, }; ResponseScore { to: i, responses_index: j, score, } }) .collect::>() }) .flatten() .collect(); let mut seed = [0; 32]; rand::thread_rng().fill(&mut seed[..]); let weights: Vec<_> = stats.iter().map(|stat| stat.score).collect(); let mut total_bytes = 0; let mut sent = 0; for index in weighted_shuffle(&weights, seed) { let stat = &stats[index]; let from_addr = pull_responses[stat.to].1; let response = pull_responses[stat.to].0[stat.responses_index].clone(); let protocol = Protocol::PullResponse(self_id, vec![response]); match Packet::from_data(Some(&from_addr), protocol) { Err(err) => error!("failed to write pull-response packet: {:?}", err), Ok(packet) => { if self.outbound_budget.take(packet.meta.size) { total_bytes += packet.meta.size; packets.packets.push(packet); sent += 1; } else { inc_new_counter_info!("gossip_pull_request-no_budget", 1); break; } } } } time.stop(); inc_new_counter_info!("gossip_pull_request-sent_requests", sent); inc_new_counter_info!("gossip_pull_request-dropped_requests", stats.len() - sent); debug!( "handle_pull_requests: {} sent: {} total: {} total_bytes: {}", time, sent, stats.len(), total_bytes ); packets } fn handle_batch_pull_responses( &self, responses: Vec<(Pubkey, Vec)>, thread_pool: &ThreadPool, stakes: &HashMap, epoch_time_ms: u64, ) { let _st = ScopedTimer::from(&self.stats.handle_batch_pull_responses_time); if responses.is_empty() { return; } fn extend(hash_map: &mut HashMap>, (key, mut value): (K, Vec)) where K: Eq + std::hash::Hash, { match hash_map.entry(key) { Entry::Occupied(mut entry) => { let entry_value = entry.get_mut(); if entry_value.len() < value.len() { std::mem::swap(entry_value, &mut value); } entry_value.extend(value); } Entry::Vacant(entry) => { entry.insert(value); } } } fn merge( mut hash_map: HashMap>, other: HashMap>, ) -> HashMap> where K: Eq + std::hash::Hash, { if hash_map.len() < other.len() { return merge(other, hash_map); } for kv in other { extend(&mut hash_map, kv); } hash_map } let responses = thread_pool.install(|| { responses .into_par_iter() .with_min_len(1024) .fold(HashMap::new, |mut hash_map, kv| { extend(&mut hash_map, kv); hash_map }) .reduce(HashMap::new, merge) }); if !responses.is_empty() { let timeouts = self .gossip .read() .unwrap() .make_timeouts(&stakes, epoch_time_ms); for (from, data) in responses { self.handle_pull_response(&from, data, &timeouts); } } } // Returns (failed, timeout, success) fn handle_pull_response( &self, from: &Pubkey, mut crds_values: Vec, timeouts: &HashMap, ) -> (usize, usize, usize) { let len = crds_values.len(); trace!("PullResponse me: {} from: {} len={}", self.id, from, len); let shred_version = self .lookup_contact_info(from, |ci| ci.shred_version) .unwrap_or(0); Self::filter_by_shred_version( from, &mut crds_values, shred_version, self.my_shred_version(), ); let filtered_len = crds_values.len(); let mut pull_stats = ProcessPullStats::default(); let (filtered_pulls, filtered_pulls_expired_timeout, failed_inserts) = self .time_gossip_read_lock("filter_pull_resp", &self.stats.filter_pull_response) .filter_pull_responses(timeouts, crds_values, timestamp(), &mut pull_stats); if !filtered_pulls.is_empty() || !filtered_pulls_expired_timeout.is_empty() || !failed_inserts.is_empty() { self.time_gossip_write_lock("process_pull_resp", &self.stats.process_pull_response) .process_pull_responses( from, filtered_pulls, filtered_pulls_expired_timeout, failed_inserts, timestamp(), &mut pull_stats, ); } self.stats .skip_pull_response_shred_version .add_relaxed((len - filtered_len) as u64); self.stats.process_pull_response_count.add_relaxed(1); self.stats .process_pull_response_len .add_relaxed(filtered_len as u64); self.stats .process_pull_response_timeout .add_relaxed(pull_stats.timeout_count as u64); self.stats .process_pull_response_fail_insert .add_relaxed(pull_stats.failed_insert as u64); self.stats .process_pull_response_fail_timeout .add_relaxed(pull_stats.failed_timeout as u64); self.stats .process_pull_response_success .add_relaxed(pull_stats.success as u64); ( pull_stats.failed_insert + pull_stats.failed_timeout, pull_stats.timeout_count, pull_stats.success, ) } fn filter_by_shred_version( from: &Pubkey, crds_values: &mut Vec, shred_version: u16, my_shred_version: u16, ) { // Always run filter on spies if my_shred_version != 0 && shred_version != my_shred_version { // Allow someone to update their own ContactInfo so they // can change shred versions if needed. crds_values.retain(|crds_value| match &crds_value.data { CrdsData::ContactInfo(contact_info) => contact_info.id == *from, _ => false, }); } } fn handle_batch_ping_messages( &self, pings: I, recycler: &PacketsRecycler, response_sender: &PacketSender, ) where I: IntoIterator, { let _st = ScopedTimer::from(&self.stats.handle_batch_ping_messages_time); if let Some(response) = self.handle_ping_messages(pings, recycler) { let _ = response_sender.send(response); } } fn handle_ping_messages(&self, pings: I, recycler: &PacketsRecycler) -> Option where I: IntoIterator, { let packets: Vec<_> = pings .into_iter() .filter_map(|(addr, ping)| { let pong = Pong::new(&ping, &self.keypair).ok()?; let pong = Protocol::PongMessage(pong); match Packet::from_data(Some(&addr), pong) { Ok(packet) => Some(packet), Err(err) => { error!("failed to write pong packet: {:?}", err); None } } }) .collect(); if packets.is_empty() { None } else { let packets = Packets::new_with_recycler_data(recycler, "handle_ping_messages", packets); Some(packets) } } fn handle_batch_pong_messages(&self, pongs: I, now: Instant) where I: IntoIterator, { let _st = ScopedTimer::from(&self.stats.handle_batch_pong_messages_time); let mut pongs = pongs.into_iter().peekable(); if pongs.peek().is_some() { let mut ping_cache = self.ping_cache.write().unwrap(); for (addr, pong) in pongs { ping_cache.add(&pong, addr, now); } } } fn handle_batch_push_messages( &self, messages: Vec<(Pubkey, Vec)>, thread_pool: &ThreadPool, recycler: &PacketsRecycler, stakes: &HashMap, response_sender: &PacketSender, require_stake_for_gossip: bool, ) { let _st = ScopedTimer::from(&self.stats.handle_batch_push_messages_time); if messages.is_empty() { return; } self.stats .push_message_count .add_relaxed(messages.len() as u64); // Obtain shred versions of the origins. let shred_versions: Vec<_> = { let gossip = self.gossip.read().unwrap(); messages .iter() .map(|(from, _)| match gossip.crds.get_contact_info(*from) { None => 0, Some(info) => info.shred_version, }) .collect() }; // Filter out data if the origin has different shred version. let self_shred_version = self.my_shred_version(); let num_crds_values: u64 = messages.iter().map(|(_, data)| data.len() as u64).sum(); let messages: Vec<_> = messages .into_iter() .zip(shred_versions) .filter_map(|((from, mut crds_values), shred_version)| { Self::filter_by_shred_version( &from, &mut crds_values, shred_version, self_shred_version, ); if crds_values.is_empty() { None } else { Some((from, crds_values)) } }) .collect(); let num_filtered_crds_values = messages.iter().map(|(_, data)| data.len() as u64).sum(); self.stats .push_message_value_count .add_relaxed(num_filtered_crds_values); self.stats .skip_push_message_shred_version .add_relaxed(num_crds_values - num_filtered_crds_values); // Update crds values and obtain updated keys. let updated_labels: Vec<_> = { let mut gossip = self.time_gossip_write_lock("process_push", &self.stats.process_push_message); let now = timestamp(); messages .into_iter() .flat_map(|(from, crds_values)| { gossip.process_push_message(&from, crds_values, now) }) .map(|v| v.value.label()) .collect() }; // Generate prune messages. let prunes = self .time_gossip_write_lock("prune_received_cache", &self.stats.prune_received_cache) .prune_received_cache(updated_labels, stakes); let prunes: Vec<(Pubkey /*from*/, Vec /*origins*/)> = prunes .into_iter() .flat_map(|(from, prunes)| { std::iter::repeat(from).zip( prunes .into_iter() .chunks(MAX_PRUNE_DATA_NODES) .into_iter() .map(Iterator::collect) .collect::>(), ) }) .collect(); let prune_messages: Vec<_> = { let gossip = self.gossip.read().unwrap(); let wallclock = timestamp(); let self_pubkey = self.id(); thread_pool.install(|| { prunes .into_par_iter() .with_min_len(256) .filter_map(|(from, prunes)| { let peer = gossip.crds.get_contact_info(from)?; let mut prune_data = PruneData { pubkey: self_pubkey, prunes, signature: Signature::default(), destination: from, wallclock, }; prune_data.sign(&self.keypair); let prune_message = Protocol::PruneMessage(self_pubkey, prune_data); Some((peer.gossip, prune_message)) }) .collect() }) }; if prune_messages.is_empty() { return; } let mut packets = to_packets_with_destination(recycler.clone(), &prune_messages); let num_prune_packets = packets.packets.len(); self.stats .push_response_count .add_relaxed(packets.packets.len() as u64); let new_push_requests = self.new_push_requests(stakes, require_stake_for_gossip); inc_new_counter_debug!