Files
solana/src/log.rs
2018-03-03 20:41:07 -07:00

328 lines
11 KiB
Rust

//! The `log` crate provides the foundational data structures for Proof-of-History,
//! an ordered log of events in time.
/// Each log entry contains three pieces of data. The 'num_hashes' field is the number
/// of hashes performed since the previous entry. The 'end_hash' field is the result
/// of hashing 'end_hash' from the previous entry 'num_hashes' times. The 'event'
/// field points to an Event that took place shortly after 'end_hash' was generated.
///
/// If you divide 'num_hashes' by the amount of time it takes to generate a new hash, you
/// get a duration estimate since the last event. Since processing power increases
/// over time, one should expect the duration 'num_hashes' represents to decrease proportionally.
/// Though processing power varies across nodes, the network gives priority to the
/// fastest processor. Duration should therefore be estimated by assuming that the hash
/// was generated by the fastest processor at the time the entry was logged.
use generic_array::GenericArray;
use generic_array::typenum::U32;
use serde::Serialize;
use event::*;
pub type Sha256Hash = GenericArray<u8, U32>;
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct Entry<T> {
pub num_hashes: u64,
pub end_hash: Sha256Hash,
pub event: Event<T>,
}
impl<T> Entry<T> {
/// Creates a Entry from the number of hashes 'num_hashes' since the previous event
/// and that resulting 'end_hash'.
pub fn new_tick(num_hashes: u64, end_hash: &Sha256Hash) -> Self {
Entry {
num_hashes,
end_hash: *end_hash,
event: Event::Tick,
}
}
}
/// Return a Sha256 hash for the given data.
pub fn hash(val: &[u8]) -> Sha256Hash {
use sha2::{Digest, Sha256};
let mut hasher = Sha256::default();
hasher.input(val);
hasher.result()
}
/// Return the hash of the given hash extended with the given value.
pub fn extend_and_hash(end_hash: &Sha256Hash, val: &[u8]) -> Sha256Hash {
let mut hash_data = end_hash.to_vec();
hash_data.extend_from_slice(val);
hash(&hash_data)
}
pub fn hash_event<T>(end_hash: &Sha256Hash, event: &Event<T>) -> Sha256Hash {
match get_signature(event) {
None => *end_hash,
Some(sig) => extend_and_hash(end_hash, &sig),
}
}
/// Creates the hash 'num_hashes' after start_hash, plus an additional hash for any event data.
pub fn next_hash<T: Serialize>(
start_hash: &Sha256Hash,
num_hashes: u64,
event: &Event<T>,
) -> Sha256Hash {
let mut end_hash = *start_hash;
for _ in 0..num_hashes {
end_hash = hash(&end_hash);
}
hash_event(&end_hash, event)
}
/// Creates the next Tick Entry 'num_hashes' after 'start_hash'.
pub fn next_entry<T: Serialize>(
start_hash: &Sha256Hash,
num_hashes: u64,
event: Event<T>,
) -> Entry<T> {
Entry {
num_hashes,
end_hash: next_hash(start_hash, num_hashes, &event),
event,
}
}
/// Creates the next Tick Entry 'num_hashes' after 'start_hash'.
pub fn next_entry_mut<T: Serialize>(
start_hash: &mut Sha256Hash,
num_hashes: u64,
event: Event<T>,
) -> Entry<T> {
let entry = next_entry(start_hash, num_hashes, event);
*start_hash = entry.end_hash;
entry
}
/// Creates the next Tick Entry 'num_hashes' after 'start_hash'.
pub fn next_tick<T: Serialize>(start_hash: &Sha256Hash, num_hashes: u64) -> Entry<T> {
next_entry(start_hash, num_hashes, Event::Tick)
}
/// Verifies self.end_hash is the result of hashing a 'start_hash' 'self.num_hashes' times.
