Files
triton/lib/Conversion/TritonGPUToLLVM/ViewOpToLLVM.cpp

269 lines
11 KiB
C++
Raw Permalink Normal View History

#include "ViewOpToLLVM.h"
#include "DotOpHelpers.h"
using namespace mlir;
using namespace mlir::triton;
using ::mlir::LLVM::DotOpFMAConversionHelper;
using ::mlir::LLVM::DotOpMmaV1ConversionHelper;
using ::mlir::LLVM::DotOpMmaV2ConversionHelper;
using ::mlir::LLVM::getElementsFromStruct;
using ::mlir::LLVM::getSharedMemoryObjectFromStruct;
using ::mlir::LLVM::getStructFromElements;
using ::mlir::LLVM::MMA16816ConversionHelper;
using ::mlir::triton::gpu::getElemsPerThread;
struct SplatOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::SplatOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::SplatOp>::ConvertTritonGPUOpToLLVMPattern;
// Convert SplatOp or arith::ConstantOp with SplatElementsAttr to a
// LLVM::StructType value.
//
// @elemType: the element type in operand.
// @resType: the return type of the Splat-like op.
// @constVal: a LLVM::ConstantOp or other scalar value.
static Value convertSplatLikeOp(Type elemType, Type resType, Value constVal,
TypeConverter *typeConverter,
ConversionPatternRewriter &rewriter,
Location loc) {
auto tensorTy = resType.cast<RankedTensorType>();
if (tensorTy.getEncoding().isa<BlockedEncodingAttr>() ||
tensorTy.getEncoding().isa<SliceEncodingAttr>()) {
auto srcType = typeConverter->convertType(elemType);
auto llSrc = bitcast(constVal, srcType);
size_t elemsPerThread = getElemsPerThread(tensorTy);
llvm::SmallVector<Value> elems(elemsPerThread, llSrc);
llvm::SmallVector<Type> elemTypes(elems.size(), srcType);
auto structTy =
LLVM::LLVMStructType::getLiteral(rewriter.getContext(), elemTypes);
return getStructFromElements(loc, elems, rewriter, structTy);
} else if (auto dotLayout =
tensorTy.getEncoding()
.dyn_cast<triton::gpu::DotOperandEncodingAttr>()) {
return convertSplatLikeOpWithDotOperandLayout(
dotLayout, resType, elemType, constVal, typeConverter, rewriter, loc);
} else if (auto mmaLayout =
tensorTy.getEncoding().dyn_cast<MmaEncodingAttr>()) {
return convertSplatLikeOpWithMmaLayout(
mmaLayout, resType, elemType, constVal, typeConverter, rewriter, loc);
} else
assert(false && "Unsupported layout found in ConvertSplatLikeOp");
return {};
}
static Value convertSplatLikeOpWithDotOperandLayout(
const triton::gpu::DotOperandEncodingAttr &layout, Type resType,
Type elemType, Value constVal, TypeConverter *typeConverter,
ConversionPatternRewriter &rewriter, Location loc) {
auto tensorTy = resType.cast<RankedTensorType>();
auto shape = tensorTy.getShape();
auto parent = layout.getParent();
int numElems{};
if (auto mmaLayout = parent.dyn_cast<MmaEncodingAttr>()) {
if (mmaLayout.isAmpere()) {
numElems = layout.getOpIdx() == 0
? MMA16816ConversionHelper::getANumElemsPerThread(
tensorTy, mmaLayout.getWarpsPerCTA()[0])
: MMA16816ConversionHelper::getBNumElemsPerThread(
tensorTy, mmaLayout.getWarpsPerCTA()[1]);
} else if (mmaLayout.isVolta()) {
DotOpMmaV1ConversionHelper helper(mmaLayout);
numElems = layout.getOpIdx() == 0
? helper.numElemsPerThreadA(shape, {0, 1})
: helper.numElemsPerThreadB(shape, {0, 1});
}
} else if (auto blockedLayout = parent.dyn_cast<BlockedEncodingAttr>()) {
numElems = DotOpFMAConversionHelper::getNumElemsPerThread(shape, layout);
} else {
assert(false && "Unsupported layout found");
}
auto structTy = LLVM::LLVMStructType::getLiteral(
rewriter.getContext(), SmallVector<Type>(numElems, elemType));
return getStructFromElements(loc, SmallVector<Value>(numElems, constVal),
rewriter, structTy);
}
static Value convertSplatLikeOpWithMmaLayout(
const MmaEncodingAttr &layout, Type resType, Type elemType,
Value constVal, TypeConverter *typeConverter,
ConversionPatternRewriter &rewriter, Location loc) {
auto tensorTy = resType.cast<RankedTensorType>();
auto shape = tensorTy.getShape();
if (layout.isAmpere()) {
auto [repM, repN] = DotOpMmaV2ConversionHelper::getRepMN(tensorTy);
size_t fcSize = 4 * repM * repN;
auto structTy = LLVM::LLVMStructType::getLiteral(
rewriter.getContext(), SmallVector<Type>(fcSize, elemType));
return getStructFromElements(loc, SmallVector<Value>(fcSize, constVal),
rewriter, structTy);
}
if (layout.isVolta()) {
DotOpMmaV1ConversionHelper helper(layout);
int repM = helper.getRepM(shape[0]);
int repN = helper.getRepN(shape[1]);
// According to mma layout of v1, each thread process 8 elements.
