Files
triton/lib/Analysis/Utility.cpp

152 lines
5.2 KiB
C++
Raw Permalink Normal View History

#include "triton/Analysis/Utility.h"
#include "mlir/IR/Dialect.h"
#include "triton/Dialect/Triton/IR/Dialect.h"
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
namespace mlir {
bool ReduceOpHelper::isFastReduction() {
auto srcLayout = srcTy.getEncoding();
auto axis = op.axis();
return axis == triton::gpu::getOrder(srcLayout)[0];
}
unsigned ReduceOpHelper::getInterWarpSize() {
auto srcLayout = srcTy.getEncoding();
auto srcShape = srcTy.getShape();
auto axis = op.axis();
auto srcReduceDimSize = static_cast<unsigned>(srcShape[axis]);
unsigned sizeIntraWarps = getIntraWarpSize();
return std::min(srcReduceDimSize / sizeIntraWarps,
triton::gpu::getWarpsPerCTA(srcLayout)[axis]);
}
unsigned ReduceOpHelper::getIntraWarpSize() {
auto srcLayout = srcTy.getEncoding();
auto srcShape = srcTy.getShape();
auto axis = op.axis();
auto srcReduceDimSize = static_cast<unsigned>(srcShape[axis]);
return std::min(srcReduceDimSize,
triton::gpu::getThreadsPerWarp(srcLayout)[axis]);
}
unsigned ReduceOpHelper::getThreadsReductionAxis() {
auto srcLayout = srcTy.getEncoding();
auto axis = op.axis();
return triton::gpu::getThreadsPerWarp(srcLayout)[axis] *
triton::gpu::getWarpsPerCTA(srcLayout)[axis];
}
SmallVector<unsigned> ReduceOpHelper::getScratchConfigBasic() {
auto axis = op.axis();
auto smemShape = convertType<unsigned>(getSrcShape());
smemShape[axis] = std::min(smemShape[axis], getThreadsReductionAxis());
return smemShape;
}
SmallVector<SmallVector<unsigned>> ReduceOpHelper::getScratchConfigsFast() {
auto axis = op.axis();
SmallVector<SmallVector<unsigned>> smemShapes(3);
/// shared memory block0
smemShapes[0] = convertType<unsigned>(getSrcShape());
smemShapes[0][axis] = getInterWarpSize();
/// FIXME(Qingyi): This size is actually larger than required.
/// shared memory block1:
auto mod = op.getOperation()->getParentOfType<ModuleOp>();
unsigned numWarps = triton::gpu::TritonGPUDialect::getNumWarps(mod);
smemShapes[1].push_back(numWarps * 32);
return smemShapes;
}
unsigned ReduceOpHelper::getScratchSizeInBytes() {
unsigned elems = 0;
if (isFastReduction()) {
auto smemShapes = getScratchConfigsFast();
for (const auto &smemShape : smemShapes)
elems = std::max(elems, product<unsigned>(smemShape));
} else {
auto smemShape = getScratchConfigBasic();
elems = product<unsigned>(smemShape);
}
auto tensorType = op.operand().getType().cast<RankedTensorType>();
unsigned bytes = elems * tensorType.getElementTypeBitWidth() / 8;
if (triton::ReduceOp::withIndex(op.redOp()))
bytes += elems * sizeof(int32_t);
return bytes;
}
bool isSharedEncoding(Value value) {
auto type = value.getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
auto encoding = tensorType.getEncoding();
return encoding && encoding.isa<triton::gpu::SharedEncodingAttr>();
}
return false;
}
bool maybeSharedAllocationOp(Operation *op) {
// TODO(Keren): This function can be replaced by adding
// MemoryEffectOpInterface. We can then use the MemoryEffectOpInterface to
// query the memory effects of the op.
auto *dialect = op->getDialect();
return dialect &&
(dialect->getTypeID() ==
mlir::TypeID::get<triton::gpu::TritonGPUDialect>() ||
dialect->getTypeID() == mlir::TypeID::get<triton::TritonDialect>() ||
dialect->getTypeID() ==
mlir::TypeID::get<arith::ArithmeticDialect>() ||
dialect->getTypeID() == mlir::TypeID::get<tensor::TensorDialect>());
}
bool maybeAliasOp(Operation *op) {
return isa<tensor::ExtractSliceOp>(op) || isa<triton::TransOp>(op) ||
isa<triton::gpu::InsertSliceAsyncOp>(op) ||
isa<tensor::InsertSliceOp>(op);
}
bool supportMMA(triton::DotOp op, int version) {
// Refer to mma section for the data type supported by Volta and Hopper
// Tensor Core in
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-fragment-mma-884-f16
auto aElemTy = op.a().getType().cast<RankedTensorType>().getElementType();
auto bElemTy = op.b().getType().cast<RankedTensorType>().getElementType();
if (aElemTy.isF32() && bElemTy.isF32()) {
return op.allowTF32() && version >= 2;
}
return supportMMA(op.a(), version) && supportMMA(op.b(), version);
}
bool supportMMA(Value value, int version) {
// Tell whether a DotOp support HMMA by the operand type(either $a or $b).
// We cannot get both the operand types(in TypeConverter), here we assume the
// types of both the operands are identical here.
assert((version == 1 || version == 2) &&
"Unexpected MMA layout version found");
auto elemTy = value.getType().cast<RankedTensorType>().getElementType();
return elemTy.isF16() || elemTy.isBF16() ||
(elemTy.isF32() && version >= 2) ||
(elemTy.isInteger(8) && version >= 2);
}
Type getElementType(Value value) {
auto type = value.getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return tensorType.getElementType();
return type;
}
std::string getValueOperandName(Value value, AsmState &state) {
std::string opName;
llvm::raw_string_ostream ss(opName);
value.printAsOperand(ss, state);
return opName;
}
} // namespace mlir