Files
solana/client/src/quic_client.rs
ryleung-solana 8cfc010b84 Send async quic batch of txs (#24298)
Add an interface send_wire_transaction_batch_async to TpuConnection to allow for sending batches without waiting for completion

Co-authored-by: Anatoly Yakovenko <anatoly@solana.com>
2022-04-14 22:20:34 -04:00

304 lines
9.8 KiB
Rust

//! Simple client that connects to a given UDP port with the QUIC protocol and provides
//! an interface for sending transactions which is restricted by the server's flow control.
use {
crate::{
client_error::ClientErrorKind,
tpu_connection::{ClientStats, TpuConnection},
},
async_mutex::Mutex,
futures::future::join_all,
itertools::Itertools,
lazy_static::lazy_static,
log::*,
quinn::{ClientConfig, Endpoint, EndpointConfig, NewConnection, WriteError},
quinn_proto::ConnectionStats,
solana_sdk::{
quic::{QUIC_MAX_CONCURRENT_STREAMS, QUIC_PORT_OFFSET},
transport::Result as TransportResult,
},
std::{
net::{SocketAddr, UdpSocket},
sync::{atomic::Ordering, Arc},
},
tokio::runtime::Runtime,
};
struct SkipServerVerification;
impl SkipServerVerification {
pub fn new() -> Arc<Self> {
Arc::new(Self)
}
}
impl rustls::client::ServerCertVerifier for SkipServerVerification {
fn verify_server_cert(
&self,
_end_entity: &rustls::Certificate,
_intermediates: &[rustls::Certificate],
_server_name: &rustls::ServerName,
_scts: &mut dyn Iterator<Item = &[u8]>,
_ocsp_response: &[u8],
_now: std::time::SystemTime,
) -> Result<rustls::client::ServerCertVerified, rustls::Error> {
Ok(rustls::client::ServerCertVerified::assertion())
}
}
lazy_static! {
static ref RUNTIME: Runtime = tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap();
}
struct QuicClient {
endpoint: Endpoint,
connection: Arc<Mutex<Option<Arc<NewConnection>>>>,
addr: SocketAddr,
stats: Arc<ClientStats>,
}
pub struct QuicTpuConnection {
client: Arc<QuicClient>,
}
impl QuicTpuConnection {
pub fn stats(&self) -> Option<ConnectionStats> {
self.client.stats()
}
pub fn base_stats(&self) -> Arc<ClientStats> {
self.client.stats.clone()
}
}
impl TpuConnection for QuicTpuConnection {
fn new(client_socket: UdpSocket, tpu_addr: SocketAddr) -> Self {
let tpu_addr = SocketAddr::new(tpu_addr.ip(), tpu_addr.port() + QUIC_PORT_OFFSET);
let client = Arc::new(QuicClient::new(client_socket, tpu_addr));
Self { client }
}
fn tpu_addr(&self) -> &SocketAddr {
&self.client.addr
}
fn send_wire_transaction<T>(
&self,
wire_transaction: T,
stats: &ClientStats,
) -> TransportResult<()>
where
T: AsRef<[u8]>,
{
let _guard = RUNTIME.enter();
let send_buffer = self.client.send_buffer(wire_transaction, stats);
RUNTIME.block_on(send_buffer)?;
Ok(())
}
fn send_wire_transaction_batch<T>(
&self,
buffers: &[T],
stats: &ClientStats,
) -> TransportResult<()>
where
T: AsRef<[u8]>,
{
let _guard = RUNTIME.enter();
let send_batch = self.client.send_batch(buffers, stats);
RUNTIME.block_on(send_batch)?;
Ok(())
}
fn send_wire_transaction_async(
&self,
wire_transaction: Vec<u8>,
stats: Arc<ClientStats>,
) -> TransportResult<()> {
let _guard = RUNTIME.enter();
let client = self.client.clone();
//drop and detach the task
let _ = RUNTIME.spawn(async move {
let send_buffer = client.send_buffer(wire_transaction, &stats);
if let Err(e) = send_buffer.await {
warn!("Failed to send transaction async to {:?}", e);
datapoint_warn!("send-wire-async", ("failure", 1, i64),);
}
});
Ok(())
}
fn send_wire_transaction_batch_async(
&self,
buffers: Vec<Vec<u8>>,
stats: Arc<ClientStats>,
) -> TransportResult<()> {
let _guard = RUNTIME.enter();
let client = self.client.clone();
//drop and detach the task
let _ = RUNTIME.spawn(async move {
let send_batch = client.send_batch(&buffers, &stats);
if let Err(e) = send_batch.await {
warn!("Failed to send transaction batch async to {:?}", e);
datapoint_warn!("send-wire-batch-async", ("failure", 1, i64),);
}
});
Ok(())
}
}
impl QuicClient {
pub fn new(client_socket: UdpSocket, addr: SocketAddr) -> Self {
let _guard = RUNTIME.enter();
let crypto = rustls::ClientConfig::builder()
.with_safe_defaults()
.with_custom_certificate_verifier(SkipServerVerification::new())
.with_no_client_auth();