("cluster_info-push_message-pushes", new_push_requests.len()); for (address, request) in new_push_requests { if ContactInfo::is_valid_address(&address) { match Packet::from_data(Some(&address), &request) { Ok(packet) => packets.packets.push(packet), Err(err) => error!("failed to write push-request packet: {:?}", err), } } else { trace!("Dropping Gossip push response, as destination is unknown"); } } self.stats .packets_sent_prune_messages_count .add_relaxed(num_prune_packets as u64); self.stats .packets_sent_push_messages_count .add_relaxed((packets.packets.len() - num_prune_packets) as u64); let _ = response_sender.send(packets); } fn get_stakes_and_epoch_time( bank_forks: Option<&Arc>>, ) -> ( HashMap, // staked nodes u64, // epoch time ms ) { match bank_forks { Some(ref bank_forks) => { let bank = bank_forks.read().unwrap().root_bank(); let epoch = bank.epoch(); ( bank.staked_nodes(), bank.get_slots_in_epoch(epoch) * DEFAULT_MS_PER_SLOT, ) } None => { inc_new_counter_info!("cluster_info-purge-no_working_bank", 1); (HashMap::new(), CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS) } } } fn require_stake_for_gossip( &self, feature_set: Option<&FeatureSet>, stakes: &HashMap, ) -> bool { match feature_set { None => { self.stats .require_stake_for_gossip_unknown_feature_set .add_relaxed(1); false } Some(feature_set) => { if !feature_set.is_active(&feature_set::require_stake_for_gossip::id()) { false } else if stakes.len() < MIN_NUM_STAKED_NODES { self.stats .require_stake_for_gossip_unknown_stakes .add_relaxed(1); false } else { true } } } } fn process_packets( &self, packets: VecDeque, thread_pool: &ThreadPool, recycler: &PacketsRecycler, response_sender: &PacketSender, stakes: HashMap, feature_set: Option<&FeatureSet>, epoch_time_ms: u64, should_check_duplicate_instance: bool, ) -> Result<()> { let _st = ScopedTimer::from(&self.stats.process_gossip_packets_time); self.stats .packets_received_count .add_relaxed(packets.len() as u64); let packets: Vec<_> = thread_pool.install(|| { packets .into_par_iter() .filter_map(|packet| { let protocol: Protocol = limited_deserialize(&packet.data[..packet.meta.size]).ok()?; protocol.sanitize().ok()?; let protocol = protocol.par_verify()?; Some((packet.meta.addr(), protocol)) }) .collect() }); self.stats .packets_received_verified_count .add_relaxed(packets.len() as u64); // Check if there is a duplicate instance of // this node with more recent timestamp. let check_duplicate_instance = |values: &[CrdsValue]| { if should_check_duplicate_instance { for value in values { if self.instance.check_duplicate(value) { return Err(Error::DuplicateNodeInstance); } } } Ok(()) }; // Split packets based on their types. let mut pull_requests = vec![]; let mut pull_responses = vec![]; let mut push_messages = vec![]; let mut prune_messages = vec![]; let mut ping_messages = vec![]; let mut pong_messages = vec![]; for (from_addr, packet) in packets { match packet { Protocol::PullRequest(filter, caller) => { pull_requests.push((from_addr, filter, caller)) } Protocol::PullResponse(from, data) => { check_duplicate_instance(&data)?; pull_responses.push((from, data)); } Protocol::PushMessage(from, data) => { check_duplicate_instance(&data)?; push_messages.push((from, data)); } Protocol::PruneMessage(from, data) => prune_messages.push((from, data)), Protocol::PingMessage(ping) => ping_messages.push((from_addr, ping)), Protocol::PongMessage(pong) => pong_messages.push((from_addr, pong)), } } self.stats .packets_received_pull_requests_count .add_relaxed(pull_requests.len() as u64); self.stats .packets_received_pull_responses_count .add_relaxed(pull_responses.len() as u64); self.stats .packets_received_push_messages_count .add_relaxed(push_messages.len() as u64); self.stats .packets_received_prune_messages_count .add_relaxed(prune_messages.len() as u64); let require_stake_for_gossip = self.require_stake_for_gossip(feature_set, &stakes); if require_stake_for_gossip { for (_, data) in &mut pull_responses { retain_staked(data, &stakes); } for (_, data) in &mut push_messages { retain_staked(data, &stakes); } pull_responses.retain(|(_, data)| !data.is_empty()); push_messages.retain(|(_, data)| !data.is_empty()); } self.handle_batch_ping_messages(ping_messages, recycler, response_sender); self.handle_batch_prune_messages(prune_messages); self.handle_batch_push_messages( push_messages, thread_pool, recycler, &stakes, response_sender, require_stake_for_gossip, ); self.handle_batch_pull_responses(pull_responses, thread_pool, &stakes, epoch_time_ms); self.trim_crds_table(CRDS_UNIQUE_PUBKEY_CAPACITY, &stakes); self.handle_batch_pong_messages(pong_messages, Instant::now()); self.handle_batch_pull_requests( pull_requests, thread_pool, recycler, &stakes, response_sender, require_stake_for_gossip, ); Ok(()) } /// Process messages from the network fn run_listen( &self, recycler: &PacketsRecycler, bank_forks: Option<&Arc>>, requests_receiver: &PacketReceiver, response_sender: &PacketSender, thread_pool: &ThreadPool, last_print: &mut Instant, should_check_duplicate_instance: bool, ) -> Result<()> { const RECV_TIMEOUT: Duration = Duration::from_secs(1); let packets: Vec<_> = requests_receiver.recv_timeout(RECV_TIMEOUT)?.packets.into(); let mut packets = VecDeque::from(packets); while let Ok(packet) = requests_receiver.try_recv() { packets.extend(packet.packets.iter().cloned()); let excess_count = packets.len().saturating_sub(MAX_GOSSIP_TRAFFIC); if excess_count > 0 { packets.drain(0..excess_count); self.stats .gossip_packets_dropped_count .add_relaxed(excess_count as u64); } } let (stakes, epoch_time_ms) = Self::get_stakes_and_epoch_time(bank_forks); // Using root_bank instead of working_bank here so that an enbaled // feature does not roll back (if the feature happens to get enabled in // a minority fork). let feature_set = bank_forks.map(|bank_forks| { bank_forks .read() .unwrap() .root_bank() .deref() .feature_set .clone() }); self.process_packets( packets, thread_pool, recycler, response_sender, stakes, feature_set.as_deref(), epoch_time_ms, should_check_duplicate_instance, )?; if last_print.elapsed().as_millis() > 2000 { submit_gossip_stats(&self.stats, &self.gossip); *last_print = Instant::now(); } Ok(()) } pub fn listen( self: Arc, bank_forks: Option>>, requests_receiver: PacketReceiver, response_sender: PacketSender, should_check_duplicate_instance: bool, exit: &Arc, ) -> JoinHandle<()> { let exit = exit.clone(); let recycler = PacketsRecycler::default(); Builder::new() .name("solana-listen".to_string()) .spawn(move || { let thread_pool = ThreadPoolBuilder::new() .num_threads(std::cmp::min(get_thread_count(), 8)) .thread_name(|i| format!("sol-gossip-work-{}", i)) .build() .unwrap(); let mut last_print = Instant::now(); while !exit.load(Ordering::Relaxed) { if let Err(err) = self.run_listen( &recycler, bank_forks.as_ref(), &requests_receiver, &response_sender, &thread_pool, &mut last_print, should_check_duplicate_instance, ) { match err { Error::RecvTimeoutError(_) => { let table_size = self.gossip.read().unwrap().crds.len(); debug!( "{}: run_listen timeout, table size: {}", self.id(), table_size, ); } Error::DuplicateNodeInstance => { error!( "duplicate running instances of the same validator node: {}", self.id() ); exit.store(true, Ordering::Relaxed); // TODO: Pass through ValidatorExit here so // that this will exit cleanly. std::process::exit(1); } _ => error!("gossip run_listen failed: {}", err), } } } }) .unwrap() } pub fn gossip_contact_info(id: &Pubkey, gossip: SocketAddr, shred_version: u16) -> ContactInfo { ContactInfo { id: *id, gossip, wallclock: timestamp(), shred_version, ..ContactInfo::default() } } /// An alternative to Spy Node that has a valid gossip address and fully participate in Gossip. pub fn gossip_node( id: &Pubkey, gossip_addr: &SocketAddr, shred_version: u16, ) -> (ContactInfo, UdpSocket, Option) { let bind_ip_addr = IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)); let (port, (gossip_socket, ip_echo)) = Node::get_gossip_port(gossip_addr, VALIDATOR_PORT_RANGE, bind_ip_addr); let contact_info = Self::gossip_contact_info(id, SocketAddr::new(gossip_addr.ip(), port), shred_version); (contact_info, gossip_socket, Some(ip_echo)) } /// A Node with dummy ports to spy on gossip via pull requests pub fn spy_node( id: &Pubkey, shred_version: u16, ) -> (ContactInfo, UdpSocket, Option) { let bind_ip_addr = IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)); let (_, gossip_socket) = bind_in_range(bind_ip_addr, VALIDATOR_PORT_RANGE).unwrap(); let contact_info = Self::gossip_contact_info(id, socketaddr_any!