Files
solana/core/src/db_window.rs
2019-03-08 19:59:54 -08:00

475 lines
16 KiB
Rust

//! Set of functions for emulating windowing functions from a database ledger implementation
use crate::blocktree::*;
#[cfg(feature = "erasure")]
use crate::erasure;
use crate::packet::{SharedBlob, BLOB_HEADER_SIZE};
use crate::result::Result;
use crate::streamer::BlobSender;
use solana_metrics::counter::Counter;
use solana_sdk::pubkey::Pubkey;
use std::borrow::Borrow;
use std::sync::Arc;
pub const MAX_REPAIR_LENGTH: usize = 128;
pub fn retransmit_blobs(dq: &[SharedBlob], retransmit: &BlobSender, id: &Pubkey) -> Result<()> {
let mut retransmit_queue: Vec<SharedBlob> = Vec::new();
for b in dq {
// Don't add blobs generated by this node to the retransmit queue
if b.read().unwrap().id() != *id {
retransmit_queue.push(b.clone());
}
}
if !retransmit_queue.is_empty() {
inc_new_counter_info!("streamer-recv_window-retransmit", retransmit_queue.len());
retransmit.send(retransmit_queue)?;
}
Ok(())
}
/// Process a blob: Add blob to the ledger window.
pub fn process_blob(blocktree: &Arc<Blocktree>, blob: &SharedBlob) -> Result<()> {
let is_coding = blob.read().unwrap().is_coding();
// Check if the blob is in the range of our known leaders. If not, we return.
let (slot, pix) = {
let r_blob = blob.read().unwrap();
(r_blob.slot(), r_blob.index())
};
// TODO: Once the original leader signature is added to the blob, make sure that
// the blob was originally generated by the expected leader for this slot
// Insert the new blob into block tree
if is_coding {
let blob = &blob.read().unwrap();
blocktree.put_coding_blob_bytes(slot, pix, &blob.data[..BLOB_HEADER_SIZE + blob.size()])?;
} else {
blocktree.insert_data_blobs(vec![(*blob.read().unwrap()).borrow()])?;
}
#[cfg(feature = "erasure")]
{
// TODO: Support per-slot erasure. Issue: https://github.com/solana-labs/solana/issues/2441
if let Err(e) = try_erasure(blocktree, 0) {
trace!(
"erasure::recover failed to write recovered coding blobs. Err: {:?}",
e
);
}
}
Ok(())
}
#[cfg(feature = "erasure")]
fn try_erasure(blocktree: &Arc<Blocktree>, slot_index: u64) -> Result<()> {
let meta = blocktree.meta(slot_index)?;
if let Some(meta) = meta {
let (data, coding) = erasure::recover(blocktree, slot_index, meta.consumed)?;
for c in coding {
let c = c.read().unwrap();
blocktree.put_coding_blob_bytes(
0,
c.index(),
&c.data[..BLOB_HEADER_SIZE + c.size()],
)?;
}
blocktree.write_shared_blobs(data)
} else {
Ok(())
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::blocktree::get_tmp_ledger_path;
#[cfg(all(feature = "erasure", test))]
use crate::entry::reconstruct_entries_from_blobs;
use crate::entry::{make_tiny_test_entries, EntrySlice};
#[cfg(all(feature = "erasure", test))]
use crate::erasure::test::{generate_blocktree_from_window, setup_window_ledger};
#[cfg(all(feature = "erasure", test))]
use crate::erasure::{NUM_CODING, NUM_DATA};
use crate::packet::{index_blobs, Blob, Packet, Packets, SharedBlob, PACKET_DATA_SIZE};
use crate::streamer::{receiver, responder, PacketReceiver};
use solana_sdk::signature::{Keypair, KeypairUtil};
use std::io;
use std::io::Write;
use std::net::UdpSocket;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::time::Duration;
fn get_msgs(r: PacketReceiver, num: &mut usize) {
for _t in 0..5 {
let timer = Duration::new(1, 0);
match r.recv_timeout(timer) {
Ok(m) => *num += m.read().unwrap().packets.len(),
e => info!("error {:?}", e),
}
if *num == 10 {
break;
}
}
}
#[test]
pub fn streamer_debug() {
write!(io::sink(), "{:?}", Packet::default()).unwrap();
write!(io::sink(), "{:?}", Packets::default()).unwrap();
write!(io::sink(), "{:?}", Blob::default()).unwrap();
}
#[test]
pub fn streamer_send_test() {
let read = UdpSocket::bind("127.0.0.1:0").expect("bind");
read.set_read_timeout(Some(Duration::new(1, 0))).unwrap();
let addr = read.local_addr().unwrap();
let send = UdpSocket::bind("127.0.0.1:0").expect("bind");
let exit = Arc::new(AtomicBool::new(false));
let (s_reader, r_reader) = channel();
let t_receiver = receiver(Arc::new(read), &exit, s_reader, "window-streamer-test");
let t_responder = {
let (s_responder, r_responder) = channel();
let t_responder = responder("streamer_send_test", Arc::new(send), r_responder);
let mut msgs = Vec::new();
for i in 0..10 {
let b = SharedBlob::default();
{
let mut w = b.write().unwrap();
w.data[0] = i as u8;
w.meta.size = PACKET_DATA_SIZE;
w.meta.set_addr(&addr);
}
msgs.push(b);
}
s_responder.send(msgs).expect("send");
t_responder
};
let mut num = 0;
get_msgs(r_reader, &mut num);
assert_eq!(num, 10);
exit.store(true, Ordering::Relaxed);
t_receiver.join().expect("join");
