2014-09-02 22:03:20 -04:00
|
|
|
import array
|
|
|
|
import numpy as np
|
|
|
|
import random
|
|
|
|
import time
|
2014-09-06 00:39:38 -04:00
|
|
|
import sys
|
2014-09-02 22:03:20 -04:00
|
|
|
|
|
|
|
from deap import algorithms
|
|
|
|
from deap import base
|
|
|
|
from deap import creator
|
|
|
|
from deap import tools
|
|
|
|
|
|
|
|
from genetic_operators import GeneticOperators
|
|
|
|
|
2014-09-06 00:39:38 -04:00
|
|
|
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, maxgen, halloffame, compute_perf, perf_metric):
|
2014-09-02 22:03:20 -04:00
|
|
|
# Evaluate the individuals with an invalid fitness
|
|
|
|
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
|
|
|
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
|
|
|
for ind, fit in zip(invalid_ind, fitnesses):
|
|
|
|
ind.fitness.values = fit
|
|
|
|
|
|
|
|
if halloffame is not None:
|
|
|
|
halloffame.update(population)
|
|
|
|
|
|
|
|
# Begin the generational process
|
|
|
|
gen = 0
|
|
|
|
maxtime = time.strptime(maxtime, '%Mm%Ss')
|
|
|
|
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
|
|
|
start_time = time.time()
|
2014-09-06 00:39:38 -04:00
|
|
|
while time.time() - start_time < maxtime and gen < maxgen:
|
2014-09-02 22:03:20 -04:00
|
|
|
# Vary the population
|
|
|
|
offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
|
|
|
|
|
|
|
|
# Evaluate the individuals with an invalid fitness
|
|
|
|
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
|
|
|
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
|
|
|
for ind, fit in zip(invalid_ind, fitnesses):
|
|
|
|
ind.fitness.values = fit
|
|
|
|
|
|
|
|
# Update the hall of fame with the generated individuals
|
|
|
|
if halloffame is not None:
|
|
|
|
halloffame.update(offspring)
|
|
|
|
|
|
|
|
# Select the next generation population
|
|
|
|
population[:] = toolbox.select(population + offspring, mu)
|
|
|
|
|
|
|
|
# Update the statistics with the new population
|
|
|
|
gen = gen + 1
|
2014-09-06 00:39:38 -04:00
|
|
|
|
|
|
|
best_profile = '(%s)'%','.join(map(str,halloffame[0]));
|
|
|
|
best_performance = compute_perf(halloffame[0].fitness.values[0])
|
|
|
|
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\n'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
|
|
|
|
sys.stdout.write('\n')
|
|
|
|
return population
|
2014-09-02 22:03:20 -04:00
|
|
|
|
|
|
|
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
|
|
|
gen = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
|
|
|
|
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
|
|
|
creator.create("Individual", list, fitness=creator.FitnessMin)
|
|
|
|
|
|
|
|
toolbox = base.Toolbox()
|
|
|
|
toolbox.register("individual", tools.initIterate, creator.Individual, gen.init)
|
|
|
|
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
|
|
|
toolbox.register("evaluate", gen.evaluate)
|
2014-09-10 11:10:19 -04:00
|
|
|
toolbox.register("mate", tools.cxTwoPoint)
|
2014-09-02 22:03:20 -04:00
|
|
|
toolbox.decorate("mate", gen.repair)
|
2014-09-10 11:10:19 -04:00
|
|
|
toolbox.register("mutate", gen.mutate)
|
2014-09-02 22:03:20 -04:00
|
|
|
toolbox.decorate("mutate", gen.repair)
|
|
|
|
toolbox.register("select", tools.selNSGA2)
|
|
|
|
|
2014-09-10 11:10:19 -04:00
|
|
|
pop = toolbox.population(n=30)
|
2014-09-02 22:03:20 -04:00
|
|
|
hof = tools.HallOfFame(1)
|
|
|
|
|
|
|
|
best_performer = lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x])
|
|
|
|
best_profile = lambda x: '(%s)'%','.join(map(str,hof[0]))
|
|
|
|
|
|
|
|
cxpb = 0.5
|
|
|
|
mutpb = 0.2
|
|
|
|
|
|
|
|
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
|
|
|
stats.register("max (" + perf_metric + ")", lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x]))
|
|
|
|
stats.register("profile ", lambda x: '(%s)'%','.join(map(str,hof[0])))
|
|
|
|
|
2014-09-10 11:10:19 -04:00
|
|
|
pop = eaMuPlusLambda(pop, toolbox, 30, 50, cxpb=0.2, mutpb=0.3, maxtime='5m0s', maxgen=200, halloffame=hof, compute_perf=compute_perf, perf_metric=perf_metric)
|