(), shred_version); (contact_info, gossip_socket, None) } } /// Turbine logic /// 1 - For the current node find out if it is in layer 1 /// 1.1 - If yes, then broadcast to all layer 1 nodes /// 1 - using the layer 1 index, broadcast to all layer 2 nodes assuming you know neighborhood size /// 1.2 - If no, then figure out what layer the node is in and who the neighbors are and only broadcast to them /// 1 - also check if there are nodes in the next layer and repeat the layer 1 to layer 2 logic /// Returns Neighbor Nodes and Children Nodes `(neighbors, children)` for a given node based on its stake pub fn compute_retransmit_peers( fanout: usize, node: usize, index: &[usize], ) -> (Vec /*neighbors*/, Vec /*children*/) { // 1st layer: fanout nodes starting at 0 // 2nd layer: fanout**2 nodes starting at fanout // 3rd layer: fanout**3 nodes starting at fanout + fanout**2 // ... // Each layer is divided into neighborhoods of fanout nodes each. let offset = node % fanout; // Node's index within its neighborhood. let anchor = node - offset; // First node in the neighborhood. let neighbors = (anchor..) .take(fanout) .map(|i| index.get(i).copied()) .while_some() .collect(); let children = ((anchor + 1) * fanout + offset..) .step_by(fanout) .take(fanout) .map(|i| index.get(i).copied()) .while_some() .collect(); (neighbors, children) } #[derive(Debug)] pub struct Sockets { pub gossip: UdpSocket, pub ip_echo: Option, pub tvu: Vec, pub tvu_forwards: Vec, pub tpu: Vec, pub tpu_forwards: Vec, pub broadcast: Vec, pub repair: UdpSocket, pub retransmit_sockets: Vec, pub serve_repair: UdpSocket, } #[derive(Debug)] pub struct Node { pub info: ContactInfo, pub sockets: Sockets, } impl Node { pub fn new_localhost() -> Self { let pubkey = solana_sdk::pubkey::new_rand(); Self::new_localhost_with_pubkey(&pubkey) } pub fn new_localhost_with_pubkey(pubkey: &Pubkey) -> Self { let bind_ip_addr = IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)); let tpu = UdpSocket::bind("127.0.0.1:0").unwrap(); let (gossip_port, (gossip, ip_echo)) = bind_common_in_range(bind_ip_addr, (1024, 65535)).unwrap(); let gossip_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), gossip_port); let tvu = UdpSocket::bind("127.0.0.1:0").unwrap(); let tvu_forwards = UdpSocket::bind("127.0.0.1:0").unwrap(); let tpu_forwards = UdpSocket::bind("127.0.0.1:0").unwrap(); let repair = UdpSocket::bind("127.0.0.1:0").unwrap(); let rpc_port = find_available_port_in_range(bind_ip_addr, (1024, 65535)).unwrap(); let rpc_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), rpc_port); let rpc_pubsub_port = find_available_port_in_range(bind_ip_addr, (1024, 65535)).unwrap(); let rpc_pubsub_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), rpc_pubsub_port); let broadcast = vec![UdpSocket::bind("0.0.0.0:0").unwrap()]; let retransmit_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let serve_repair = UdpSocket::bind("127.0.0.1:0").unwrap(); let unused = UdpSocket::bind("0.0.0.0:0").unwrap(); let info = ContactInfo { id: *pubkey, gossip: gossip_addr, tvu: tvu.local_addr().unwrap(), tvu_forwards: tvu_forwards.local_addr().unwrap(), repair: repair.local_addr().unwrap(), tpu: tpu.local_addr().unwrap(), tpu_forwards: tpu_forwards.local_addr().unwrap(), unused: unused.local_addr().unwrap(), rpc: rpc_addr, rpc_pubsub: rpc_pubsub_addr, serve_repair: serve_repair.local_addr().unwrap(), wallclock: timestamp(), shred_version: 0, }; Node { info, sockets: Sockets { gossip, ip_echo: Some(ip_echo), tvu: vec![tvu], tvu_forwards: vec![tvu_forwards], tpu: vec![tpu], tpu_forwards: vec![tpu_forwards], broadcast, repair, retransmit_sockets: vec![retransmit_socket], serve_repair, }, } } fn get_gossip_port( gossip_addr: &SocketAddr, port_range: PortRange, bind_ip_addr: IpAddr, ) -> (u16, (UdpSocket, TcpListener)) { if gossip_addr.port() != 0 { ( gossip_addr.port(), bind_common(bind_ip_addr, gossip_addr.port(), false).unwrap_or_else(|e| { panic!("gossip_addr bind_to port {}: {}", gossip_addr.port(), e) }), ) } else { bind_common_in_range(bind_ip_addr, port_range).expect("Failed to bind") } } fn bind(bind_ip_addr: IpAddr, port_range: PortRange) -> (u16, UdpSocket) { bind_in_range(bind_ip_addr, port_range).expect("Failed to bind") } pub fn new_single_bind( pubkey: &Pubkey, gossip_addr: &SocketAddr, port_range: PortRange, bind_ip_addr: IpAddr, ) -> Self { let (gossip_port, (gossip, ip_echo)) = Self::get_gossip_port(gossip_addr, port_range, bind_ip_addr); let (tvu_port, tvu) = Self::bind(bind_ip_addr, port_range); let (tvu_forwards_port, tvu_forwards) = Self::bind(bind_ip_addr, port_range); let (tpu_port, tpu) = Self::bind(bind_ip_addr, port_range); let (tpu_forwards_port, tpu_forwards) = Self::bind(bind_ip_addr, port_range); let (_, retransmit_socket) = Self::bind(bind_ip_addr, port_range); let (repair_port, repair) = Self::bind(bind_ip_addr, port_range); let (serve_repair_port, serve_repair) = Self::bind(bind_ip_addr, port_range); let (_, broadcast) = Self::bind(bind_ip_addr, port_range); let rpc_port = find_available_port_in_range(bind_ip_addr, port_range).unwrap(); let rpc_pubsub_port = find_available_port_in_range(bind_ip_addr, port_range).unwrap(); let info = ContactInfo { id: *pubkey, gossip: SocketAddr::new(gossip_addr.ip(), gossip_port), tvu: SocketAddr::new(gossip_addr.ip(), tvu_port), tvu_forwards: SocketAddr::new(gossip_addr.ip(), tvu_forwards_port), repair: SocketAddr::new(gossip_addr.ip(), repair_port), tpu: SocketAddr::new(gossip_addr.ip(), tpu_port), tpu_forwards: SocketAddr::new(gossip_addr.ip(), tpu_forwards_port), unused: socketaddr_any!(), rpc: SocketAddr::new(gossip_addr.ip(), rpc_port), rpc_pubsub: SocketAddr::new(gossip_addr.ip(), rpc_pubsub_port), serve_repair: SocketAddr::new(gossip_addr.ip(), serve_repair_port), wallclock: timestamp(), shred_version: 0, }; trace!("new ContactInfo: {:?}", info); Node { info, sockets: Sockets { gossip, ip_echo: Some(ip_echo), tvu: vec![tvu], tvu_forwards: vec![tvu_forwards], tpu: vec![tpu], tpu_forwards: vec![tpu_forwards], broadcast: vec![broadcast], repair, retransmit_sockets: vec![retransmit_socket], serve_repair, }, } } pub fn new_with_external_ip( pubkey: &Pubkey, gossip_addr: &SocketAddr, port_range: PortRange, bind_ip_addr: IpAddr, ) -> Node { let (gossip_port, (gossip, ip_echo)) = Self::get_gossip_port(gossip_addr, port_range, bind_ip_addr); let (tvu_port, tvu_sockets) = multi_bind_in_range(bind_ip_addr, port_range, 8).expect("tvu multi_bind"); let (tvu_forwards_port, tvu_forwards_sockets) = multi_bind_in_range(bind_ip_addr, port_range, 8).expect("tvu_forwards multi_bind"); let (tpu_port, tpu_sockets) = multi_bind_in_range(bind_ip_addr, port_range, 32).expect("tpu multi_bind"); let (tpu_forwards_port, tpu_forwards_sockets) = multi_bind_in_range(bind_ip_addr, port_range, 8).expect("tpu_forwards multi_bind"); let (_, retransmit_sockets) = multi_bind_in_range(bind_ip_addr, port_range, 8).expect("retransmit multi_bind"); let (repair_port, repair) = Self::bind(bind_ip_addr, port_range); let (serve_repair_port, serve_repair) = Self::bind(bind_ip_addr, port_range); let (_, broadcast) = multi_bind_in_range(bind_ip_addr, port_range, 4).expect("broadcast multi_bind"); let info = ContactInfo { id: *pubkey, gossip: SocketAddr::new(gossip_addr.ip(), gossip_port), tvu: SocketAddr::new(gossip_addr.ip(), tvu_port), tvu_forwards: SocketAddr::new(gossip_addr.ip(), tvu_forwards_port), repair: SocketAddr::new(gossip_addr.ip(), repair_port), tpu: SocketAddr::new(gossip_addr.ip(), tpu_port), tpu_forwards: SocketAddr::new(gossip_addr.ip(), tpu_forwards_port), unused: socketaddr_any!(), rpc: socketaddr_any!(), rpc_pubsub: socketaddr_any!(), serve_repair: SocketAddr::new(gossip_addr.ip(), serve_repair_port), wallclock: 0, shred_version: 0, }; trace!("new ContactInfo: {:?