Files
triton/v1.1.2/_sources/getting-started/tutorials/05-layer-norm.rst.txt

361 lines
14 KiB
Plaintext
Raw Normal View History

2022-02-09 07:15:50 +00:00
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "getting-started/tutorials/05-layer-norm.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here <sphx_glr_download_getting-started_tutorials_05-layer-norm.py>`
to download the full example code
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_getting-started_tutorials_05-layer-norm.py:
Layer Normalization
====================
.. GENERATED FROM PYTHON SOURCE LINES 5-252
.. image:: /getting-started/tutorials/images/sphx_glr_05-layer-norm_001.png
:alt: 05 layer norm
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
layer-norm-backward:
N Triton Torch Apex
2022-06-09 00:48:08 +00:00
0 1024.0 307.200008 94.160917 289.129413
1 1536.0 347.773587 135.032961 338.201833
2 2048.0 423.724127 161.684218 323.368435
3 2560.0 461.954908 183.402991 326.808501
4 3072.0 515.580429 191.999993 317.793096
5 3584.0 554.941930 207.768111 311.652167
6 4096.0 564.965515 220.907859 300.623865
7 4608.0 498.162157 232.825259 287.251954
8 5120.0 529.655159 242.366855 285.767451
9 5632.0 540.671974 240.512468 286.980888
10 6144.0 540.131844 250.775512 286.879370
11 6656.0 528.953642 256.410903 286.793541
12 7168.0 513.528374 257.532925 280.639473
13 7680.0 482.513091 262.938666 280.975614
14 8192.0 462.607053 261.794935 275.361335
15 8704.0 415.300208 265.433292 283.826081
16 9216.0 429.483477 269.736580 286.507772
17 9728.0 438.033784 282.311967 290.388056
18 10240.0 445.217381 285.104413 288.450695
19 10752.0 429.364408 245.526173 288.644296
20 11264.0 430.471331 242.671458 282.778242
21 11776.0 421.826879 249.447482 289.573776
22 12288.0 421.905564 253.578674 294.029924
23 12800.0 415.696898 252.839495 287.371378
24 13312.0 411.711355 252.161013 289.391298
25 13824.0 403.620451 256.991469 291.031592
26 14336.0 398.683664 253.734520 286.481278
27 14848.0 383.586664 257.479779 290.425421
28 15360.0 376.932517 260.155264 289.356349
29 15872.0 368.046389 263.071829 291.452168
2022-02-09 07:15:50 +00:00
|
.. code-block:: default
import torch
import triton.language as tl
import triton
# Forward Pass
@triton.jit
def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps, **META):
BLOCK_SIZE = META['BLOCK_SIZE']
# position of elements processed by this program
row = tl.program_id(0)
cols = tl.arange(0, BLOCK_SIZE)
mask = cols < N
# offset data pointers to start at the row of interest
X += row * stride
Y += row * stride
# load data and cast to float32
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
# compute mean
mean = tl.sum(x, axis=0) / N
# compute std
xmean = tl.where(mask, x - mean, 0.)
var = tl.sum(xmean * xmean, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
xhat = xmean*rstd
# write-back mean/rstd
tl.store(M + row, mean)
tl.store(V + row, rstd)
# multiply by weight and add bias
w = tl.load(W + cols, mask=mask)
b = tl.load(B + cols, mask=mask)
y = xhat * w + b
# write-back
tl.store(Y + cols, y, mask=mask)
# Backward pass (DX + partial DW + partial DB)
@triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock,
stride, N, eps,
**META):
GROUP_SIZE_M = META['GROUP_SIZE_M']
BLOCK_SIZE_N = META['BLOCK_SIZE_N']
# position of elements processed by this program
row = tl.program_id(0)
cols = tl.arange(0, BLOCK_SIZE_N)
mask = cols < N
# offset data pointers to start at the row of interest
X += row * stride
DY += row * stride
DX += row * stride
# offset locks and weight/bias gradient pointer
# each kernel instance accumulates partial sums for
# DW and DB into one of GROUP_SIZE_M independent buffers
# these buffers stay in the L2, which allow this kernel
# to be fast
lock_id = row % GROUP_SIZE_M
Lock += lock_id
Count = Lock + GROUP_SIZE_M
DW = DW + lock_id*N + cols
DB = DB + lock_id*N + cols
# load data to SRAM
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
w = tl.load(W + cols, mask=mask).to(tl.float32)
mean = tl.load(M + row)
rstd = tl.load(V + row)
# compute dx
xhat = (x - mean)*rstd
wdy = w * dy
xhat = tl.where(mask, xhat, 0.)
wdy = tl.where(mask, wdy , 0.)