/// If the event is not a Tick, then hash that as well.
pub fn verify_entry<T: Serialize>(entry: &Entry<T>, start_hash: &Sha256Hash) -> bool {
if !verify_event(&entry.event) {
return false;
}
entry.end_hash == next_hash(start_hash, entry.num_hashes, &entry.event)
}
/// Verifies the hashes and counts of a slice of events are all consistent.
pub fn verify_slice(events: &[Entry<Sha256Hash>], start_hash: &Sha256Hash) -> bool {
use rayon::prelude::*;
let genesis = [Entry::new_tick(Default::default(), start_hash)];
let event_pairs = genesis.par_iter().chain(events).zip(events);
event_pairs.all(|(x0, x1)| verify_entry(&x1, &x0.end_hash))
}
/// Verifies the hashes and counts of a slice of events are all consistent.
pub fn verify_slice_u64(events: &[Entry<u64>], start_hash: &Sha256Hash) -> bool {
use rayon::prelude::*;
let genesis = [Entry::new_tick(Default::default(), start_hash)];
let event_pairs = genesis.par_iter().chain(events).zip(events);
event_pairs.all(|(x0, x1)| verify_entry(&x1, &x0.end_hash))
}
/// Verifies the hashes and events serially. Exists only for reference.
pub fn verify_slice_seq<T: Serialize>(events: &[Entry<T>], start_hash: &Sha256Hash) -> bool {
let genesis = [Entry::new_tick(0, start_hash)];
let mut event_pairs = genesis.iter().chain(events).zip(events);
event_pairs.all(|(x0, x1)| verify_entry(&x1, &x0.end_hash))
}
pub fn create_entries<T: Serialize>(
start_hash: &Sha256Hash,
num_hashes: u64,
events: Vec<Event<T>>,
) -> Vec<Entry<T>> {
let mut end_hash = *start_hash;
events
.into_iter()
.map(|event| next_entry_mut(&mut end_hash, num_hashes, event))
.collect()
}
/// Create a vector of Ticks of length 'len' from 'start_hash' hash and 'num_hashes'.
pub fn create_ticks(
start_hash: &Sha256Hash,
num_hashes: u64,
len: usize,
) -> Vec<Entry<Sha256Hash>> {
use std::iter;
let mut end_hash = *start_hash;
iter::repeat(Event::Tick)
.take(len)
.map(|event| next_entry_mut(&mut end_hash, num_hashes, event))
.collect()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_event_verify() {
let zero = Sha256Hash::default();
let one = hash(&zero);
assert!(verify_entry::<u8>(&Entry::new_tick(0, &zero), &zero)); // base case
assert!(!verify_entry::<u8>(&Entry::new_tick(0, &zero), &one)); // base case, bad
assert!(verify_entry::<u8>(&next_tick(&zero, 1), &zero)); // inductive step
assert!(!verify_entry::<u8>(&next_tick(&zero, 1), &one)); // inductive step, bad
}
#[test]
fn test_next_tick() {
let zero = Sha256Hash::default();
assert_eq!(next_tick::<Sha256Hash>(&zero, 1).num_hashes, 1)
}
fn verify_slice_generic(verify_slice: fn(&[Entry<Sha256Hash>], &Sha256Hash) -> bool) {
let zero = Sha256Hash::default();
let one = hash(&zero);
assert!(verify_slice(&vec![], &zero)); // base case
assert!(verify_slice(&vec![Entry::new_tick(0, &zero)], &zero)); // singleton case 1
assert!(!verify_slice(&vec![Entry::new_tick(0, &zero)], &one)); // singleton case 2, bad
assert!(verify_slice(&create_ticks(&zero, 0, 2), &zero)); // inductive step
let mut bad_ticks = create_ticks(&zero, 0, 2);
bad_ticks[1].end_hash = one;
assert!(!verify_slice(&bad_ticks, &zero)); // inductive step, bad
}
#[test]
fn test_verify_slice() {
verify_slice_generic(verify_slice);
}
#[test]
fn test_verify_slice_seq() {
verify_slice_generic(verify_slice_seq::<Sha256Hash>);
}
#[test]
fn test_reorder_attack() {
let zero = Sha256Hash::default();
let one = hash(&zero);
// First, verify entries
let keypair = generate_keypair();
let event0 = Event::new_claim(get_pubkey(&keypair), zero, sign_claim_data(&zero, &keypair));
let event1 = Event::new_claim(get_pubkey(&keypair), one, sign_claim_data(&one, &keypair));
let events = vec![event0, event1];
let mut entries = create_entries(&zero, 0, events);
assert!(verify_slice(&entries, &zero));
// Next, swap two events and ensure verification fails.