}", info); Node { info, sockets: Sockets { gossip, tvu: tvu_sockets, tvu_forwards: tvu_forwards_sockets, tpu: tpu_sockets, tpu_forwards: tpu_forwards_sockets, broadcast, repair, retransmit_sockets, serve_repair, ip_echo: Some(ip_echo), }, } } } pub fn stake_weight_peers( peers: &mut Vec, stakes: Option<&HashMap>, ) -> Vec<(u64, usize)> { peers.dedup(); ClusterInfo::sorted_stakes_with_index(peers, stakes) } #[cfg(test)] mod tests { use super::*; use crate::{ crds_value::{CrdsValue, CrdsValueLabel, Vote as CrdsVote}, duplicate_shred::{self, tests::new_rand_shred, MAX_DUPLICATE_SHREDS}, }; use itertools::izip; use rand::{seq::SliceRandom, SeedableRng}; use rand_chacha::ChaChaRng; use solana_ledger::shred::Shredder; use solana_sdk::signature::{Keypair, Signer}; use solana_vote_program::{vote_instruction, vote_state::Vote}; use std::iter::repeat_with; use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddrV4}; use std::sync::Arc; #[test] fn test_gossip_node() { //check that a gossip nodes always show up as spies let (node, _, _) = ClusterInfo::spy_node(&solana_sdk::pubkey::new_rand(), 0); assert!(ClusterInfo::is_spy_node(&node)); let (node, _, _) = ClusterInfo::gossip_node( &solana_sdk::pubkey::new_rand(), &"1.1.1.1:1111".parse().unwrap(), 0, ); assert!(ClusterInfo::is_spy_node(&node)); } #[test] fn test_handle_pull() { solana_logger::setup(); let node = Node::new_localhost(); let cluster_info = Arc::new(ClusterInfo::new_with_invalid_keypair(node.info)); let entrypoint_pubkey = solana_sdk::pubkey::new_rand(); let data = test_crds_values(entrypoint_pubkey); let timeouts = HashMap::new(); assert_eq!( (0, 0, 1), ClusterInfo::handle_pull_response( &cluster_info, &entrypoint_pubkey, data.clone(), &timeouts ) ); let entrypoint_pubkey2 = solana_sdk::pubkey::new_rand(); assert_eq!( (1, 0, 0), ClusterInfo::handle_pull_response(&cluster_info, &entrypoint_pubkey2, data, &timeouts) ); } fn new_rand_socket_addr(rng: &mut R) -> SocketAddr { let addr = if rng.gen_bool(0.5) { IpAddr::V4(Ipv4Addr::new(rng.gen(), rng.gen(), rng.gen(), rng.gen())) } else { IpAddr::V6(Ipv6Addr::new( rng.gen(), rng.gen(), rng.gen(), rng.gen(), rng.gen(), rng.gen(), rng.gen(), rng.gen(), )) }; SocketAddr::new(addr, /*port=*/ rng.gen()) } fn new_rand_remote_node(rng: &mut R) -> (Keypair, SocketAddr) where R: Rng, { let keypair = Keypair::new(); let socket = new_rand_socket_addr(rng); (keypair, socket) } #[test] fn test_handle_pong_messages() { let now = Instant::now(); let mut rng = rand::thread_rng(); let this_node = Arc::new(Keypair::new()); let cluster_info = ClusterInfo::new( ContactInfo::new_localhost(&this_node.pubkey(), timestamp()), this_node.clone(), ); let remote_nodes: Vec<(Keypair, SocketAddr)> = repeat_with(|| new_rand_remote_node(&mut rng)) .take(128) .collect(); let pings: Vec<_> = { let mut ping_cache = cluster_info.ping_cache.write().unwrap(); let mut pingf = || Ping::new_rand(&mut rng, &this_node).ok(); remote_nodes .iter() .map(|(keypair, socket)| { let node = (keypair.pubkey(), *socket); let (check, ping) = ping_cache.check(now, node, &mut pingf); // Assert that initially remote nodes will not pass the // ping/pong check. assert!(!check); ping.unwrap() }) .collect() }; let pongs: Vec<(SocketAddr, Pong)> = pings .iter() .zip(&remote_nodes) .map(|(ping, (keypair, socket))| (*socket, Pong::new(ping, keypair).unwrap())) .collect(); let now = now + Duration::from_millis(1); cluster_info.handle_batch_pong_messages(pongs, now); // Assert that remote nodes now pass the ping/pong check. { let mut ping_cache = cluster_info.ping_cache.write().unwrap(); for (keypair, socket) in &remote_nodes { let node = (keypair.pubkey(), *socket); let (check, _) = ping_cache.check(now, node, || -> Option { None }); assert!(check); } } // Assert that a new random remote node still will not pass the check. { let mut ping_cache = cluster_info.ping_cache.write().unwrap(); let (keypair, socket) = new_rand_remote_node(&mut rng); let node = (keypair.pubkey(), socket); let (check, _) = ping_cache.check(now, node, || -> Option { None }); assert!(!check); } } #[test] fn test_handle_ping_messages() { let mut rng = rand::thread_rng(); let this_node = Arc::new(Keypair::new()); let cluster_info = ClusterInfo::new( ContactInfo::new_localhost(&this_node.pubkey(), timestamp()), this_node.clone(), ); let remote_nodes: Vec<(Keypair, SocketAddr)> = repeat_with(|| new_rand_remote_node(&mut rng)) .take(128) .collect(); let pings: Vec<_> = remote_nodes .iter() .map(|(keypair, _)| Ping::new_rand(&mut rng, keypair).unwrap()) .collect(); let pongs: Vec<_> = pings .iter() .map(|ping| Pong::new(ping, &this_node).unwrap()) .collect(); let recycler = PacketsRecycler::default(); let packets = cluster_info .handle_ping_messages( remote_nodes .iter() .map(|(_, socket)| *socket) .zip(pings.into_iter()), &recycler, ) .unwrap() .packets; assert_eq!(remote_nodes.len(), packets.len()); for (packet, (_, socket), pong) in izip!( packets.into_iter(), remote_nodes.into_iter(), pongs.into_iter() ) { assert_eq!(packet.meta.addr(), socket); let bytes = serialize(&pong).unwrap(); match limited_deserialize(&packet.data[..packet.meta.size]).unwrap() { Protocol::PongMessage(pong) => assert_eq!(serialize(&pong).unwrap(), bytes), _ => panic!("invalid packet!"), } } } fn test_crds_values(pubkey: Pubkey) -> Vec { let entrypoint = ContactInfo::new_localhost(&pubkey, timestamp()); let entrypoint_crdsvalue = CrdsValue::new_unsigned(CrdsData::ContactInfo(entrypoint)); vec![entrypoint_crdsvalue] } #[test] fn test_filter_shred_version() { let from = solana_sdk::pubkey::new_rand(); let my_shred_version = 1; let other_shred_version = 1; // Allow same shred_version let mut values = test_crds_values(from); ClusterInfo::filter_by_shred_version( &from, &mut values, other_shred_version, my_shred_version, ); assert_eq!(values.len(), 1); // Allow shred_version=0. let other_shred_version = 0; ClusterInfo::filter_by_shred_version( &from, &mut values, other_shred_version, my_shred_version, ); assert_eq!(values.len(), 1); // Change to sender's ContactInfo version, allow that. let other_shred_version = 2; ClusterInfo::filter_by_shred_version( &from, &mut values, other_shred_version, my_shred_version, ); assert_eq!(values.len(), 1); let snapshot_hash_data = CrdsValue::new_unsigned(CrdsData::SnapshotHashes(SnapshotHash { from: solana_sdk::pubkey::new_rand(), hashes: vec![], wallclock: 0, })); values.push(snapshot_hash_data); // Change to sender's ContactInfo version, allow that. let other_shred_version = 2; ClusterInfo::filter_by_shred_version( &from, &mut values, other_shred_version, my_shred_version, ); assert_eq!(values.len(), 1); } #[test] fn test_max_snapshot_hashes_with_push_messages() { let mut rng = rand::thread_rng(); for _ in 0..256 { let snapshot_hash = SnapshotHash::new_rand(&mut rng, None); let crds_value = CrdsValue::new_signed(CrdsData::SnapshotHashes(snapshot_hash), &Keypair::new()); let message = Protocol::PushMessage(Pubkey::new_unique(), vec![crds_value]); let socket = new_rand_socket_addr(&mut rng); assert!(Packet::from_data(Some(&socket), message).is_ok()); } } #[test] fn test_max_snapshot_hashes_with_pull_responses() { let mut rng = rand::thread_rng(); for _ in 0..256 { let snapshot_hash = SnapshotHash::new_rand(&mut rng, None); let crds_value = CrdsValue::new_signed(CrdsData::AccountsHashes(snapshot_hash), &Keypair::new()); let response = Protocol::PullResponse(Pubkey::new_unique(), vec![crds_value]); let socket = new_rand_socket_addr(&mut rng); assert!(Packet::from_data(Some(&socket), response).is_ok()); } } #[test] fn test_max_prune_data_pubkeys() { let mut rng = rand::thread_rng(); for _ in 0..64 { let self_keypair = Keypair::new(); let prune_data = PruneData::new_rand(&mut rng, &self_keypair, Some(MAX_PRUNE_DATA_NODES)); let prune_message = Protocol::PruneMessage(self_keypair.pubkey(), prune_data); let socket = new_rand_socket_addr(&mut rng); assert!(Packet::from_data(Some(&socket), prune_message).is_ok()); } // Assert that MAX_PRUNE_DATA_NODES is highest possible. let self_keypair = Keypair::new(); let prune_data = PruneData::new_rand(&mut rng, &self_keypair, Some(MAX_PRUNE_DATA_NODES + 1)); let prune_message = Protocol::PruneMessage(self_keypair.pubkey(), prune_data); let socket = new_rand_socket_addr(&mut rng); assert!(Packet::from_data(Some(&socket), prune_message).is_err()); } #[test] fn test_push_message_max_payload_size() { let header = Protocol::PushMessage(Pubkey::default(), Vec::default()); assert_eq!( PUSH_MESSAGE_MAX_PAYLOAD_SIZE, PACKET_DATA_SIZE - serialized_size(&header).unwrap() as usize ); } #[test] fn test_duplicate_shred_max_payload_size() { let mut rng = rand::thread_rng(); let leader = Arc::new(Keypair::new()); let keypair = Keypair::new(); let (slot, parent_slot, reference_tick, version) = (53084024, 53084023, 0, 0); let shredder = Shredder::new(slot, parent_slot, leader.clone(), reference_tick, version).unwrap(); let next_shred_index = rng.gen(); let shred = new_rand_shred(&mut rng, next_shred_index, &shredder); let other_payload = new_rand_shred(&mut rng, next_shred_index, &shredder).payload; let leader_schedule = |s| { if s == slot { Some(leader.pubkey()) } else { None } }; let chunks: Vec<_> = duplicate_shred::from_shred( shred, keypair.pubkey(), other_payload, Some(leader_schedule), timestamp(), DUPLICATE_SHRED_MAX_PAYLOAD_SIZE, ) .unwrap() .collect(); assert!