let create_endpoint = QuicClient::create_endpoint(EndpointConfig::default(), client_socket);
let mut endpoint = RUNTIME.block_on(create_endpoint);
endpoint.set_default_client_config(ClientConfig::new(Arc::new(crypto)));
Self {
endpoint,
connection: Arc::new(Mutex::new(None)),
addr,
stats: Arc::new(ClientStats::default()),
}
}
pub fn stats(&self) -> Option<ConnectionStats> {
let conn_guard = self.connection.lock();
let x = RUNTIME.block_on(conn_guard);
x.as_ref().map(|c| c.connection.stats())
}
// If this function becomes public, it should be changed to
// not expose details of the specific Quic implementation we're using
async fn create_endpoint(config: EndpointConfig, client_socket: UdpSocket) -> Endpoint {
quinn::Endpoint::new(config, None, client_socket).unwrap().0
}
async fn _send_buffer_using_conn(
data: &[u8],
connection: &NewConnection,
) -> Result<(), WriteError> {
let mut send_stream = connection.connection.open_uni().await?;
send_stream.write_all(data).await?;
send_stream.finish().await?;
Ok(())
}
async fn make_connection(&self, stats: &ClientStats) -> Result<Arc<NewConnection>, WriteError> {
let connecting = self.endpoint.connect(self.addr, "connect").unwrap();
stats.total_connections.fetch_add(1, Ordering::Relaxed);
let connecting_result = connecting.await;
if connecting_result.is_err() {
stats.connection_errors.fetch_add(1, Ordering::Relaxed);
}
let connection = connecting_result?;
Ok(Arc::new(connection))
}
// Attempts to send data, connecting/reconnecting as necessary
// On success, returns the connection used to successfully send the data
async fn _send_buffer(
&self,
data: &[u8],
stats: &ClientStats,
) -> Result<Arc<NewConnection>, WriteError> {
let connection = {
let mut conn_guard = self.connection.lock().await;
let maybe_conn = (*conn_guard).clone();
match maybe_conn {
Some(conn) => {
stats.connection_reuse.fetch_add(1, Ordering::Relaxed);
conn.clone()
}
None => {
let connection = self.make_connection(stats).await?;
*conn_guard = Some(connection.clone());
connection
}
}
};
match Self::_send_buffer_using_conn(data, &connection).await {
Ok(()) => Ok(connection),
_ => {
let connection = {
let connection = self.make_connection(stats).await?;
let mut conn_guard = self.connection.lock().await;
*conn_guard = Some(connection.clone());
connection
};
Self::_send_buffer_using_conn(data, &connection).await?;
Ok(connection)
}
}
}
pub async fn send_buffer<T>(&self, data: T, stats: &ClientStats) -> Result<(), ClientErrorKind>
where
T: AsRef<[u8]>,
{
self._send_buffer(data.as_ref(), stats).await?;
Ok(())
}
pub async fn send_batch<T>(
&self,
buffers: &[T],
stats: &ClientStats,
) -> Result<(), ClientErrorKind>
where
T: AsRef<[u8]>,
{
// Start off by "testing" the connection by sending the first transaction
// This will also connect to the server if not already connected
// and reconnect and retry if the first send attempt failed
// (for example due to a timed out connection), returning an error
// or the connection that was used to successfully send the transaction.
// We will use the returned connection to send the rest of the transactions in the batch
// to avoid touching the mutex in self, and not bother reconnecting if we fail along the way
// since testing even in the ideal GCE environment has found no cases
// where reconnecting and retrying in the middle of a batch send
// (i.e. we encounter a connection error in the middle of a batch send, which presumably cannot
// be due to a timed out connection) has succeeded
if buffers.is_empty() {
return Ok(());
}
let connection = self._send_buffer(buffers[0].as_ref(), stats).await?;
// Used to avoid dereferencing the Arc multiple times below
// by just getting a reference to the NewConnection once
let connection_ref: &NewConnection = &connection;
let chunks = buffers[1..buffers.len()]
.iter()
.chunks(QUIC_MAX_CONCURRENT_STREAMS);
let futures: Vec<_> = chunks
.into_iter()
.map(|buffs| {
join_all(
buffs
.into_iter()
.map(|buf| Self::_send_buffer_using_conn(buf.as_ref(), connection_ref)),
)
})
.collect();
for f in futures {
f.await.into_iter().try_for_each(|res| res)?;
}
Ok(())
}
}