Files
triton/tune/tools.py

103 lines
3.9 KiB
Python
Raw Normal View History

import isaac as isc
from numpy import mean, median
from math import ceil, exp, log, sqrt
def sanitize(string, keep_chars = ['_']):
string = string.replace(' ', '_').replace('-', '_').lower()
string = "".join(c for c in string if c.isalnum() or c in keep_chars).rstrip()
return string
def distance(x, y):
return sqrt(sum([(a - b)**2 for a, b in zip(x, y)]))
def linspace(a, b, n=100):
if n < 2:
return b
diff = (float(b) - a)/(n - 1)
return [diff * i + a for i in range(n)]
def expspace(a,b,N,r=128):
return [int(ceil(exp(x)/r)*r) for x in linspace(log(a), log(b), N)]
def benchmark(template, setting, tree):
queue = tree.context.queues[0]
queue.models[template, isc.float32] = isc.model(isc.float32, template(*setting), queue)
times = []
total = 0
i = 0
while total < 1e-2:
#z = isc.zeros(1, 10000000, isc.float32, tree.context)
z, events = isc.enqueue(tree)
tree.context.queues[0].synchronize()
times.append(1e-9*sum([e.elapsed_time for e in events]))
total += times[-1]
i+=1
return mean(times)
def tree_of(template, sizes, context):
if issubclass(template, isc.vaxpy):
N, = sizes
x = isc.empty(N, dtype=isc.float32, context=context)
y = isc.empty(N, dtype=isc.float32, context=context)
return x + y, (x, y)
elif issubclass(template, isc.reduction):
N, = sizes
x = isc.empty(N, context=context)
y = isc.empty(N, context=context)
return isc.dot(x, y), (x, y)
elif issubclass(template, isc.maxpy):
M, N = sizes
A = isc.empty((M,N), context=context)
B = isc.empty((M,N), context=context)
return A + B, (A, B)
elif issubclass(template, isc.mreduction):
T = template is isc.mreduction_cols
M, N = sizes[::-1] if T else sizes
A = isc.empty((M,N), context=context)
x = isc.empty(N, context=context)
return isc.dot(A.T, x) if T else isc.dot(A, x), (A, x)
elif issubclass(template, isc.mproduct):
AT = template is isc.mproduct_tn or template is isc.mproduct_tt
BT = template is isc.mproduct_nt or template is isc.mproduct_tt
M, N, K = sizes
A = isc.empty((K, M) if AT else (M, K), context=context)
B = isc.empty((N, K) if BT else (K, N), context=context)
AA = A.T if AT else A
BB = B.T if BT else B
return isc.dot(AA, BB), (A, B)
def memory_footprint(template, sizes):
if issubclass(template, isc.vaxpy):
return 4*3*sizes[0]*1e-9
elif issubclass(template, isc.reduction):
return 4*2*sizes[0]*1e-9
elif issubclass(template, isc.maxpy):
return 4*3*sizes[0]*sizes[1]*1e-9
elif issubclass(template, isc.mreduction):
return 4*sizes[0]*sizes[1]*1e-9
elif issubclass(template, isc.mproduct):
return 4*(sizes[0]*sizes[1] + sizes[0]*sizes[2] + sizes[1]*sizes[2])*1e-9
def metric_of(template):
memory_bound = [isc.vaxpy, isc.reduction, isc.maxpy, isc.mreduction]
compute_bound = [isc.mproduct]
if any([issubclass(template, x) for x in memory_bound]):
return lambda sizes, t: memory_footprint(template, sizes)/t
elif any([issubclass(template, x) for x in compute_bound]):
return lambda sizes, t: 2*sizes[0]*sizes[1]*sizes[2]*1e-9/t
def genetic_infos_of(template):
if issubclass(template, isc.vaxpy):
return {'categorical': [3], 'nbits': [3,4,4,2] }
elif issubclass(template, isc.reduction):
return {'categorical': [3], 'nbits':[3,4,4,2]}
elif issubclass(template, isc.maxpy):
return {'categorical': [5], 'nbits': [3,3,3,3,4,2]}
elif issubclass(template, isc.mreduction):
return {'categorical': [5], 'nbits': [3,3,3,3,4,2]}
elif issubclass(template, isc.mproduct):
return {'categorical': [8,9], 'nbits': [3,3,3,3,3,2,2,2,2,2,3,3]}