(chunks.len() > 1); for chunk in chunks { let data = CrdsData::DuplicateShred(MAX_DUPLICATE_SHREDS - 1, chunk); let value = CrdsValue::new_signed(data, &keypair); let pull_response = Protocol::PullResponse(keypair.pubkey(), vec![value.clone()]); assert!(serialized_size(&pull_response).unwrap() < PACKET_DATA_SIZE as u64); let push_message = Protocol::PushMessage(keypair.pubkey(), vec![value.clone()]); assert!(serialized_size(&push_message).unwrap() < PACKET_DATA_SIZE as u64); } } #[test] fn test_pull_response_min_serialized_size() { let mut rng = rand::thread_rng(); for _ in 0..100 { let crds_values = vec![CrdsValue::new_rand(&mut rng, None)]; let pull_response = Protocol::PullResponse(Pubkey::new_unique(), crds_values); let size = serialized_size(&pull_response).unwrap(); assert!( PULL_RESPONSE_MIN_SERIALIZED_SIZE as u64 <= size, "pull-response serialized size: {}", size ); } } #[test] fn test_cluster_spy_gossip() { let thread_pool = ThreadPoolBuilder::new().build().unwrap(); //check that gossip doesn't try to push to invalid addresses let node = Node::new_localhost(); let (spy, _, _) = ClusterInfo::spy_node(&solana_sdk::pubkey::new_rand(), 0); let cluster_info = Arc::new(ClusterInfo::new_with_invalid_keypair(node.info)); cluster_info.insert_info(spy); cluster_info .gossip .write() .unwrap() .refresh_push_active_set(&HashMap::new(), None); let reqs = cluster_info.generate_new_gossip_requests( &thread_pool, None, // gossip_validators &HashMap::new(), true, // generate_pull_requests false, // require_stake_for_gossip ); //assert none of the addrs are invalid. reqs.iter().all(|(addr, _)| { let res = ContactInfo::is_valid_address(addr); assert!(res); res }); } #[test] fn test_cluster_info_new() { let d = ContactInfo::new_localhost(&solana_sdk::pubkey::new_rand(), timestamp()); let cluster_info = ClusterInfo::new_with_invalid_keypair(d.clone()); assert_eq!(d.id, cluster_info.id()); } #[test] fn insert_info_test() { let d = ContactInfo::new_localhost(&solana_sdk::pubkey::new_rand(), timestamp()); let cluster_info = ClusterInfo::new_with_invalid_keypair(d); let d = ContactInfo::new_localhost(&solana_sdk::pubkey::new_rand(), timestamp()); let label = CrdsValueLabel::ContactInfo(d.id); cluster_info.insert_info(d); assert!(cluster_info .gossip .read() .unwrap() .crds .lookup(&label) .is_some()); } fn assert_in_range(x: u16, range: (u16, u16)) { assert!(x >= range.0); assert!(x < range.1); } fn check_sockets(sockets: &[UdpSocket], ip: IpAddr, range: (u16, u16)) { assert!(sockets.len() > 1); let port = sockets[0].local_addr().unwrap().port(); for socket in sockets.iter() { check_socket(socket, ip, range); assert_eq!(socket.local_addr().unwrap().port(), port); } } fn check_socket(socket: &UdpSocket, ip: IpAddr, range: (u16, u16)) { let local_addr = socket.local_addr().unwrap(); assert_eq!(local_addr.ip(), ip); assert_in_range(local_addr.port(), range); } fn check_node_sockets(node: &Node, ip: IpAddr, range: (u16, u16)) { check_socket(&node.sockets.gossip, ip, range); check_socket(&node.sockets.repair, ip, range); check_sockets(&node.sockets.tvu, ip, range); check_sockets(&node.sockets.tpu, ip, range); } #[test] fn new_with_external_ip_test_random() { let ip = Ipv4Addr::from(0); let node = Node::new_with_external_ip( &solana_sdk::pubkey::new_rand(), &socketaddr!(ip, 0), VALIDATOR_PORT_RANGE, IpAddr::V4(ip), ); check_node_sockets(&node, IpAddr::V4(ip), VALIDATOR_PORT_RANGE); } #[test] fn new_with_external_ip_test_gossip() { // Can't use VALIDATOR_PORT_RANGE because if this test runs in parallel with others, the // port returned by `bind_in_range()` might be snatched up before `Node::new_with_external_ip()` runs let port_range = (VALIDATOR_PORT_RANGE.1 + 10, VALIDATOR_PORT_RANGE.1 + 20); let ip = IpAddr::V4(Ipv4Addr::from(0)); let port = bind_in_range(ip, port_range).expect("Failed to bind").0; let node = Node::new_with_external_ip( &solana_sdk::pubkey::new_rand(), &socketaddr!(0, port), port_range, ip, ); check_node_sockets(&node, ip, port_range); assert_eq!(node.sockets.gossip.local_addr().unwrap().port(), port); } //test that all cluster_info objects only generate signed messages //when constructed with keypairs #[test] fn test_gossip_signature_verification() { let thread_pool = ThreadPoolBuilder::new().build().unwrap(); //create new cluster info, leader, and peer let keypair = Keypair::new(); let peer_keypair = Keypair::new(); let contact_info = ContactInfo::new_localhost(&keypair.pubkey(), 0); let peer = ContactInfo::new_localhost(&peer_keypair.pubkey(), 0); let cluster_info = ClusterInfo::new(contact_info, Arc::new(keypair)); cluster_info.insert_info(peer); cluster_info .gossip .write() .unwrap() .refresh_push_active_set(&HashMap::new(), None); //check that all types of gossip messages are signed correctly let push_messages = cluster_info .gossip .write() .unwrap() .new_push_messages(cluster_info.drain_push_queue(), timestamp()); // there should be some pushes ready assert_eq!(push_messages.is_empty(), false); push_messages .values() .for_each(|v| v.par_iter().for_each(|v| assert!(v.verify()))); cluster_info .gossip .write() .unwrap() .new_pull_request( &thread_pool, timestamp(), None, &HashMap::new(), MAX_BLOOM_SIZE, ) .ok() .unwrap(); } #[test] fn test_refresh_vote() { let keys = Keypair::new(); let contact_info = ContactInfo::new_localhost(&keys.pubkey(), 0); let cluster_info = ClusterInfo::new_with_invalid_keypair(contact_info); // Construct and push a vote for some other slot let unrefresh_slot = 5; let unrefresh_tower = vec![1, 3, unrefresh_slot]; let unrefresh_vote = Vote::new(unrefresh_tower.clone(), Hash::new_unique()); let unrefresh_ix = vote_instruction::vote( &Pubkey::new_unique(), // vote_pubkey &Pubkey::new_unique(), // authorized_voter_pubkey unrefresh_vote, ); let unrefresh_tx = Transaction::new_with_payer( &[unrefresh_ix], // instructions None, // payer ); cluster_info.push_vote(&unrefresh_tower, unrefresh_tx.clone()); cluster_info.flush_push_queue(); let (_, votes, max_ts) = cluster_info.get_votes(0); assert_eq!(votes, vec![unrefresh_tx.clone()]); // Now construct vote for the slot to be refreshed later let refresh_slot = 7; let refresh_tower = vec![1, 3, unrefresh_slot, refresh_slot]; let refresh_vote = Vote::new(refresh_tower.clone(), Hash::new_unique()); let refresh_ix = vote_instruction::vote( &Pubkey::new_unique(), // vote_pubkey &Pubkey::new_unique(), // authorized_voter_pubkey refresh_vote.clone(), ); let refresh_tx = Transaction::new_with_payer( &[refresh_ix], // instructions None, // payer ); // Trying to refresh vote when it doesn't yet exist in gossip // shouldn't add the vote cluster_info.refresh_vote(refresh_tx.clone(), refresh_slot); cluster_info.flush_push_queue(); let (_, votes, max_ts) = cluster_info.get_votes(max_ts); assert_eq!(votes, vec![]); let (_, votes, _) = cluster_info.get_votes(0); assert_eq!(votes.len(), 1); assert!(votes.contains(&unrefresh_tx)); // Push the new vote for `refresh_slot` cluster_info.push_vote(&refresh_tower, refresh_tx.clone()); cluster_info.flush_push_queue(); // Should be two votes in gossip let (_, votes, _) = cluster_info.get_votes(0); assert_eq!(votes.len(), 2); assert!(votes.contains(&unrefresh_tx)); assert!(votes.contains(&refresh_tx)); // Refresh a few times, we should only have the latest update let mut latest_refresh_tx = refresh_tx; for _ in 0..10 { let latest_refreshed_recent_blockhash = Hash::new_unique(); let new_signer = Keypair::new(); let refresh_ix = vote_instruction::vote( &new_signer.pubkey(), // vote_pubkey &new_signer.pubkey(), // authorized_voter_pubkey refresh_vote.clone(), ); latest_refresh_tx = Transaction::new_signed_with_payer( &[refresh_ix], None, &[&new_signer], latest_refreshed_recent_blockhash, ); cluster_info.refresh_vote(latest_refresh_tx.clone(), refresh_slot); } cluster_info.flush_push_queue(); // The diff since `max_ts` should only be the latest refreshed vote let (_, votes, _) = cluster_info.get_votes(max_ts); assert_eq!(votes.len(), 1); assert_eq!(votes[0], latest_refresh_tx); // Should still be two votes in gossip let (_, votes, _) = cluster_info.get_votes(0); assert_eq!(votes.len(), 2); assert!(votes.contains(&unrefresh_tx)); assert!