t_responder.join().expect("join");
}
#[test]
pub fn test_find_missing_data_indexes_sanity() {
let slot = 0;
let blocktree_path = get_tmp_ledger_path!();
let blocktree = Blocktree::open(&blocktree_path).unwrap();
// Early exit conditions
let empty: Vec<u64> = vec![];
assert_eq!(blocktree.find_missing_data_indexes(slot, 0, 0, 1), empty);
assert_eq!(blocktree.find_missing_data_indexes(slot, 5, 5, 1), empty);
assert_eq!(blocktree.find_missing_data_indexes(slot, 4, 3, 1), empty);
assert_eq!(blocktree.find_missing_data_indexes(slot, 1, 2, 0), empty);
let mut blobs = make_tiny_test_entries(2).to_blobs();
const ONE: u64 = 1;
const OTHER: u64 = 4;
blobs[0].set_index(ONE);
blobs[1].set_index(OTHER);
// Insert one blob at index = first_index
blocktree.write_blobs(&blobs).unwrap();
const STARTS: u64 = OTHER * 2;
const END: u64 = OTHER * 3;
const MAX: usize = 10;
// The first blob has index = first_index. Thus, for i < first_index,
// given the input range of [i, first_index], the missing indexes should be
// [i, first_index - 1]
for start in 0..STARTS {
let result = blocktree.find_missing_data_indexes(
slot, start, // start
END, //end
MAX, //max
);
let expected: Vec<u64> = (start..END).filter(|i| *i != ONE && *i != OTHER).collect();
assert_eq!(result, expected);
}
drop(blocktree);
Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_find_missing_data_indexes() {
let slot = 0;
let blocktree_path = get_tmp_ledger_path!();
let blocktree = Blocktree::open(&blocktree_path).unwrap();
// Write entries
let gap = 10;
assert!(gap > 3);
let num_entries = 10;
let mut blobs = make_tiny_test_entries(num_entries).to_blobs();
for (i, b) in blobs.iter_mut().enumerate() {
b.set_index(i as u64 * gap);
b.set_slot(slot);
}
blocktree.write_blobs(&blobs).unwrap();
// Index of the first blob is 0
// Index of the second blob is "gap"
// Thus, the missing indexes should then be [1, gap - 1] for the input index
// range of [0, gap)
let expected: Vec<u64> = (1..gap).collect();
assert_eq!(
blocktree.find_missing_data_indexes(slot, 0, gap, gap as usize),
expected
);
assert_eq!(
blocktree.find_missing_data_indexes(slot, 1, gap, (gap - 1) as usize),
expected,
);
assert_eq!(
blocktree.find_missing_data_indexes(slot, 0, gap - 1, (gap - 1) as usize),
&expected[..expected.len() - 1],
);
assert_eq!(
blocktree.find_missing_data_indexes(slot, gap - 2, gap, gap as usize),
vec![gap - 2, gap - 1],
);
assert_eq!(
blocktree.find_missing_data_indexes(slot, gap - 2, gap, 1),
vec![gap - 2],
);
assert_eq!(
blocktree.find_missing_data_indexes(slot, 0, gap, 1),
vec![1],
);
// Test with end indexes that are greater than the last item in the ledger
let mut expected: Vec<u64> = (1..gap).collect();
expected.push(gap + 1);
assert_eq!(
blocktree.find_missing_data_indexes(slot, 0, gap + 2, (gap + 2) as usize),
expected,
);
assert_eq!(
blocktree.find_missing_data_indexes(slot, 0, gap + 2, (gap - 1) as usize),
&expected[..expected.len() - 1],
);
for i in 0..num_entries as u64 {
for j in 0..i {
let expected: Vec<u64> = (j..i)
.flat_map(|k| {
let begin = k * gap + 1;
let end = (k + 1) * gap;
(begin..end)
})
.collect();
assert_eq!(
blocktree.find_missing_data_indexes(
slot,
j * gap,
i * gap,
((i - j) * gap) as usize
),
expected,
);
}
}
drop(blocktree);
Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_find_missing_data_indexes_slots() {
let blocktree_path = get_tmp_ledger_path!();
let blocktree = Blocktree::open(&blocktree_path).unwrap();
let num_entries_per_slot = 10;
let num_slots = 2;
let mut blobs = make_tiny_test_entries(num_slots * num_entries_per_slot).to_blobs();
// Insert every nth entry for each slot
let nth = 3;
for (i, b) in blobs.iter_mut().enumerate() {
b.set_index(((i % num_entries_per_slot) * nth) as u64);
b.set_slot((i / num_entries_per_slot) as u64);
}
blocktree.write_blobs(&blobs).unwrap();
let mut expected: Vec<u64> = (0..num_entries_per_slot)
.flat_map(|x| ((nth * x + 1) as u64..(nth * x + nth) as u64))
.collect();
// For each slot, find all missing indexes in the range [0, num_entries_per_slot * nth]
for slot in 0..num_slots {
assert_eq!(
blocktree.find_missing_data_indexes(
slot as u64,
0,
(num_entries_per_slot * nth) as u64,
num_entries_per_slot * nth as usize
),
expected,
);
}
// Test with a limit on the number of returned entries
for slot in 0..num_slots {
assert_eq!(
blocktree.find_missing_data_indexes(
slot as u64,
0,
(num_entries_per_slot * nth) as u64,
num_entries_per_slot * (nth - 1)
)[..],
expected[..num_entries_per_slot * (nth - 1)],
);
}
// Try to find entries in the range [num_entries_per_slot * nth..num_entries_per_slot * (nth + 1)
// that don't exist in the ledger.
