Files
triton/autotune/python/model.py

59 lines
2.3 KiB
Python
Raw Normal View History

2014-09-28 19:37:56 -04:00
from sklearn import *;
from sklearn import ensemble;
import numpy as np
import scipy as sp
2014-10-01 04:44:16 +02:00
from pybrain.datasets import SupervisedDataSet
from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised.trainers import BackpropTrainer
from pybrain.structure import LinearLayer, TanhLayer, SigmoidLayer, SoftmaxLayer, FeedForwardNetwork, BiasUnit
from pybrain.tools.neuralnets import NNregression, Trainer
2014-09-28 19:37:56 -04:00
def train_model(X, Y, profiles):
2014-09-29 03:01:33 +02:00
#Preprocessing
2014-10-01 04:44:16 +02:00
Xmean = np.mean(X, axis=0)
Xstd = np.std(X, axis=0)
X = (X - Xmean)/Xstd
Ymax = np.max(Y)
Y = Y/Ymax
2014-09-28 19:37:56 -04:00
2014-10-01 04:44:16 +02:00
ref = np.argmax(np.bincount(np.argmax(Y, axis=1))) #most common profile
2014-09-29 03:01:33 +02:00
#Cross-validation data-sets
2014-10-01 04:44:16 +02:00
cut = int(0.1*X.shape[0]+1)
XTr = X[0:cut, :]
YTr = Y[0:cut, :]
XTe = X[cut:,:]
YTe = Y[cut:,:]
2014-09-29 03:01:33 +02:00
#Train the model
2014-10-01 04:44:16 +02:00
print("Training the model...")
ds = SupervisedDataSet(X.shape[1], Y.shape[1])
for idx, x in enumerate(X):
ds.addSample(x, Y[idx,:])
clf = buildNetwork(*[X.shape[1], 100, Y.shape[1]], hiddenclass = TanhLayer, outclass = LinearLayer)
#print fnn;
#trainer = RPropMinusTrainer( fnn, dataset=ds, verbose=True);
trainer = BackpropTrainer( clf, dataset=ds, verbose=True, momentum=0.01, weightdecay=0.01, learningrate=0.002, batchlearning=False)
trainer.trainUntilConvergence(maxEpochs=100)
2014-09-29 03:01:33 +02:00
#Evaluate the model
2014-10-01 04:44:16 +02:00
GFlops = np.empty(XTe.shape[0])
speedups = np.empty(XTe.shape[0])
optspeedups = np.empty(XTe.shape[0])
2014-09-29 03:01:33 +02:00
for i,x in enumerate(XTe):
2014-10-01 04:44:16 +02:00
predictions = clf.activate(x)
label = np.argmax(predictions)
# print YTe[i,label], YTe[i,ref], np.max(YTe[i,:])
speedups[i] = YTe[i,label]/YTe[i,ref]
optspeedups[i] = np.max(YTe[i,:])/YTe[i,ref]
GFlops[i] = YTe[i,ref]*Ymax
2014-09-29 03:01:33 +02:00
2014-10-01 04:44:16 +02:00
np.set_printoptions(precision=2)
print("-----------------")
print("Average testing speedup : %f (Optimal : %f)"%(sp.stats.gmean(speedups), sp.stats.gmean(optspeedups)))
print("Average GFLOP/s : %f (Default %f, Optimal %f)"%(np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))))
print("Minimum speedup is %f wrt %i GFlops"%(np.min(speedups), GFlops[np.argmin(speedups)]))
print("Maximum speedup is %f wrt %i GFlops"%(np.max(speedups), GFlops[np.argmax(speedups)]))
print("--------")
2014-09-29 03:01:33 +02:00
print clf