int elems = 8 * repM * repN;
auto structTy = LLVM::LLVMStructType::getLiteral(
rewriter.getContext(), SmallVector<Type>(elems, elemType));
return getStructFromElements(loc, SmallVector<Value>(elems, constVal),
rewriter, structTy);
}
assert(false && "Unsupported mma layout found");
return {};
}
LogicalResult matchAndRewrite(triton::SplatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto loc = op->getLoc();
auto src = adaptor.src();
auto llStruct = convertSplatLikeOp(src.getType(), op.getType(), src,
getTypeConverter(), rewriter, loc);
rewriter.replaceOp(op, {llStruct});
return success();
}
};
// This pattern helps to convert arith::ConstantOp(with SplatElementsAttr),
// the logic is the same as triton::SplatOp, so the underlying implementation
// is reused.
struct ArithConstantSplatOpConversion
: public ConvertTritonGPUOpToLLVMPattern<arith::ConstantOp> {
using ConvertTritonGPUOpToLLVMPattern<
arith::ConstantOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(arith::ConstantOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto value = op.getValue();
if (!value.dyn_cast<SplatElementsAttr>())
return failure();
auto loc = op->getLoc();
LLVM::ConstantOp arithConstantOp;
auto values = op.getValue().dyn_cast<SplatElementsAttr>();
auto elemType = values.getElementType();
Attribute val;
if (elemType.isBF16() || type::isFloat(elemType)) {
val = values.getValues<FloatAttr>()[0];
} else if (type::isInt(elemType)) {
val = values.getValues<IntegerAttr>()[0];
} else {
llvm::errs() << "ArithConstantSplatOpConversion get unsupported type: "
<< value.getType() << "\n";
return failure();
}
auto constOp = rewriter.create<LLVM::ConstantOp>(loc, elemType, val);
auto llStruct = SplatOpConversion::convertSplatLikeOp(
elemType, op.getType(), constOp, getTypeConverter(), rewriter, loc);
rewriter.replaceOp(op, llStruct);
return success();
}
};
struct CatOpConversion : public ConvertTritonGPUOpToLLVMPattern<CatOp> {
using OpAdaptor = typename CatOp::Adaptor;
explicit CatOpConversion(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: ConvertTritonGPUOpToLLVMPattern<CatOp>(typeConverter, benefit) {}
LogicalResult
matchAndRewrite(CatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto resultTy = op.getType().template cast<RankedTensorType>();
unsigned elems = getElemsPerThread(resultTy);
Type elemTy =
this->getTypeConverter()->convertType(resultTy.getElementType());
SmallVector<Type> types(elems, elemTy);
// unpack input values
auto lhsVals = getElementsFromStruct(loc, adaptor.lhs(), rewriter);
auto rhsVals = getElementsFromStruct(loc, adaptor.rhs(), rewriter);
// concatenate (and potentially reorder) values
SmallVector<Value> retVals;
for (Value v : lhsVals)
retVals.push_back(v);
for (Value v : rhsVals)
retVals.push_back(v);
// pack and replace
Type structTy = LLVM::LLVMStructType::getLiteral(this->getContext(), types);
Value ret = getStructFromElements(loc, retVals, rewriter, structTy);
rewriter.replaceOp(op, ret);
return success();
}
};
template <typename SourceOp>
struct ViewLikeOpConversion : public ConvertTritonGPUOpToLLVMPattern<SourceOp> {
using OpAdaptor = typename SourceOp::Adaptor;
explicit ViewLikeOpConversion(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: ConvertTritonGPUOpToLLVMPattern<SourceOp>(typeConverter, benefit) {}
LogicalResult
matchAndRewrite(SourceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// We cannot directly run `rewriter.replaceOp(op, adaptor.src())`
// due to MLIR's restrictions
Location loc = op->getLoc();
auto resultTy = op.getType().template cast<RankedTensorType>();
unsigned elems = getElemsPerThread(resultTy);
Type elemTy =
this->getTypeConverter()->convertType(resultTy.getElementType());
SmallVector<Type> types(elems, elemTy);
Type structTy = LLVM::LLVMStructType::getLiteral(this->getContext(), types);
auto vals = getElementsFromStruct(loc, adaptor.src(), rewriter);
Value view = getStructFromElements(loc, vals, rewriter, structTy);
rewriter.replaceOp(op, view);
return success();
}
};
struct TransOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::TransOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::TransOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::TransOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto srcSmemObj =
getSharedMemoryObjectFromStruct(loc, adaptor.src(), rewriter);
SmallVector<Value> dstStrides = {srcSmemObj.strides[1],
srcSmemObj.strides[0]};
SmallVector<Value> dstOffsets = {srcSmemObj.offsets[1],
srcSmemObj.offsets[0]};
auto dstSmemObj =
SharedMemoryObject(srcSmemObj.base, dstStrides, dstOffsets);
auto retVal = getStructFromSharedMemoryObject(loc, dstSmemObj, rewriter);
rewriter.replaceOp(op, retVal);
return success();
}
};
void populateViewOpToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
RewritePatternSet &patterns, int numWarps,
AxisInfoAnalysis &axisInfoAnalysis,
const Allocation *allocation, Value smem,
PatternBenefit benefit) {
patterns.add<ViewLikeOpConversion<triton::ViewOp>>(typeConverter, benefit);
patterns.add<ViewLikeOpConversion<triton::ExpandDimsOp>>(typeConverter,
benefit);
patterns.add<SplatOpConversion>(typeConverter, benefit);
patterns.add<ArithConstantSplatOpConversion>(typeConverter, benefit);
patterns.add<CatOpConversion>(typeConverter, benefit);
patterns.add<TransOpConversion>(typeConverter, benefit);
}