let extra_entries =
(num_entries_per_slot * nth) as u64..(num_entries_per_slot * (nth + 1)) as u64;
expected.extend(extra_entries);
// For each slot, find all missing indexes in the range [0, num_entries_per_slot * nth]
for slot in 0..num_slots {
assert_eq!(
blocktree.find_missing_data_indexes(
slot as u64,
0,
(num_entries_per_slot * (nth + 1)) as u64,
num_entries_per_slot * (nth + 1),
),
expected,
);
}
}
#[test]
pub fn test_no_missing_blob_indexes() {
let slot = 0;
let blocktree_path = get_tmp_ledger_path!();
let blocktree = Blocktree::open(&blocktree_path).unwrap();
// Write entries
let num_entries = 10;
let shared_blobs = make_tiny_test_entries(num_entries).to_shared_blobs();
index_blobs(&shared_blobs, &Keypair::new().pubkey(), 0, slot, 0);
let blob_locks: Vec<_> = shared_blobs.iter().map(|b| b.read().unwrap()).collect();
let blobs: Vec<&Blob> = blob_locks.iter().map(|b| &**b).collect();
blocktree.write_blobs(blobs).unwrap();
let empty: Vec<u64> = vec![];
for i in 0..num_entries as u64 {
for j in 0..i {
assert_eq!(
blocktree.find_missing_data_indexes(slot, j, i, (i - j) as usize),
empty
);
}
}
drop(blocktree);
Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction");
}
#[cfg(all(feature = "erasure", test))]
#[test]
pub fn test_try_erasure() {
// Setup the window
let offset = 0;
let num_blobs = NUM_DATA + 2;
let slot = 0;
let mut window = setup_window_ledger(offset, num_blobs, false, slot);
let end_index = (offset + num_blobs) % window.len();
// Test erasing a data block and an erasure block
let coding_start = offset - (offset % NUM_DATA) + (NUM_DATA - NUM_CODING);
let erased_index = coding_start % window.len();
// Create a hole in the window
let erased_data = window[erased_index].data.clone();
let erased_coding = window[erased_index].coding.clone().unwrap();
window[erased_index].data = None;
window[erased_index].coding = None;
// Generate the blocktree from the window
let ledger_path = get_tmp_ledger_path!();
let blocktree = Arc::new(generate_blocktree_from_window(&ledger_path, &window, false));
try_erasure(&blocktree, 0).expect("Expected successful erasure attempt");
window[erased_index].data = erased_data;
{
let data_blobs: Vec<_> = window[erased_index..end_index]
.iter()
.map(|entry| entry.data.clone().unwrap())
.collect();
let locks: Vec<_> = data_blobs.iter().map(|blob| blob.read().unwrap()).collect();
let locked_data: Vec<&Blob> = locks.iter().map(|lock| &**lock).collect();
let (expected, _) = reconstruct_entries_from_blobs(locked_data).unwrap();
assert_eq!(
blocktree
.get_slot_entries(
0,
erased_index as u64,
Some((end_index - erased_index) as u64)
)
.unwrap(),
expected
);
}
let erased_coding_l = erased_coding.read().unwrap();
assert_eq!(
&blocktree
.get_coding_blob_bytes(slot, erased_index as u64)
.unwrap()
.unwrap()[BLOB_HEADER_SIZE..],
&erased_coding_l.data()[..erased_coding_l.size() as usize],
);
}
#[test]
fn test_process_blob() {
let blocktree_path = get_tmp_ledger_path!();
let blocktree = Arc::new(Blocktree::open(&blocktree_path).unwrap());
let num_entries = 10;
let original_entries = make_tiny_test_entries(num_entries);
let shared_blobs = original_entries.clone().to_shared_blobs();
index_blobs(&shared_blobs, &Keypair::new().pubkey(), 0, 0, 0);
for blob in shared_blobs.iter().rev() {
process_blob(&blocktree, blob).expect("Expect successful processing of blob");
}
assert_eq!(
blocktree.get_slot_entries(0, 0, None).unwrap(),
original_entries
);
drop(blocktree);
Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction");
}
}