(votes.contains(&latest_refresh_tx)); } #[test] fn test_push_vote() { let mut rng = rand::thread_rng(); let keys = Keypair::new(); let contact_info = ContactInfo::new_localhost(&keys.pubkey(), 0); let cluster_info = ClusterInfo::new_with_invalid_keypair(contact_info); // make sure empty crds is handled correctly let now = timestamp(); let (_, votes, max_ts) = cluster_info.get_votes(now); assert_eq!(votes, vec![]); assert_eq!(max_ts, now); // add a vote let vote = Vote::new( vec![1, 3, 7], // slots solana_sdk::hash::new_rand(&mut rng), ); let ix = vote_instruction::vote( &Pubkey::new_unique(), // vote_pubkey &Pubkey::new_unique(), // authorized_voter_pubkey vote, ); let tx = Transaction::new_with_payer( &[ix], // instructions None, // payer ); let tower = vec![7]; // Last slot in the vote. cluster_info.push_vote(&tower, tx.clone()); cluster_info.flush_push_queue(); // -1 to make sure that the clock is strictly lower then when insert occurred let (labels, votes, max_ts) = cluster_info.get_votes(now - 1); assert_eq!(votes, vec![tx]); assert_eq!(labels.len(), 1); match labels[0] { CrdsValueLabel::Vote(_, pubkey) => { assert_eq!(pubkey, keys.pubkey()); } _ => panic!("Bad match"), } assert!(max_ts >= now - 1); // make sure timestamp filter works let (_, votes, new_max_ts) = cluster_info.get_votes(max_ts); assert_eq!(votes, vec![]); assert_eq!(max_ts, new_max_ts); } fn new_vote_transaction(rng: &mut R, slots: Vec) -> Transaction { let vote = Vote::new(slots, solana_sdk::hash::new_rand(rng)); let ix = vote_instruction::vote( &Pubkey::new_unique(), // vote_pubkey &Pubkey::new_unique(), // authorized_voter_pubkey vote, ); Transaction::new_with_payer( &[ix], // instructions None, // payer ) } #[test] fn test_push_votes_with_tower() { let get_vote_slots = |cluster_info: &ClusterInfo, now| -> Vec { let (labels, _, _) = cluster_info.get_votes(now); let gossip = cluster_info.gossip.read().unwrap(); let mut vote_slots = HashSet::new(); for label in labels { match &gossip.crds.lookup(&label).unwrap().data { CrdsData::Vote(_, vote) => { assert!(vote_slots.insert(vote.slot().unwrap())); } _ => panic!("this should not happen!"), } } vote_slots.into_iter().collect() }; let mut rng = rand::thread_rng(); let now = timestamp(); let keys = Keypair::new(); let contact_info = ContactInfo::new_localhost(&keys.pubkey(), 0); let cluster_info = ClusterInfo::new_with_invalid_keypair(contact_info); let mut tower = Vec::new(); for k in 0..MAX_LOCKOUT_HISTORY { let slot = k as Slot; tower.push(slot); let vote = new_vote_transaction(&mut rng, vec![slot]); cluster_info.push_vote(&tower, vote); } let vote_slots = get_vote_slots(&cluster_info, now); assert_eq!(vote_slots.len(), MAX_LOCKOUT_HISTORY); for vote_slot in vote_slots { assert!(vote_slot < MAX_LOCKOUT_HISTORY as u64); } // Push a new vote evicting one. let slot = MAX_LOCKOUT_HISTORY as Slot; tower.push(slot); tower.remove(23); let vote = new_vote_transaction(&mut rng, vec![slot]); cluster_info.push_vote(&tower, vote); let vote_slots = get_vote_slots(&cluster_info, now); assert_eq!(vote_slots.len(), MAX_LOCKOUT_HISTORY); for vote_slot in vote_slots { assert!(vote_slot <= slot); assert!(vote_slot != 23); } // Push a new vote evicting two. // Older one should be evicted from the crds table. let slot = slot + 1; tower.push(slot); tower.remove(17); tower.remove(5); let vote = new_vote_transaction(&mut rng, vec![slot]); cluster_info.push_vote(&tower, vote); let vote_slots = get_vote_slots(&cluster_info, now); assert_eq!(vote_slots.len(), MAX_LOCKOUT_HISTORY); for vote_slot in vote_slots { assert!(vote_slot <= slot); assert!(vote_slot != 23); assert!(vote_slot != 5); } } #[test] fn test_push_epoch_slots() { let keys = Keypair::new(); let contact_info = ContactInfo::new_localhost(&keys.pubkey(), 0); let cluster_info = ClusterInfo::new_with_invalid_keypair(contact_info); let (slots, since) = cluster_info.get_epoch_slots_since(0); assert!(slots.is_empty()); assert!(since.is_none()); cluster_info.push_epoch_slots(&[0]); cluster_info.flush_push_queue(); let (slots, since) = cluster_info.get_epoch_slots_since(std::u64::MAX); assert!(slots.is_empty()); assert_eq!(since, None); let (slots, since) = cluster_info.get_epoch_slots_since(0); assert_eq!(slots.len(), 1); assert!(since.is_some()); let (slots, since2) = cluster_info.get_epoch_slots_since(since.unwrap() + 1); assert!(slots.is_empty()); assert_eq!(since2, None); } #[test] fn test_append_entrypoint_to_pulls() { let thread_pool = ThreadPoolBuilder::new().build().unwrap(); let node_keypair = Arc::new(Keypair::new()); let cluster_info = ClusterInfo::new( ContactInfo::new_localhost(&node_keypair.pubkey(), timestamp()), node_keypair, ); let entrypoint_pubkey = solana_sdk::pubkey::new_rand(); let entrypoint = ContactInfo::new_localhost(&entrypoint_pubkey, timestamp()); cluster_info.set_entrypoint(entrypoint.clone()); let pulls = cluster_info.new_pull_requests(&thread_pool, None, &HashMap::new()); assert_eq!(1, pulls.len() as u64); match pulls.get(0) { Some((addr, msg)) => { assert_eq!(*addr, entrypoint.gossip); match msg { Protocol::PullRequest(_, value) => { assert!(value.verify()); assert_eq!(value.pubkey(), cluster_info.id()) } _ => panic!("wrong protocol"), } } None => panic!("entrypoint should be a pull destination"), } // now add this message back to the table and make sure after the next pull, the entrypoint is unset let entrypoint_crdsvalue = CrdsValue::new_unsigned(CrdsData::ContactInfo(entrypoint.clone())); let cluster_info = Arc::new(cluster_info); let timeouts = cluster_info.gossip.read().unwrap().make_timeouts_test(); ClusterInfo::handle_pull_response( &cluster_info, &entrypoint_pubkey, vec![entrypoint_crdsvalue], &timeouts, ); let pulls = cluster_info.new_pull_requests(&thread_pool, None, &HashMap::new()); assert_eq!(1, pulls.len() as u64); assert_eq!(*cluster_info.entrypoints.read().unwrap(), vec![entrypoint]); } #[test] fn test_split_messages_small() { let value = CrdsValue::new_unsigned(CrdsData::ContactInfo(ContactInfo::default())); test_split_messages(value); } #[test] fn test_split_messages_large() { let value = CrdsValue::new_unsigned(CrdsData::LowestSlot( 0, LowestSlot::new(Pubkey::default(), 0, 0), )); test_split_messages(value); } #[test] fn test_split_gossip_messages() { const NUM_CRDS_VALUES: usize = 2048; let mut rng = rand::thread_rng(); let values: Vec<_> = std::iter::repeat_with(|| CrdsValue::new_rand(&mut rng, None)) .take(NUM_CRDS_VALUES) .collect(); let splits: Vec<_> = ClusterInfo::split_gossip_messages(PUSH_MESSAGE_MAX_PAYLOAD_SIZE, values.clone()) .collect(); let self_pubkey = solana_sdk::pubkey::new_rand(); assert!(splits.len() * 3 < NUM_CRDS_VALUES); // Assert that all messages are included in the splits. assert_eq!(NUM_CRDS_VALUES, splits.iter().map(Vec::len).sum::()); splits .iter() .flat_map(|s| s.iter()) .zip(values) .for_each(|(a, b)| assert_eq!(*a, b)); let socket = SocketAddr::V4(SocketAddrV4::new( Ipv4Addr::new(rng.gen(), rng.gen(), rng.gen(), rng.gen()), rng.gen(), )); let header_size = PACKET_DATA_SIZE - PUSH_MESSAGE_MAX_PAYLOAD_SIZE; for values in splits { // Assert that sum of parts equals the whole. let size: u64 = header_size as u64 + values .iter() .map(|v| serialized_size(v).unwrap()) .sum::(); let message = Protocol::PushMessage(self_pubkey, values); assert_eq!(serialized_size(&message).unwrap(), size); // Assert that the message fits into a packet. assert!(Packet::from_data(Some(&socket), message).is_ok()); } } #[test] fn test_split_messages_packet_size() { // Test that if a value is smaller than payload size but too large to be wrapped in a vec // that it is still dropped let mut value = CrdsValue::new_unsigned(CrdsData::SnapshotHashes(SnapshotHash { from: Pubkey::default(), hashes: vec![], wallclock: 0, })); let mut i = 0; while value.size() < PUSH_MESSAGE_MAX_PAYLOAD_SIZE as u64 { value.data = CrdsData::SnapshotHashes(SnapshotHash { from: Pubkey::default(), hashes: vec![(0, Hash::default()); i], wallclock: 0, }); i += 1; } let split: Vec<_> = ClusterInfo::split_gossip_messages(PUSH_MESSAGE_MAX_PAYLOAD_SIZE, vec![value]) .collect(); assert_eq!(split.len(), 0); } fn test_split_messages(value: CrdsValue) { const NUM_VALUES: u64 = 30; let value_size = value.size(); let num_values_per_payload = (PUSH_MESSAGE_MAX_PAYLOAD_SIZE as u64 / value_size).max(1); // Expected len is the ceiling of the division let expected_len = (NUM_VALUES + num_values_per_payload - 1) / num_values_per_payload; let msgs = vec![value; NUM_VALUES as usize]; let split: Vec<_> = ClusterInfo::split_gossip_messages(PUSH_MESSAGE_MAX_PAYLOAD_SIZE, msgs).collect(); assert!