mean1 = tl.sum(xhat * wdy, axis=0) / N
mean2 = tl.sum(wdy, axis=0) / N
dx = (wdy - (xhat*mean1 + mean2))*rstd
# write-back dx
tl.store(DX + cols, dx, mask=mask)
# accumulate partial sums for dw/db
partial_dw = (dy*xhat).to(w.dtype)
partial_db = (dy).to(w.dtype)
while tl.atomic_cas(Lock, 0, 1) == 1:
pass
count = tl.load(Count)
# first store doesn't accumulate
if count == 0:
tl.atomic_xchg(Count, 1)
else:
partial_dw += tl.load(DW, mask=mask)
partial_db += tl.load(DB, mask=mask)
tl.store(DW, partial_dw, mask=mask)
tl.store(DB, partial_db, mask=mask)
# release lock
tl.atomic_xchg(Lock, 0)
# Backward pass (total DW + total DB)
@triton.jit
def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, **meta):
pid = tl.program_id(0)
BLOCK_SIZE_M = meta['BLOCK_SIZE_M']
BLOCK_SIZE_N = meta['BLOCK_SIZE_N']
cols = pid*BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for i in range(0, M, BLOCK_SIZE_M):
rows = i + tl.arange(0, meta['BLOCK_SIZE_M'])
mask = (rows[:, None] < M) & (cols[None, :] < N)
offs = rows[:, None]*N + cols[None, :]
dw += tl.load(DW + offs, mask=mask, other=0.)
db += tl.load(DB + offs, mask=mask, other=0.)
sum_dw = tl.sum(dw, axis=0)
sum_db = tl.sum(db, axis=0)
tl.store(FINAL_DW + cols, sum_dw, mask=cols<N)
tl.store(FINAL_DB + cols, sum_db, mask=cols<N)
class LayerNorm(torch.autograd.Function):
@staticmethod
def forward(ctx, x, normalized_shape, weight, bias, eps):
# allocate output
y = torch.empty_like(x)
# reshape input data into 2D tensor
x_arg = x.reshape(-1, x.shape[-1])
M, N = x_arg.shape
mean = torch.empty((M, ), dtype=torch.float32, device='cuda')
rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_SIZE:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
# enqueue kernel
_layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd,
x_arg.stride(0), N, eps,
BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
ctx.save_for_backward(x, weight, bias, mean, rstd)
ctx.BLOCK_SIZE = BLOCK_SIZE
ctx.num_warps = num_warps
ctx.eps = eps
return y
@staticmethod
def backward(ctx, dy):
x, w, b, m, v = ctx.saved_tensors
# heuristics for amount of parallel reduction stream for DG/DB
N = w.shape[0]
GROUP_SIZE_M = 64
if N <= 8192: GROUP_SIZE_M = 96
if N <= 4096: GROUP_SIZE_M = 128
if N <= 1024: GROUP_SIZE_M = 256
# allocate output
locks = torch.zeros(2*GROUP_SIZE_M, dtype=torch.int32, device='cuda')
_dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
_db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
dw = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
db = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
dx = torch.empty_like(dy)
# enqueue kernel using forward pass heuristics
# also compute partial sums for DW and DB
x_arg = x.reshape(-1, x.shape[-1])
M, N = x_arg.shape
_layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks,
x_arg.stride(0), N, ctx.eps,
BLOCK_SIZE_N=ctx.BLOCK_SIZE,
GROUP_SIZE_M=GROUP_SIZE_M,
num_warps=ctx.num_warps)
grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])]
# accumulate partial sums in separate kernel
_layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N,
BLOCK_SIZE_M = 32,
BLOCK_SIZE_N = 128)
return dx, None, dw, db, None
layer_norm = LayerNorm.apply
def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
# create data
x_shape = (M, N)
w_shape = (x_shape[-1], )
weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
x = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
dy = .1*torch.randn_like(x)
x.requires_grad_(True)
# forward pass
y_tri = layer_norm(x, w_shape, weight, bias, eps)
y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
# backward pass (triton)
y_tri.backward(dy, retain_graph=True)
dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
x.grad, weight.grad, bias.grad = None, None, None
# backward pass (torch)
y_ref.backward(dy, retain_graph=True)
dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
# compare
triton.testing.assert_almost_equal(y_tri, y_ref)
triton.testing.assert_almost_equal(dx_tri, dx_ref)
triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1)
triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1)
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['N'],
x_vals=[512 * i for i in range(2, 32)],
line_arg='provider',
line_vals=['triton', 'torch', 'apex'],
line_names=['Triton', 'Torch', 'Apex'],
styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
ylabel='GB/s',
plot_name='layer-norm-backward',
args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}
)
)
def bench_layer_norm(M, N, dtype, provider, mode='backward',eps=1e-5, device='cuda'):
# create data
x_shape = (M, N)
w_shape = (x_shape[-1], )
weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
x = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
dy = .1*torch.randn_like(x)
x.requires_grad_(True)
# utility functions
if provider == 'triton':
y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps)
if provider == 'torch':
y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)
if provider == 'apex':
import apex
apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype)
y_fwd = lambda: apex_layer_norm(x)
# forward pass
if mode == 'forward':
gbps = lambda ms: 2*x.numel()*x.element_size()/ms*1e-6
ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500)
# backward pass
if mode == 'backward':
gbps = lambda ms: 3*x.numel()*x.element_size()/ms*1e-6
y = y_fwd()
ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True),
grad_to_none=[x], rep=500)
return gbps(ms), gbps(max_ms), gbps(min_ms)
bench_layer_norm.run(save_path='.', print_data=True)
.. rst-class:: sphx-glr-timing
2022-06-09 00:48:08 +00:00
**Total running time of the script:** ( 2 minutes 12.110 seconds)
2022-02-09 07:15:50 +00:00
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: 05-layer-norm.py <05-layer-norm.py>`
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: 05-layer-norm.ipynb <05-layer-norm.ipynb>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_