let event0 = entries[0].event.clone();
let event1 = entries[1].event.clone();
entries[0].event = event1;
entries[1].event = event0;
assert!(!verify_slice(&entries, &zero));
}
#[test]
fn test_claim() {
let keypair = generate_keypair();
let data = hash(b"hello, world");
let event0 = Event::new_claim(get_pubkey(&keypair), data, sign_claim_data(&data, &keypair));
let zero = Sha256Hash::default();
let entries = create_entries(&zero, 0, vec![event0]);
assert!(verify_slice(&entries, &zero));
}
#[test]
fn test_wrong_data_claim_attack() {
let keypair = generate_keypair();
let event0 = Event::new_claim(
get_pubkey(&keypair),
hash(b"goodbye cruel world"),
sign_claim_data(&hash(b"hello, world"), &keypair),
);
let zero = Sha256Hash::default();
let entries = create_entries(&zero, 0, vec![event0]);
assert!(!verify_slice(&entries, &zero));
}
#[test]
fn test_transfer() {
let keypair0 = generate_keypair();
let keypair1 = generate_keypair();
let pubkey1 = get_pubkey(&keypair1);
let data = hash(b"hello, world");
let event0 = Event::Transaction {
from: get_pubkey(&keypair0),
to: pubkey1,
data,
sig: sign_transaction_data(&data, &keypair0, &pubkey1),
};
let zero = Sha256Hash::default();
let entries = create_entries(&zero, 0, vec![event0]);
assert!(verify_slice(&entries, &zero));
}
#[test]
fn test_wrong_data_transfer_attack() {
let keypair0 = generate_keypair();
let keypair1 = generate_keypair();
let pubkey1 = get_pubkey(&keypair1);
let data = hash(b"hello, world");
let event0 = Event::Transaction {
from: get_pubkey(&keypair0),
to: pubkey1,
data: hash(b"goodbye cruel world"), // <-- attack!
sig: sign_transaction_data(&data, &keypair0, &pubkey1),
};
let zero = Sha256Hash::default();
let entries = create_entries(&zero, 0, vec![event0]);
assert!(!verify_slice(&entries, &zero));
}
#[test]
fn test_transfer_hijack_attack() {
let keypair0 = generate_keypair();
let keypair1 = generate_keypair();
let thief_keypair = generate_keypair();
let pubkey1 = get_pubkey(&keypair1);
let data = hash(b"hello, world");
let event0 = Event::Transaction {
from: get_pubkey(&keypair0),
to: get_pubkey(&thief_keypair), // <-- attack!
data: hash(b"goodbye cruel world"),
sig: sign_transaction_data(&data, &keypair0, &pubkey1),
};
let zero = Sha256Hash::default();
let entries = create_entries(&zero, 0, vec![event0]);
assert!(!verify_slice(&entries, &zero));
}
}
#[cfg(all(feature = "unstable", test))]
mod bench {
extern crate test;
use self::test::Bencher;
use log::*;
#[bench]
fn event_bench(bencher: &mut Bencher) {
let start_hash = Default::default();
let events = create_ticks(&start_hash, 10_000, 8);
bencher.iter(|| {
assert!(verify_slice(&events, &start_hash));
});
}
#[bench]
fn event_bench_seq(bencher: &mut Bencher) {
let start_hash = Default::default();
let events = create_ticks(&start_hash, 10_000, 8);
bencher.iter(|| {
assert!(verify_slice_seq(&events, &start_hash));
});
}
}