(split.len() as u64 <= expected_len); } #[test] fn test_crds_filter_size() { //sanity test to ensure filter size never exceeds MTU size check_pull_request_size(CrdsFilter::new_rand(1000, 10)); check_pull_request_size(CrdsFilter::new_rand(1000, 1000)); check_pull_request_size(CrdsFilter::new_rand(100_000, 1000)); check_pull_request_size(CrdsFilter::new_rand(100_000, MAX_BLOOM_SIZE)); } fn check_pull_request_size(filter: CrdsFilter) { let value = CrdsValue::new_unsigned(CrdsData::ContactInfo(ContactInfo::default())); let protocol = Protocol::PullRequest(filter, value); assert!(serialized_size(&protocol).unwrap() <= PACKET_DATA_SIZE as u64); } #[test] fn test_tvu_peers_and_stakes() { let d = ContactInfo::new_localhost(&Pubkey::new(&[0; 32]), timestamp()); let cluster_info = ClusterInfo::new_with_invalid_keypair(d.clone()); let mut stakes = HashMap::new(); // no stake let id = Pubkey::new(&[1u8; 32]); let contact_info = ContactInfo::new_localhost(&id, timestamp()); cluster_info.insert_info(contact_info); // normal let id2 = Pubkey::new(&[2u8; 32]); let mut contact_info = ContactInfo::new_localhost(&id2, timestamp()); cluster_info.insert_info(contact_info.clone()); stakes.insert(id2, 10); // duplicate contact_info.wallclock = timestamp() + 1; cluster_info.insert_info(contact_info); // no tvu let id3 = Pubkey::new(&[3u8; 32]); let mut contact_info = ContactInfo::new_localhost(&id3, timestamp()); contact_info.tvu = "0.0.0.0:0".parse().unwrap(); cluster_info.insert_info(contact_info); stakes.insert(id3, 10); // normal but with different shred version let id4 = Pubkey::new(&[4u8; 32]); let mut contact_info = ContactInfo::new_localhost(&id4, timestamp()); contact_info.shred_version = 1; assert_ne!(contact_info.shred_version, d.shred_version); cluster_info.insert_info(contact_info); stakes.insert(id4, 10); let mut peers = cluster_info.tvu_peers(); let peers_and_stakes = stake_weight_peers(&mut peers, Some(&stakes)); assert_eq!(peers.len(), 2); assert_eq!(peers[0].id, id); assert_eq!(peers[1].id, id2); assert_eq!(peers_and_stakes.len(), 2); assert_eq!(peers_and_stakes[0].0, 10); assert_eq!(peers_and_stakes[1].0, 1); } #[test] fn test_pull_from_entrypoint_if_not_present() { let thread_pool = ThreadPoolBuilder::new().build().unwrap(); let node_keypair = Arc::new(Keypair::new()); let cluster_info = ClusterInfo::new( ContactInfo::new_localhost(&node_keypair.pubkey(), timestamp()), node_keypair, ); let entrypoint_pubkey = solana_sdk::pubkey::new_rand(); let mut entrypoint = ContactInfo::new_localhost(&entrypoint_pubkey, timestamp()); entrypoint.gossip = socketaddr!("127.0.0.2:1234"); cluster_info.set_entrypoint(entrypoint.clone()); let mut stakes = HashMap::new(); let other_node_pubkey = solana_sdk::pubkey::new_rand(); let other_node = ContactInfo::new_localhost(&other_node_pubkey, timestamp()); assert_ne!(other_node.gossip, entrypoint.gossip); cluster_info.insert_info(other_node.clone()); stakes.insert(other_node_pubkey, 10); // Pull request 1: `other_node` is present but `entrypoint` was just added (so it has a // fresh timestamp). There should only be one pull request to `other_node` let pulls = cluster_info.new_pull_requests(&thread_pool, None, &stakes); assert_eq!(1, pulls.len() as u64); assert_eq!(pulls.get(0).unwrap().0, other_node.gossip); // Pull request 2: pretend it's been a while since we've pulled from `entrypoint`. There should // now be two pull requests cluster_info.entrypoints.write().unwrap()[0].wallclock = 0; let pulls = cluster_info.new_pull_requests(&thread_pool, None, &stakes); assert_eq!(2, pulls.len() as u64); assert_eq!(pulls.get(0).unwrap().0, other_node.gossip); assert_eq!(pulls.get(1).unwrap().0, entrypoint.gossip); // Pull request 3: `other_node` is present and `entrypoint` was just pulled from. There should // only be one pull request to `other_node` let pulls = cluster_info.new_pull_requests(&thread_pool, None, &stakes); assert_eq!(1, pulls.len() as u64); assert_eq!(pulls.get(0).unwrap().0, other_node.gossip); } #[test] fn test_repair_peers() { let node_keypair = Arc::new(Keypair::new()); let cluster_info = ClusterInfo::new( ContactInfo::new_localhost(&node_keypair.pubkey(), timestamp()), node_keypair, ); for i in 0..10 { // make these invalid for the upcoming repair request let peer_lowest = if i >= 5 { 10 } else { 0 }; let other_node_pubkey = solana_sdk::pubkey::new_rand(); let other_node = ContactInfo::new_localhost(&other_node_pubkey, timestamp()); cluster_info.insert_info(other_node.clone()); let value = CrdsValue::new_unsigned(CrdsData::LowestSlot( 0, LowestSlot::new(other_node_pubkey, peer_lowest, timestamp()), )); let _ = cluster_info .gossip .write() .unwrap() .crds .insert(value, timestamp()); } // only half the visible peers should be eligible to serve this repair assert_eq!(cluster_info.repair_peers(5).len(), 5); } #[test] fn test_max_bloom_size() { // check that the constant fits into the dynamic size assert!(MAX_BLOOM_SIZE <= max_bloom_size()); } #[test] fn test_protocol_sanitize() { let pd = PruneData { wallclock: MAX_WALLCLOCK, ..PruneData::default() }; let msg = Protocol::PruneMessage(Pubkey::default(), pd); assert_eq!(msg.sanitize(), Err(SanitizeError::ValueOutOfBounds)); } #[test] fn test_protocol_prune_message_sanitize() { let keypair = Keypair::new(); let mut prune_data = PruneData { pubkey: keypair.pubkey(), prunes: vec![], signature: Signature::default(), destination: Pubkey::new_unique(), wallclock: timestamp(), }; prune_data.sign(&keypair); let prune_message = Protocol::PruneMessage(keypair.pubkey(), prune_data.clone()); assert_eq!(prune_message.sanitize(), Ok(())); let prune_message = Protocol::PruneMessage(Pubkey::new_unique(), prune_data); assert_eq!(prune_message.sanitize(), Err(SanitizeError::InvalidValue)); } // computes the maximum size for pull request blooms fn max_bloom_size() -> usize { let filter_size = serialized_size(&CrdsFilter::default()) .expect("unable to serialize default filter") as usize; let protocol = Protocol::PullRequest( CrdsFilter::default(), CrdsValue::new_unsigned(CrdsData::ContactInfo(ContactInfo::default())), ); let protocol_size = serialized_size(&protocol).expect("unable to serialize gossip protocol") as usize; PACKET_DATA_SIZE - (protocol_size - filter_size) } #[test] #[allow(clippy::same_item_push)] fn test_push_epoch_slots_large() { let node_keypair = Arc::new(Keypair::new()); let cluster_info = ClusterInfo::new( ContactInfo::new_localhost(&node_keypair.pubkey(), timestamp()), node_keypair, ); let mut range: Vec = vec![]; //random should be hard to compress for _ in 0..32000 { let last = *range.last().unwrap_or(&0); range.push(last + rand::thread_rng().gen_range(1, 32)); } cluster_info.push_epoch_slots(&range[..16000]); cluster_info.flush_push_queue(); cluster_info.push_epoch_slots(&range[16000..]); cluster_info.flush_push_queue(); let (slots, since) = cluster_info.get_epoch_slots_since(0); let slots: Vec<_> = slots.iter().flat_map(|x| x.to_slots(0)).collect(); assert_eq!(slots, range); assert!(since.is_some()); } #[test] fn test_vote_size() { let slots = vec![1; 32]; let vote = Vote::new(slots, Hash::default()); let keypair = Arc::new(Keypair::new()); // Create the biggest possible vote transaction let vote_ix = vote_instruction::vote_switch( &keypair.pubkey(), &keypair.pubkey(), vote, Hash::default(), ); let mut vote_tx = Transaction::new_with_payer(&[vote_ix], Some(&keypair.pubkey())); vote_tx.partial_sign(&[keypair.as_ref()], Hash::default()); vote_tx.partial_sign(&[keypair.as_ref()], Hash::default()); let vote = CrdsVote::new( keypair.pubkey(), vote_tx, 0, // wallclock ); let vote = CrdsValue::new_signed(CrdsData::Vote(1, vote), &Keypair::new()); assert!(bincode::serialized_size(&vote).unwrap() <= PUSH_MESSAGE_MAX_PAYLOAD_SIZE as u64); } #[test] fn test_process_entrypoint_adopt_shred_version() { let node_keypair = Arc::new(Keypair::new()); let cluster_info = Arc::new(ClusterInfo::new( ContactInfo::new_localhost(&node_keypair.pubkey(), timestamp()), node_keypair, )); assert_eq!(cluster_info.my_shred_version(), 0); // Simulating starting up with two entrypoints, no known id, only a gossip // address let entrypoint1_gossip_addr = socketaddr!("127.0.0.2:1234"); let mut entrypoint1 = ContactInfo::new_localhost(&Pubkey::default(), timestamp()); entrypoint1.gossip = entrypoint1_gossip_addr; assert_eq!(entrypoint1.shred_version, 0); let entrypoint2_gossip_addr = socketaddr!("127.0.0.2:5678"); let mut entrypoint2 = ContactInfo::new_localhost(&Pubkey::default(), timestamp()); entrypoint2.gossip = entrypoint2_gossip_addr; assert_eq!(entrypoint2.shred_version, 0); cluster_info.set_entrypoints(vec![entrypoint1, entrypoint2]); // Simulate getting entrypoint ContactInfo from gossip with an entrypoint1 shred version of // 0 let mut gossiped_entrypoint1_info = ContactInfo::new_localhost(&solana_sdk::pubkey::new_rand(), timestamp()); gossiped_entrypoint1_info.gossip = entrypoint1_gossip_addr; gossiped_entrypoint1_info.shred_version = 0; cluster_info.insert_info(gossiped_entrypoint1_info.clone()); assert!(!cluster_info .entrypoints .read() .unwrap() .iter() .any(|entrypoint| *entrypoint == gossiped_entrypoint1_info)); // Adopt the entrypoint's gossiped contact info and verify let mut entrypoints_processed = false; ClusterInfo::process_entrypoints(&cluster_info, &mut entrypoints_processed); assert_eq!(cluster_info.entrypoints.read().unwrap().len(), 2); assert!(cluster_info .entrypoints .read() .unwrap() .iter() .any(|entrypoint| *entrypoint == gossiped_entrypoint1_info)); assert!(!entrypoints_processed); // <--- entrypoint processing incomplete because shred adoption still pending assert_eq!(cluster_info.my_shred_version(), 0); // <-- shred version still 0 // Simulate getting entrypoint ContactInfo from gossip with an entrypoint2 shred version of // !0 let mut gossiped_entrypoint2_info = ContactInfo::new_localhost(&solana_sdk::pubkey::new_rand(), timestamp()); gossiped_entrypoint2_info.gossip = entrypoint2_gossip_addr; gossiped_entrypoint2_info.shred_version = 1; cluster_info.insert_info(gossiped_entrypoint2_info.clone()); assert!(!cluster_info .entrypoints .read() .unwrap() .iter() .any(|entrypoint| *entrypoint == gossiped_entrypoint2_info)); // Adopt the entrypoint's gossiped contact info and verify error!("Adopt the entrypoint's gossiped contact info and verify"); let mut entrypoints_processed = false; ClusterInfo::process_entrypoints(&cluster_info, &mut entrypoints_processed); assert_eq!(cluster_info.entrypoints.read().unwrap().len(), 2); assert!(cluster_info .entrypoints .read() .unwrap() .iter() .any(|entrypoint| *entrypoint == gossiped_entrypoint2_info)); assert!(entrypoints_processed); assert_eq!(cluster_info.my_shred_version(), 1); // <-- shred version now adopted from entrypoint2 } #[test] fn test_process_entrypoint_without_adopt_shred_version() { let node_keypair = Arc::new(Keypair::new()); let cluster_info = Arc::new(ClusterInfo::new( { let mut contact_info = ContactInfo::new_localhost(&node_keypair.pubkey(), timestamp()); contact_info.shred_version = 2; contact_info }, node_keypair, )); assert_eq!(cluster_info.my_shred_version(), 2); // Simulating starting up with default entrypoint, no known id, only a gossip // address let entrypoint_gossip_addr = socketaddr!("127.0.0.2:1234"); let mut entrypoint = ContactInfo::new_localhost(&Pubkey::default(), timestamp()); entrypoint.gossip = entrypoint_gossip_addr; assert_eq!(entrypoint.shred_version, 0); cluster_info.set_entrypoint(entrypoint); // Simulate getting entrypoint ContactInfo from gossip let mut gossiped_entrypoint_info = ContactInfo::new_localhost(&solana_sdk::pubkey::new_rand(), timestamp()); gossiped_entrypoint_info.gossip = entrypoint_gossip_addr; gossiped_entrypoint_info.shred_version = 1; cluster_info.insert_info(gossiped_entrypoint_info.clone()); // Adopt the entrypoint's gossiped contact info and verify let mut entrypoints_processed = false; ClusterInfo::process_entrypoints(&cluster_info, &mut entrypoints_processed); assert_eq!(cluster_info.entrypoints.read().unwrap().len(), 1); assert_eq!( cluster_info.entrypoints.read().unwrap()[0], gossiped_entrypoint_info ); assert!(entrypoints_processed); assert_eq!(cluster_info.my_shred_version(), 2); // <--- No change to shred version } #[test] fn test_compute_retransmit_peers_small() { const FANOUT: usize = 3; let index = vec![ 14, 15, 28, // 1st layer // 2nd layer 29, 4, 5, // 1st neighborhood 9, 16, 7, // 2nd neighborhood 26, 23, 2, // 3rd neighborhood // 3rd layer 31, 3, 17, // 1st neighborhood 20, 25, 0, // 2nd neighborhood 13, 30, 18, // 3rd neighborhood 19, 21, 22, // 4th neighborhood 6, 8, 11, // 5th neighborhood 27, 1, 10, // 6th neighborhood 12, 24, 34, // 7th neighborhood 33, 32, // 8th neighborhood ]; // 1st layer assert_eq!( compute_retransmit_peers(FANOUT, 0, &index), (vec![14, 15, 28], vec![29, 9, 26]) ); assert_eq!( compute_retransmit_peers(FANOUT, 1, &index), (vec![14, 15, 28], vec![4, 16, 23]) ); assert_eq!( compute_retransmit_peers(FANOUT, 2, &index), (vec![14, 15, 28], vec![5, 7, 2]) ); // 2nd layer, 1st neighborhood assert_eq!( compute_retransmit_peers(FANOUT, 3, &index), (vec![29, 4, 5], vec![31, 20, 13]) ); assert_eq!( compute_retransmit_peers(FANOUT, 4, &index), (vec![29, 4, 5], vec![3, 25, 30]) ); assert_eq!( compute_retransmit_peers(FANOUT, 5, &index), (vec![29, 4, 5], vec![17, 0, 18]) ); // 2nd layer, 2nd neighborhood assert_eq!( compute_retransmit_peers(FANOUT, 6, &index), (vec![9, 16, 7], vec![19, 6, 27]) ); assert_eq!( compute_retransmit_peers(FANOUT, 7, &index), (vec![9, 16, 7], vec![21, 8, 1]) ); assert_eq!( compute_retransmit_peers(FANOUT, 8, &index), (vec![9, 16, 7], vec![22, 11, 10]) ); // 2nd layer, 3rd neighborhood assert_eq!( compute_retransmit_peers(FANOUT, 9, &index), (vec![26, 23, 2], vec![12, 33]) ); assert_eq!( compute_retransmit_peers(FANOUT, 10, &index), (vec![26, 23, 2], vec![24, 32]) ); assert_eq!( compute_retransmit_peers(FANOUT, 11, &index), (vec![26, 23, 2], vec![34]) ); // 3rd layer let num_nodes = index.len(); for k in (12..num_nodes).step_by(3) { let end = num_nodes.min(k + 3); let neighbors = index[k..end].to_vec(); for i in k..end { assert_eq!( compute_retransmit_peers(FANOUT, i, &index), (neighbors.clone(), vec![]) ); } } } #[test] fn test_compute_retransmit_peers_with_fanout_five() { const FANOUT: usize = 5; const NUM_NODES: usize = 2048; const SEED: [u8; 32] = [0x55; 32]; let mut rng = ChaChaRng::from_seed(SEED); let mut index: Vec<_> = (0..NUM_NODES).collect(); index.shuffle(&mut rng); let (neighbors, children) = compute_retransmit_peers(FANOUT, 17, &index); assert_eq!(neighbors, vec![1410, 1293, 1810, 552, 512]); assert_eq!(children, vec![511, 1989, 283, 1606, 1154]); } #[test] fn test_compute_retransmit_peers_large() { const FANOUT: usize = 7; const NUM_NODES: usize = 512; let mut rng = rand::thread_rng(); let mut index: Vec<_> = (0..NUM_NODES).collect(); index.shuffle(&mut rng); let pos: HashMap = index .iter() .enumerate() .map(|(i, node)| (*node, i)) .collect(); let mut seen = vec![0; NUM_NODES]; for i in 0..NUM_NODES { let node = index[i]; let (neighbors, children) = compute_retransmit_peers(FANOUT, i, &index); assert!(neighbors.len() <= FANOUT); assert!(children.len() <= FANOUT); // If x is neighbor of y then y is also neighbor of x. for other in &neighbors { let j = pos[other]; let (other_neighbors, _) = compute_retransmit_peers(FANOUT, j, &index); assert!(other_neighbors.contains(&node)); } for i in children { seen[i] += 1; } } // Except for the first layer, each node // is child of exactly one other node. let (seed, _) = compute_retransmit_peers(FANOUT, 0, &index); for (i, k) in seen.into_iter().enumerate() { if seed.contains(&i) { assert_eq!(k, 0); } else { assert_eq!(k, 1); } } } #[test] #[ignore] // TODO: debug why this is flaky on buildkite! fn test_pull_request_time_pruning() { let node = Node::new_localhost(); let cluster_info = Arc::new(ClusterInfo::new_with_invalid_keypair(node.info)); let entrypoint_pubkey = solana_sdk::pubkey::new_rand(); let entrypoint = ContactInfo::new_localhost(&entrypoint_pubkey, timestamp()); cluster_info.set_entrypoint(entrypoint); let mut rng = rand::thread_rng(); let shred_version = cluster_info.my_shred_version(); let mut peers: Vec = vec![]; const NO_ENTRIES: usize = CRDS_UNIQUE_PUBKEY_CAPACITY + 128; let data: Vec<_> = repeat_with(|| { let keypair = Keypair::new(); peers.push(keypair.pubkey()); let mut rand_ci = ContactInfo::new_rand(&mut rng, Some(keypair.pubkey())); rand_ci.shred_version = shred_version; rand_ci.wallclock = timestamp(); CrdsValue::new_signed(CrdsData::ContactInfo(rand_ci), &keypair) }) .take(NO_ENTRIES) .collect(); let mut timeouts = HashMap::new(); timeouts.insert(Pubkey::default(), CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS * 4); assert_eq!( (0, 0, NO_ENTRIES), cluster_info.handle_pull_response(&entrypoint_pubkey, data, &timeouts) ); let now = timestamp(); for peer in peers { cluster_info .gossip .write() .unwrap() .mark_pull_request_creation_time(peer, now); } assert_eq!( cluster_info .gossip .read() .unwrap() .pull .pull_request_time .len(), CRDS_UNIQUE_PUBKEY_CAPACITY ); } }